期刊文献+
共找到5,837篇文章
< 1 2 250 >
每页显示 20 50 100
A Quantitative Seismic Topographic Effect Prediction Method Based upon BP Neural Network Algorithm and FEM Simulation
1
作者 Qifeng Jiang Mianshui Rong +1 位作者 Wei Wei Tingting Chen 《Journal of Earth Science》 SCIE CAS CSCD 2024年第4期1355-1366,共12页
Topography can strongly affect ground motion,and studies of the quantification of hill surfaces’topographic effect are relatively rare.In this paper,a new quantitative seismic topographic effect prediction method bas... Topography can strongly affect ground motion,and studies of the quantification of hill surfaces’topographic effect are relatively rare.In this paper,a new quantitative seismic topographic effect prediction method based upon the BP neural network algorithm and three-dimensional finite element method(FEM)was developed.The FEM simulation results were compared with seismic records and the results show that the PGA and response spectra have a tendency to increase with increasing elevation,but the correlation between PGA amplification factors and slope is not obvious for low hills.New BP neural network models were established for the prediction of amplification factors of PGA and response spectra.Two kinds of input variables’combinations which are convenient to achieve are proposed in this paper for the prediction of amplification factors of PGA and response spectra,respectively.The absolute values of prediction errors can be mostly within 0.1 for PGA amplification factors,and they can be mostly within 0.2 for response spectra’s amplification factors.One input variables’combination can achieve better prediction performance while the other one has better expandability of the predictive region.Particularly,the BP models only employ one hidden layer with about a hundred nodes,which makes it efficient for training. 展开更多
关键词 seismic topographic effect finite element method bp neural network algorithm earthquake disaster prevention
原文传递
Gesture Recognition Based on BP Neural Network Improved by Chaotic Genetic Algorithm 被引量:18
2
作者 Dong-Jie Li Yang-Yang Li +1 位作者 Jun-Xiang Li Yu Fu 《International Journal of Automation and computing》 EI CSCD 2018年第3期267-276,共10页
Aim at the defects of easy to fall into the local minimum point and the low convergence speed of back propagation(BP)neural network in the gesture recognition, a new method that combines the chaos algorithm with the... Aim at the defects of easy to fall into the local minimum point and the low convergence speed of back propagation(BP)neural network in the gesture recognition, a new method that combines the chaos algorithm with the genetic algorithm(CGA) is proposed. According to the ergodicity of chaos algorithm and global convergence of genetic algorithm, the basic idea of this paper is to encode the weights and thresholds of BP neural network and obtain a general optimal solution with genetic algorithm, and then the general optimal solution is optimized to the accurate optimal solution by adding chaotic disturbance. The optimal results of the chaotic genetic algorithm are used as the initial weights and thresholds of the BP neural network to recognize the gesture. Simulation and experimental results show that the real-time performance and accuracy of the gesture recognition are greatly improved with CGA. 展开更多
关键词 Gesture recognition back propagation bp neural network chaos algorithm genetic algorithm data glove.
原文传递
Intelligent direct analysis of physical and mechanical parameters of tunnel surrounding rock based on adaptive immunity algorithm and BP neural network 被引量:3
3
作者 Xiao-rui Wang1,2, Yuan-han Wang1, Xiao-feng Jia31.School of Civil Engineering and Mechanics,Huazhong University of Science and Technology, Wuhan 430074,China 2.Department of Civil Engineering,Nanyang Institute of Technology,Nanyang 473004,China 3.Department of Chemistry and Bioengineering,Nanyang Institute of Technology,Nanyang 473004,China. 《Journal of Pharmaceutical Analysis》 SCIE CAS 2009年第1期22-30,共9页
Because of complexity and non-predictability of the tunnel surrounding rock, the problem with the determination of the physical and mechanical parameters of the surrounding rock has become a main obstacle to theoretic... Because of complexity and non-predictability of the tunnel surrounding rock, the problem with the determination of the physical and mechanical parameters of the surrounding rock has become a main obstacle to theoretical research and numerical analysis in tunnel engineering. During design, it is a frequent practice, therefore, to give recommended values by analog based on experience. It is a key point in current research to make use of the displacement back analytic method to comparatively accurately determine the parameters of the surrounding rock whereas artificial