期刊文献+
共找到25,033篇文章
< 1 2 250 >
每页显示 20 50 100
Matlab语言的Neural Network Toolbox及其在同步中的应用 被引量:4
1
作者 田原 《现代电子技术》 2008年第20期156-158,165,共4页
介绍Matlab神经网络工具箱的相关情况及基本应用。结合一些简单的例子进一步对神经网络工具箱中的一些函数及神经网络结构解释和说明。通过该说明明确神经网络工具箱的相关应用,并利用神经网络在同步中的应用进行简单的介绍。通过仿真... 介绍Matlab神经网络工具箱的相关情况及基本应用。结合一些简单的例子进一步对神经网络工具箱中的一些函数及神经网络结构解释和说明。通过该说明明确神经网络工具箱的相关应用,并利用神经网络在同步中的应用进行简单的介绍。通过仿真验证神经网络在同步中的可行性。 展开更多
关键词 matlab 神经网络 工具箱 同步
在线阅读 下载PDF
Dynamic prediction of gas emission based on wavelet neural network toolbox 被引量:4
2
作者 Yu-Min PAN Yong-Hong DENG Quan-Zhu ZHANG Peng-Qian XUE 《Journal of Coal Science & Engineering(China)》 2013年第2期174-181,共8页
This paper presents a method for dynamically predicting gas emission quantity based on the wavelet neural network (WNN) toolbox. Such a method is able to predict the gas emission quantity in adjacent subsequent time... This paper presents a method for dynamically predicting gas emission quantity based on the wavelet neural network (WNN) toolbox. Such a method is able to predict the gas emission quantity in adjacent subsequent time intervals through training the WNN with even time-interval samples. The method builds successive new model with the width of sliding window remaining invariable so as to obtain a dynamic prediction method for gas emission quantity. Furthermore, the method performs prediction by a self-developed WNN toolbox. Experiments indicate that such a model can overcome the deficiencies of the traditional static prediction model and can fully make use of the feature extraction capability of wavelet base function to reflect the geological feature of gas emission quantity dynamically. The method is characterized by simplicity, flexibility, small data scale, fast convergence rate and high prediction precision. In addition, the method is also characterized by certainty and repeatability of the predicted results. The effectiveness of this method is confirmed by simulation results. Therefore, this method will exert practical significance on promoting the application of WNN. 展开更多
关键词 dynamic prediction gas emission wavelet neural network toolbox prediction model
在线阅读 下载PDF
Neural network modeling for dynamic pulsed GTAW process with wire filler based on MATLAB
3
作者 赵冬斌 陈善本 +1 位作者 吴林 陈强 《China Welding》 EI CAS 2001年第2期10-15,共6页
Double-sided weld pool shapes were determined by multiple welding parameters and wire feed parameters during pulsed GTAW with wire filler. Aiming at such a system with multiple inputs and outputs, an effective modelin... Double-sided weld pool shapes were determined by multiple welding parameters and wire feed parameters during pulsed GTAW with wire filler. Aiming at such a system with multiple inputs and outputs, an effective modeling method, consisting of the impulse signal design, model structure and parameter identification and verification, was developed based on MATLAB software. Then, dynamic neural network models, TDNNM (Topside dynamic neural network model) and BHDNNM (Backside width and topside height dynamic neural network model), were established to predict double-sided shape parameters of the weld pool. The characteristic relationship of the welding process was simulated and analyzed with the models. 展开更多
关键词 GTAW with wire filler dynamic process modeling neural network matlab
在线阅读 下载PDF
A method for predicting random vibration response of train-track-bridge system based on GA-BP neural network
4
作者 Jianfeng Mao Yun Zhang +2 位作者 Li Zheng Mansoor Khan Zhiwu Yu 《High-Speed Railway》 2025年第4期305-317,共13页
To enhance the efficiency of stochastic vibration analysis for the Train-Track-Bridge(TTB)coupled system,this paper proposes a prediction method based on a Genetic Algorithm-optimized Backpropagation(GA-BP)neural netw... To enhance the efficiency of stochastic vibration analysis for the Train-Track-Bridge(TTB)coupled system,this paper proposes a prediction method based on a Genetic Algorithm-optimized Backpropagation(GA-BP)neural network.First,initial track irregularity samples and random parameter sets of the Vehicle-Bridge System(VBS)are generated using the stochastic harmonic function method.Then,the stochastic dynamic responses corresponding to the sample sets are calculated using a developed stochastic vibration analysis model of the TTB system.The track irregularity data and vehicle-bridge random parameters are used as input variables,while the corresponding stochastic responses serve as output variables for training the BP neural network to construct the prediction model.Subsequently,the Genetic Algorithm(GA)is applied to optimize the BP neural network by considering the randomness in excitation and parameters of the TTB system,improving model accuracy.After optimization,the trained GA-BP model enables rapid and accurate prediction of vehicle-bridge responses.To validate the proposed method,predictions of vehicle-bridge responses under varying train speeds are compared with numerical simulation results.The findings demonstrate that the proposed method offers notable advantages in predicting the stochastic vibration response of high-speed railway TTB coupled systems. 展开更多
关键词 Train-track-bridge system Genetic algorithm bp neural network Random response prediction Random parameters
在线阅读 下载PDF
Study on Remote Sensing of Water Depths Based on BP Artificial Neural Network 被引量:4
5
作者 王艳姣 张培群 +1 位作者 董文杰 张鹰 《Marine Science Bulletin》 CAS 2007年第1期26-35,共10页
