Cutting parameters have a significant impact on the machining effect.In order to reduce the machining time and improve the machining quality,this paper proposes an optimization algorithm based on Bp neural networkImpr...Cutting parameters have a significant impact on the machining effect.In order to reduce the machining time and improve the machining quality,this paper proposes an optimization algorithm based on Bp neural networkImproved Multi-Objective Particle Swarm(Bp-DWMOPSO).Firstly,this paper analyzes the existing problems in the traditional multi-objective particle swarm algorithm.Secondly,the Bp neural network model and the dynamic weight multi-objective particle swarm algorithm model are established.Finally,the Bp-DWMOPSO algorithm is designed based on the established models.In order to verify the effectiveness of the algorithm,this paper obtains the required data through equal probability orthogonal experiments on a typical Computer Numerical Control(CNC)turning machining case and uses the Bp-DWMOPSO algorithm for optimization.The experimental results show that the Cutting speed is 69.4 mm/min,the Feed speed is 0.05 mm/r,and the Depth of cut is 0.5 mm.The results show that the Bp-DWMOPSO algorithm can find the cutting parameters with a higher material removal rate and lower spindle load while ensuring the machining quality.This method provides a new idea for the optimization of turning machining parameters.展开更多
Firstly,neural network based on improved particle swarm optimization (PSO)algorithm is introduced in this paper. Based on the data collected from projects in typical areas,the concrete carbonation depth is assessed wi...Firstly,neural network based on improved particle swarm optimization (PSO)algorithm is introduced in this paper. Based on the data collected from projects in typical areas,the concrete carbonation depth is assessed with consideration of various factors such as unit cement consumption (C),unit water consumption (W),binder material content (B),water binder ratio (W/B ),concrete strength (MPa),rapid carbonization days (D),fly ash consumption of unit volume concrete(FA),fly ash percentage of total cementitious materials (FA%),expansion agent consumption of unit volume concrete(EA),expansion agent percentage of total cementitious materials (FA%).Gaining the data from project-experiment,a model is presented to calculate and forecast carbonation depth using neural network based on improved PSO algorithm. The calculation results indicate that this algorithm accord with the prediction carbonation depth of concrete accuracy requirements and has a better convergence and generalization,worth being popularized.展开更多
This paper investigated the resistance performance of a submersible surface ship(SSS)in different working cases and scales to analyze the hydrodynamic performance characteristics of an SSS at different speeds and divi...This paper investigated the resistance performance of a submersible surface ship(SSS)in different working cases and scales to analyze the hydrodynamic performance characteristics of an SSS at different speeds and diving depths for engineering applications.First,a hydrostatic resistance performance test of the SSS was carried out in a towing tank.Second,the scale effect of the hydrodynamic pressure coefficient and wave-making resistance was analyzed.The differences between the three-dimensional real-scale ship resistance prediction and numerical methods were explained.Finally,the advantages of genetic algorithm(GA)and neural network were combined to predict the resistance of SSS.Back propagation neural network(BPNN)and GA-BPNN were utilized to predict the SSS resistance.We also studied neural network parameter optimization,including connection weights and thresholds,using K-fold cross-validation.The results showed that when a SSS sails at low and medium speeds,the influence of various underwater cases on resistance is not obvious,while at high speeds,the resistance of water surface cases increases sharply with an increase in speed.After improving the weights and thresholds through K-fold cross-validation and GA,the prediction results of BPNN have high consistency with the actual values.The research results can provide a theoretical reference for the optimal design of the resistance of SSS in practical applications.展开更多
Broiler chickens are traditionally weighed by steelyard or platform scale,which is timeconsuming and labor-intensive.Broiler chickens usually exhibit stress-related behavior during weighing.The 3D camera-based weighin...Broiler chickens are traditionally weighed by steelyard or platform scale,which is timeconsuming and labor-intensive.Broiler chickens usually exhibit stress-related behavior during weighing.The 3D camera-based weighing system for broiler chickens can only weigh the broiler chicken in the monitoring area.Usually,it makes poor weight prediction due to poor segmentation especially when the broiler chicken is flapping its wings.To solve these issues,we developed one simple and low-cost weighing system with high stability and accuracy.A validity value extraction method from dynamic weighing was proposed.Then,an improved amplitude-limiting filtering algorithm and a BP neural networks model were developed to avoid accidental interference.The BP neural networks model used daily weight gain,day-age,average velocity,and the weight data after filtering algorithm as the input layer.The weighing system was tested in a commercial Beijing Fatty Chickens house with Beijing Fatty Chickens.We tested thirteen groups of Beijing Fatty Chickens of different weights,from 500 g to 1800 g in intervals of 100 g,using the three different methods:no filtering algorithm or BP neural networks,only the improved amplitude-limiting filtering algorithm and a hybrid of the improved amplitude-limiting filtering algorithm and BP neural networks.The results showed that the hybrid algorithm had a better performance in minimizing the error,lowering from the original 6%down to 3%.The accurate weight data was transmitted to the remote service platform for further decision-making,such as activity analysis,feeding management,and health alerts.展开更多
文摘Cutting parameters have a significant impact on the machining effect.In order to reduce the machining time and improve the machining quality,this paper proposes an optimization algorithm based on Bp neural networkImproved Multi-Objective Particle Swarm(Bp-DWMOPSO).Firstly,this paper analyzes the existing problems in the traditional multi-objective particle swarm algorithm.Secondly,the Bp neural network model and the dynamic weight multi-objective particle swarm algorithm model are established.Finally,the Bp-DWMOPSO algorithm is designed based on the established models.In order to verify the effectiveness of the algorithm,this paper obtains the required data through equal probability orthogonal experiments on a typical Computer Numerical Control(CNC)turning machining case and uses the Bp-DWMOPSO algorithm for optimization.The experimental results show that the Cutting speed is 69.4 mm/min,the Feed speed is 0.05 mm/r,and the Depth of cut is 0.5 mm.The results show that the Bp-DWMOPSO algorithm can find the cutting parameters with a higher material removal rate and lower spindle load while ensuring the machining quality.This method provides a new idea for the optimization of turning machining parameters.