intelligence possesses an exceptionally strong capability of identifying, expressing and coping with such complex non-linear relationships. The parameters can be verified by searching the optimal network structure, using back analysis on measured data to search optimal parameters and performing direct computation of the obtained results. In the current paper, the direct analysis is performed with the biological emulation system and the software of Fast Lagrangian Analysis of Continua (FLAC3D. The high non-linearity, network reasoning and coupling ability of the neural network are employed. The output vector required of the training of the neural network is obtained with the numerical analysis software. And the overall space search is conducted by employing the Adaptive Immunity Algorithm. As a result, we are able to avoid the shortcoming that multiple parameters and optimized parameters are easy to fall into a local extremum. At the same time, the computing speed and efficiency are increased as well. Further, in the paper satisfactory conclusions are arrived at through the intelligent direct-back analysis on the monitored and measured data at the Erdaoya tunneling project. The results show that the physical and mechanical parameters obtained by the intelligent direct-back analysis proposed in the current paper have effectively improved the recommended values in the original prospecting data. This is of practical significance to the appraisal of stability and informationization design of the surrounding rock. 展开更多
关键词 adaptive immunity algorithm bp neural network physical and mechanical parameters surrounding rock direct-back analysis
在线阅读 下载PDF
CNC Thermal Compensation Based on Mind Evolutionary Algorithm Optimized BP Neural Network 被引量:6
4
作者 Yuefang Zhao Xiaohong Ren +2 位作者 Yang Hu Jin Wang Xuemei Bao 《World Journal of Engineering and Technology》 2016年第1期38-44,共7页
Thermal deformation error is one of the most important factors affecting the CNCs’ accuracy, so research is conducted on the temperature errors affecting CNCs’ machining accuracy;on the basis of analyzing the unpred... Thermal deformation error is one of the most important factors affecting the CNCs’ accuracy, so research is conducted on the temperature errors affecting CNCs’ machining accuracy;on the basis of analyzing the unpredictability and pre-maturing of the results of the genetic algorithm, as well as the slow speed of the training speed of the particle algorithm, a kind of Mind Evolutionary Algorithm optimized BP neural network featuring extremely strong global search capacity was proposed;type KVC850MA/2 five-axis CNC of Changzheng Lathe Factory was used as the research subject, and the Mind Evolutionary Algorithm optimized BP neural network algorithm was used for the establishment of the compensation model between temperature changes and the CNCs’ thermal deformation errors, as well as the realization method on hardware. The simulation results indicated that this method featured extremely high practical value. 展开更多
关键词 Thermal Errors Thermal Error Compensation Genetic algorithm Mind Evolutionary algorithm bp neural network
在线阅读 下载PDF
Neural Network Based on GA-BP Algorithm and its Application in the Protein Secondary Structure Prediction 被引量:8
5
作者 YANG Yang LI Kai-yang 《Chinese Journal of Biomedical Engineering(English Edition)》 2006年第1期1-9,共9页
The advantages and disadvantages of genetic algorithm and BP algorithm are introduced. A neural network based on GA-BP algorithm is proposed and applied in the prediction of protein secondary structure, which combines... The advantages and disadvantages of genetic algorithm and BP algorithm are introduced. A neural network based on GA-BP algorithm is proposed and applied in the prediction of protein secondary structure, which combines the advantages of BP and GA. The prediction and training on the neural network are made respectively based on 4 structure classifications of protein so as to get higher rate of predication---the highest prediction rate 75.65%,the average prediction rate 65.04%. 展开更多
关键词 bp algorithm GENETIC algorithm neural network STRUCTURE classification Protein SECONDARY STRUCTURE prediction
暂未订购
STUDY ON INJECTION AND IGNITION CONTROL OF GASOLINE ENGINE BASED ON BP NEURAL NETWORK 被引量:13
6
作者 Zhang Cuiping Yang QingfoCollege of Mechanical Engineering,Taiyuan University of Technology,Taiyuan 030024, China 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2003年第4期441-444,共4页
According to advantages of neural network and characteristics of operatingprocedures of engine, a new strategy is represented on the control of fuel injection and ignitiontiming of gasoline engine based on improved BP... According to advantages of neural network and characteristics of operatingprocedures of engine, a new strategy is represented on the control of fuel injection and ignitiontiming of gasoline engine based on improved BP network algorithm. The optimum ignition advance angleand fuel injection pulse band of engine under different speed and load are tested for the samplestraining network, focusing on the study of the design method and procedure of BP neural network inengine injection and ignition control. The results show that artificial neural network technique canmeet the requirement of engine injection and ignition control. The method is feasible for improvingpower performance, economy and emission performances of gasoline engine. 展开更多
关键词 neural network bp algorithm Gasoline engine CONTROL
在线阅读 下载PDF
Optimization of Processing Parameters of Power Spinning for Bushing Based on Neural Network and Genetic Algorithms 被引量:4
7
作者 Junsheng Zhao Yuantong Gu Zhigang Feng 《Journal of Beijing Institute of Technology》 EI CAS 2019年第3期606-616,共11页
A neural network model of key process parameters and forming quality is developed based on training samples which are obtained from the orthogonal experiment and the finite element numerical simulation. Optimization o... A neural network model of key process parameters and forming quality is developed based on training samples which are obtained from the orthogonal experiment and the finite element numerical simulation. Optimization of the process parameters is conducted using the genetic algorithm (GA). The experimental results have shown that a surface model of the neural network can describe the nonlinear implicit relationship between the parameters of the power spinning process:the wall margin and amount of expansion. It has been found that the process of determining spinning technological parameters can be accelerated using the optimization method developed based on the BP neural network and the genetic algorithm used for the process parameters of power spinning formation. It is undoubtedly beneficial towards engineering applications. 展开更多
关键词 power SPINNING process parameters optimization bp neural network GENETIC algorithms (GA) response surface methodology (RSM)
在线阅读 下载PDF
Design of Robotic Visual Servo Control Based on Neural Network and Genetic Algorithm 被引量:9
8
作者 Hong-Bin Wang Mian Liu 《International Journal of Automation and computing》 EI 2012年第1期24-29,共6页
A new visual servo control scheme for a robotic manipulator is presented in this paper, where a back propagation (BP) neural network is used to make a direct transition from image feature to joint angles without req... A new visual servo control scheme for a robotic manipulator is presented in this paper, where a back propagation (BP) neural network is used to make a direct transition from image feature to joint angles without requiring robot kinematics and camera calibration. To speed up the convergence and avoid local minimum of the neural network, this paper uses a genetic algorithm to find the optimal initial weights and thresholds and then uses the BP Mgorithm to train the neural network according to the data given. The proposed method can effectively combine the good global searching ability of genetic algorithms with the accurate local searching feature of BP neural network. The Simulink model for PUMA560 robot visual servo system based on the improved BP neural network is built with the Robotics Toolbox of Matlab. The simulation results indicate that the proposed method can accelerate convergence of the image errors and provide a simple and effective way of robot control. 展开更多
关键词 Visual servo image Jacobian back propagation bp neural network genetic algorithm robot control
在线阅读 下载PDF
Coal mine safety production forewarning based on improved BP neural network 被引量:39
9
作者 Wang Ying Lu Cuijie Zuo Cuiping 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第2期319-324,共6页
Firstly, the early warning index system of coal mine safety production was given from four aspects as per- sonnel, environment, equipment and management. Then, improvement measures which are additional momentum method... Firstly, the early warning index system of coal mine safety production was given from four aspects as per- sonnel, environment, equipment and management. Then, improvement measures which are additional momentum method, adaptive learning rate, particle swarm optimization algorithm, variable weight method and asynchronous learning factor, are used to optimize BP neural network models. Further, the models are applied to a comparative study on coal mine safety warning instance. Results show that the identification precision of MPSO-BP network model is higher than GBP and PSO-BP model, and MPSO- BP model can not only effectively reduce the possibility of the network falling into a local minimum point, but also has fast convergence and high precision, which will provide the scientific basis for the forewarnin~ management of coal mine safetv production. 展开更多