文摘Firstly,neural network based on improved particle swarm optimization (PSO)algorithm is introduced in this paper. Based on the data collected from projects in typical areas,the concrete carbonation depth is assessed with consideration of various factors such as unit cement consumption (C),unit water consumption (W),binder material content (B),water binder ratio (W/B ),concrete strength (MPa),rapid carbonization days (D),fly ash consumption of unit volume concrete(FA),fly ash percentage of total cementitious materials (FA%),expansion agent consumption of unit volume concrete(EA),expansion agent percentage of total cementitious materials (FA%).Gaining the data from project-experiment,a model is presented to calculate and forecast carbonation depth using neural network based on improved PSO algorithm. The calculation results indicate that this algorithm accord with the prediction carbonation depth of concrete accuracy requirements and has a better convergence and generalization,worth being popularized.
文摘This paper investigated the resistance performance of a submersible surface ship(SSS)in different working cases and scales to analyze the hydrodynamic performance characteristics of an SSS at different speeds and diving depths for engineering applications.First,a hydrostatic resistance performance test of the SSS was carried out in a towing tank.Second,the scale effect of the hydrodynamic pressure coefficient and wave-making resistance was analyzed.The differences between the three-dimensional real-scale ship resistance prediction and numerical methods were explained.Finally,the advantages of genetic algorithm(GA)and neural network were combined to predict the resistance of SSS.Back propagation neural network(BPNN)and GA-BPNN were utilized to predict the SSS resistance.We also studied neural network parameter optimization,including connection weights and thresholds,using K-fold cross-validation.The results showed that when a SSS sails at low and medium speeds,the influence of various underwater cases on resistance is not obvious,while at high speeds,the resistance of water surface cases increases sharply with an increase in speed.After improving the weights and thresholds through K-fold cross-validation and GA,the prediction results of BPNN have high consistency with the actual values.The research results can provide a theoretical reference for the optimal design of the resistance of SSS in practical applications.
基金supported by Key Technologies Research and Development Program(CN),funding number,2018YFE0108500the International Cooperation Fund Project of Beijing Academy of Agriculture and Forestry Sciences,funding number 2019HP002Beijing Science and Technology Planning,funding number Z191100004019007。
文摘Broiler chickens are traditionally weighed by steelyard or platform scale,which is timeconsuming and labor-intensive.Broiler chickens usually exhibit stress-related behavior during weighing.The 3D camera-based weighing system for broiler chickens can only weigh the broiler chicken in the monitoring area.Usually,it makes poor weight prediction due to poor segmentation especially when the broiler chicken is flapping its wings.To solve these issues,we developed one simple and low-cost weighing system with high stability and accuracy.A validity value extraction method from dynamic weighing was proposed.Then,an improved amplitude-limiting filtering algorithm and a BP neural networks model were developed to avoid accidental interference.The BP neural networks model used daily weight gain,day-age,average velocity,and the weight data after filtering algorithm as the input layer.The weighing system was tested in a commercial Beijing Fatty Chickens house with Beijing Fatty Chickens.We tested thirteen groups of Beijing Fatty Chickens of different weights,from 500 g to 1800 g in intervals of 100 g,using the three different methods:no filtering algorithm or BP neural networks,only the improved amplitude-limiting filtering algorithm and a hybrid of the improved amplitude-limiting filtering algorithm and BP neural networks.The results showed that the hybrid algorithm had a better performance in minimizing the error,lowering from the original 6%down to 3%.The accurate weight data was transmitted to the remote service platform for further decision-making,such as activity analysis,feeding management,and health alerts.