关键词 Improved PSO algorithm bp neural network Coal mine safety production Early warning
在线阅读 下载PDF
Research on Railway Passenger Flow Prediction Method Based on GA Improved BP Neural Network 被引量:5
10
作者 Jian Zhang Weihao Guo 《Journal of Computer and Communications》 2019年第7期283-292,共10页
This paper chooses passenger flow data of some stations in China from January 2015 to March 2016, and the time series prediction model of BP neural network for railway passenger flow is established. But because of its... This paper chooses passenger flow data of some stations in China from January 2015 to March 2016, and the time series prediction model of BP neural network for railway passenger flow is established. But because of its slow convergence speed and easily falling into local optimal solution of the problem, we propose to improve the time series model of BP neural network by genetic algorithm to predict railway passenger flow. Experimental results show that the improved method has higher prediction accuracy and better nonlinear fitting ability. 展开更多
关键词 RAILWAY PASSENGER Flow Prediction bp neural network GENETIC algorithm
在线阅读 下载PDF
A genetic-algorithm-based neural network approach for EDXRF analysis 被引量:1
11
作者 王俊 刘明哲 +3 位作者 庹先国 李哲 李磊 石睿 《Nuclear Science and Techniques》 SCIE CAS CSCD 2014年第3期18-21,共4页
In energy dispersive X-ray fiuorescence(EDXRF), quantitative elemental content analysis becomes difficult due to the existence of the noise, the spectrum peak superposition, element matrix effect, etc. In this paper, ... In energy dispersive X-ray fiuorescence(EDXRF), quantitative elemental content analysis becomes difficult due to the existence of the noise, the spectrum peak superposition, element matrix effect, etc. In this paper, a hybrid approach of genetic algorithm(GA) and back propagation(BP) neural network is proposed without considering the complex relationship between the elemental content and peak intensity. The aim of GA-optimized BP is to get better network initial weights and thresholds. The starting point of this approach is that the reciprocal of the mean square error of the initialization BP neural network is set as the fitness value of the individuals in GA; and the initial weights and thresholds are replaced by individuals, then the optimal individual is searched by selecting, crossover and mutation operations, finally a new BP neural network model is established with the optimal initial weights and thresholds. The quantitative analysis results of titanium and iron contents in five types of mineral samples show that the relative errors of 76.7% samples are below 2%, compared to chemical analysis data, which demonstrates the effectiveness of the proposed method. 展开更多
关键词 神经网络方法 遗传算法 XRF分析 基础 初始权值 GA优化 神经网络模型 元素含量
在线阅读 下载PDF
Mechanical Property Prediction of Strip Model Based on PSO-BP Neural Network 被引量:20
12
作者 WANG Ping HUANG Zhen-yi +1 位作者 ZHANG Ming-ya ZHAO Xue-wu 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2008年第3期87-91,共5页
Mechanical property prediction of hot rolled strip is one of the hotspots in material processing research. To avoid the local infinitesimal defect and slow constringency in pure BP algorithm, a kind of global optimiza... Mechanical property prediction of hot rolled strip is one of the hotspots in material processing research. To avoid the local infinitesimal defect and slow constringency in pure BP algorithm, a kind of global optimization algorithm-particle swarm optimization (PSO) is adopted. The algorithm is combined with the BP rapid training algorithm, and then, a kind of new neural network (NN) called PSO-BP NN is established. With the advantages of global optimization ability and the rapid constringency of the BP rapid training algorithm, the new algorithm fully shows the ability of nonlinear approach of multilayer feedforward network, improves the performance of NN, and provides a favorable basis for further online application of a comprehensive model. 展开更多
关键词 particle swarm optimization algorithm bp neural network hot continuous rolling strip mechanical property prediction
原文传递
QPSO-optimized BP Neural Network to Predict Occurrence Quantity of Myzus persicae 被引量:1
13
作者 Qiu Jing Yang Yi +3 位作者 Qin Xiyun Li Kunlin Chen Keping Yin Jianli 《Plant Diseases and Pests》 CAS 2015年第1期1-3,14,共4页
In order to effectively predict occurrence quantity of Myzus persicae, BP neural network theory and method was used to establish prediction model for oc- currence quantity of M. persicae. Meanwhile, QPSO algorithm was... In order to effectively predict occurrence quantity of Myzus persicae, BP neural network theory and method was used to establish prediction model for oc- currence quantity of M. persicae. Meanwhile, QPSO algorithm was used to optimize connection weight and threshold value of BP neural network, so as to determine. the optimal connection weight and threshold value. The historical data of M. persica quantity in Hongta County, Yuxi City of Yunnan Province from 2003 to 2006 was adopted as training samples, and the occurrence quantities of M. persicae from 2007 to 2009 were predicted. The prediction accuracy was 99.35%, the mini- mum completion time was 30 s, the average completion time was 34.5 s, and the running times were 19. The prediction effect of the model was obviously superior to other prediction models. The experiment showed that this model was more effective and feasible, with faster convergence rate and stronger stability, and could solve the similar problems in prediction and clustering. The study provides a theoretical basis for comprehensive prevention and control against M. persicae. 展开更多
关键词 bp neural network QPSO algorithm Myzus persicae Occurrence quantity Prediction model
在线阅读 下载PDF
The Rapidly Solidified Aging Copper Alloy by BP Neural Network 被引量:1
14
作者 苏娟华 DONGQi-ming +2 位作者 LIUPing LIHe-jun KANGBu-xi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2003年第4期50-53,共4页
Rapid solidifiation is a kind of new process for enhancing the hardness and electrical conductivity of Cu-Cr-Zr copper alloy.The use of BP neural network(NN) is presented to model the non-linear relationship between p... Rapid solidifiation is a kind of new process for enhancing the hardness and electrical conductivity of Cu-Cr-Zr copper alloy.The use of BP neural network(NN) is presented to model the non-linear relationship between parameters of age hardening processes and the mechanical and electrical properties of rapdily solidified Cu-Cr-Zr alloy.The improved model is developed by the Levenberg-Marquardt training algorithm and the good generalization performance is demonstrated.So,an important foundation has been laid for optimisticaly controlling the rapidly solidified aging processes of Cu-Cr-Zr alloy. 展开更多
关键词 Cu-Cr-Zr alloy rapid solidification AGING bp neural network Levenberg-Marquard algorithm
在线阅读 下载PDF
A Kind of Second-Order Learning Algorithm Based on Generalized Cost Criteria in Multi-Layer Feed-Forward Neural Networks
15
作者 张长江 付梦印 金梅 《Journal of Beijing Institute of Technology》 EI CAS 2003年第2期119-124,共6页
A kind of second order algorithm--recursive approximate Newton algorithm was given by Karayiannis. The algorithm was simplified when it was formulated. Especially, the simplification to matrix Hessian was very reluct... A kind of second order algorithm--recursive approximate Newton algorithm was given by Karayiannis. The algorithm was simplified when it was formulated. Especially, the simplification to matrix Hessian was very reluctant, which led to the loss of valuable information and affected performance of the algorithm to certain extent. For multi layer feed forward neural networks, the second order back propagation recursive algorithm based generalized cost criteria was proposed. It is proved that it is equivalent to Newton recursive algorithm and has a second order convergent rate. The performance and application prospect are analyzed. Lots of simulation experiments indicate that the calculation of the new algorithm is almost equivalent to the recursive least square multiple algorithm. The algorithm and selection of networks parameters are significant and the performance is more excellent than BP algorithm and the second order learning algorithm that was given by Karayiannis. 展开更多
关键词 multi layer feed forward neural networks bp algorithm Newton recursive algorithm
在线阅读 下载PDF
Parameter Self - Learning of Generalized Predictive Control Using BP Neural Network
16
作者 陈增强 袁著祉 王群仙 《Journal of China Textile University(English Edition)》 EI CAS 2000年第3期54-56,共3页
This paper describes the self—adjustment of some tuning-knobs of the generalized predictive controller(GPC).A three feedforward neural network was utilized to on line learn two key tuning-knobs of GPC,and BP algorith... This paper describes the self—adjustment of some tuning-knobs of the generalized predictive controller(GPC).A three feedforward neural network was utilized to on line learn two key tuning-knobs of GPC,and BP algorithm was used for the training of the linking-weights of the neural network.Hence it gets rid of the difficulty of choosing these tuning-knobs manually and provides easier condition for the wide applications of GPC on industrial plants.Simulation results illustrated the effectiveness of the method. 展开更多
关键词 generalized PREDICTIVE CONTROL SELF - tuning CONTROL SELF - LEARNING CONTROL neural networks bp algorithm .
在线阅读 下载PDF
基于改进PSO-BO-BP的拖拉机双燃料发动机性能预测
17
作者 陈晖 王冰心 +1 位作者 黄镇财 计端 《农机化研究》 北大核心 2026年第1期268-276,共9页
为提高拖拉机双燃料发动机性能与排放预测模型的性能,提出了一种融合改进粒子群优化算法(IMPSO)、贝叶斯优化(BO)和反向传播(BP)的协同预测模型(IMPSO-BO-BP)。基于发动机台架试验数据,通过整合IMPSO全局搜索、BO概率推理和BP梯度更新机... 为提高拖拉机双燃料发动机性能与排放预测模型的性能,提出了一种融合改进粒子群优化算法(IMPSO)、贝叶斯优化(BO)和反向传播(BP)的协同预测模型(IMPSO-BO-BP)。基于发动机台架试验数据,通过整合IMPSO全局搜索、BO概率推理和BP梯度更新机制,构建多尺度优化模型。结果表明:BO解析了神经网络隐含层维度与学习率的非线性耦合效应,确定隐含层神经元数量24、学习率0.00215为最优参数组合,表明模型复杂度与学习率调控对泛化性能的协同约束作用;性能预测中,IMPSO-BO-BP对制动热效率(BTE)和制动燃料消耗率(BSFC)的预测平均绝对百分比误差(MAPE)与均方根误差(RMSE)较BO-BP模型降低25%~40%,R^(2)提升至0.995及以上,验证了其对物理主导型非线性关系的高精度建模能力;排放预测方面,模型对CO、NO_(x)和HC的MAPE为3.403%、5.223%、3.413%,R^(2)达0.9925、0.9942、0.9946,RMSE为56.429、45.709、335.322,虽精度略低于性能参数预测,但较BO-BP模型仍提升显著。研究证实多算法协同机制通过全局优化与局部收敛的互补效应,可显著提升模型精度和鲁棒性,为拖拉机双燃料发动机多目标优化控制和低排放设计提供了可靠的建模工具。 展开更多
关键词 双燃料发动机 性能预测 bp神经网络 改进粒子群优化算法
在线阅读 下载PDF
基于BP神经网络的煤矿高压供电系统电容电流预测研究
18
作者 栾斌 范秀伟 《陕西煤炭》 2026年第1期94-101,共8页
【目的】在煤矿生产规模不断扩大和电网建设日趋智能化的背景下,针对煤矿高压供电系统电容电流预测精度低和计算误差大的问题,提出了一种煤矿高压供电系统电容电流智能预测方法。【方法】根据部分现有电缆参数,采用BP神经网络建立电容... 【目的】在煤矿生产规模不断扩大和电网建设日趋智能化的背景下,针对煤矿高压供电系统电容电流预测精度低和计算误差大的问题,提出了一种煤矿高压供电系统电容电流智能预测方法。【方法】根据部分现有电缆参数,采用BP神经网络建立电容电流的预测模型,进而引入粒子群算法对预测模型进行优化,进行了特征参数选取、数据归一化处理并设计了采用文中方法的预测流程。通过平均相对误差等指标来分析误差大小并评价方法的精度,利用实测数据对电容电流预测方法进行对比分析。【结果】结果表明该方法的相对误差为2.52%。【结论】该方法实现了煤矿高压供电系统电容电流的准确预测,为其智能化预测提供了新思路。 展开更多
关键词 煤矿供电系统 电容电流 bp神经网络 PSO算法
在线阅读 下载PDF
Gold Price Prediction Based on PCA-GA-BP Neural Network
19
作者 Youchan Zhu Chaokun Zhang 《Journal of Computer and Communications》 2018年第7期22-33,共12页
Gold price is affected by a variety of factors and has highly nonlinear and random features. Some traditional forecast methods emphasize linear relations excessively and some ignore the price randomness. The predictiv... Gold price is affected by a variety of factors and has highly nonlinear and random features. Some traditional forecast methods emphasize linear relations excessively and some ignore the price randomness. The predictive error is relatively large. Therefore, a BP neural network model based on principal component analysis (PCA) and genetic algorithm (GA) was proposed for the short-term prediction of gold price. BP could establish the gold price forecasting model. The weights and thresholds of BP neural network are optimized by GA, which overcome the shortcoming that BP algorithm falls into local minimum easily. PCA can effectively simplify the network input variables and speed up the convergence. The results showed that, compared with GA-BP and BP, the convergence rate of PCA-GA-BP neural network model was faster and the prediction accuracy was higher in the prediction of gold price. 展开更多
关键词 PCA GENETIC algorithm bp neural network GOLD PRICE
在线阅读 下载PDF
A Second Order Training Algorithm for Multilayer Feedforward Neural Networks
20
作者 谭营 何振亚 邓超 《Journal of Southeast University(English Edition)》 EI CAS 1997年第1期32-36,共5页
ASecondOrderTrainingAlgorithmforMultilayerFeedforwardNeuralNetworksTanYing(谭营)HeZhenya(何振亚)(DepartmentofRad... ASecondOrderTrainingAlgorithmforMultilayerFeedforwardNeuralNetworksTanYing(谭营)HeZhenya(何振亚)(DepartmentofRadioEngineering,Sou... 展开更多
关键词 MULTILAYER FEEDFORWARD neural networks SECOND order TRAINING algorithm bp algorithm learning factors XOR problem
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部