A momentum BP neural network model (MBPNNM) was constructed to retrieve the water depth information for the South Channel of the Yangtze River Estuary using the relationship between the reflectance derived from Land... A momentum BP neural network model (MBPNNM) was constructed to retrieve the water depth information for the South Channel of the Yangtze River Estuary using the relationship between the reflectance derived from Landsat 7 satellite data and the water depth information. Results showed that MBPNNM, which exhibited a strong capability of nonlinear mapping, allowed the water depth information in the study area to be retrieved at a relatively high level of accuracy. Affected by the sediment concentration of water in the estuary, MBPNNM enabled the retrieval of water depth of less than 5 meters accurately. However, the accuracy was not ideal for the water depths of more than 10 meters. 展开更多
关键词 Yangtze River Estuary bp neural network water-depth remote sensing retrieval model
在线阅读 下载PDF
Study on the Model of Excessive Staminate Catkin Thinning of Proterandrous Walnut Based on Quadratic Polynomial Regression Equation and BP Artificial Neural Network 被引量:1
6
作者 王贤萍 曹贵寿 +4 位作者 杨晓华 张倩茹 李凯 李鸿雁 段泽敏 《Agricultural Science & Technology》 CAS 2015年第6期1295-1300,共6页
The excessive staminate catkin thinning (emasculation) of proterandrous walnut is an important management measure for improving yield. To improve the excessive staminate catkin thinning efficiency, the model of quad... The excessive staminate catkin thinning (emasculation) of proterandrous walnut is an important management measure for improving yield. To improve the excessive staminate catkin thinning efficiency, the model of quadratic polynomial regression equation and BP artificial neural network was developed. The effects of ethephon, gibberel in and mepiquat on shedding rate of staminate catkin of pro-terandrous walnut were investigated by modeling field test. Based on the modeling test results, the excessive staminate catkin thinning model of quadratic polynomial regression equation and BP artificial neural network was established, and it was validated by field test next year. The test data were divided into training set, vali-dation set and test set. The total 20 sets of data obtained from the modeling field test were randomly divided into training set (17) and validation set (3) by central composite design (quadric rotational regression test design), and the data obtained from the next-year field test were divided into the test set. The topological struc-ture of BP artificial neural network was 3-5-1. The results showed that the pre-diction errors of BP neural network for samples from the validation set were 1.355 0%, 0.429 1% and 0.353 8%, respectively; the difference between the predicted value by the BP neural network and validated value by field test was 2.04%, and the difference between the predicted value by the regression equation and validated value by field test was 3.12%; the prediction accuracy of BP neural network was over 1.0% higher than that of regression equation. The effective combination of quadratic polynomial stepwise regression and BP artificial neural network wil not only help to determine the effect of independent parameter but also improve the prediction accuracy. 展开更多
关键词 WALNUT THINNING bp artificial neural network Regression PREDICTION
在线阅读 下载PDF
Water quality forecast through application of BP neural network at Yuqiao reservoir 被引量:21
7
作者 ZHAO Ying NAN Jun +1 位作者 CUI Fu-yi GUO Liang 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第9期1482-1487,共6页
This paper deals with the study of a water quality forecast model through application of BP neural network technique and GUI (Graphical User Interfaces) function of MATLAB at Yuqiao reservoir in Tianjin. To overcome t... This paper deals with the study of a water quality forecast model through application of BP neural network technique and GUI (Graphical User Interfaces) function of MATLAB at Yuqiao reservoir in Tianjin. To overcome the shortcomings of traditional BP algorithm as being slow to converge and easy to reach extreme minimum value,the model adopts LM (Leven-berg-Marquardt) algorithm to achieve a higher speed and a lower error rate. When factors affecting the study object are identified,the reservoir's 2005 measured values are used as sample data to test the model. The number of neurons and the type of transfer functions in the hidden layer of the neural network are changed from time to time to achieve the best forecast results. Through simulation testing the model shows high efficiency in forecasting the water quality of the reservoir. 展开更多
关键词 Water quality forecast bp neural network matlab Graphical User Interfaces (GUI)
在线阅读 下载PDF
Quantitative Detection Model of Pernicious Gases in Pig House Based on BP Neural Network
8
作者 俞守华 张洁芳 区晶莹 《Animal Husbandry and Feed Science》 CAS 2009年第3期40-43,48,共5页
To find a neural network model suitable to identify the concentration of mixed pernicious gases in pig house, the quantitative detection model of pernicious gases in pig house was set up based on BP ( Back propagatio... To find a neural network model suitable to identify the concentration of mixed pernicious gases in pig house, the quantitative detection model of pernicious gases in pig house was set up based on BP ( Back propagation) neural network. The BP neural network was trained separately by the three functions, trainbr, traingdm and trainlm, in order to identify the concentration of mixed pernicious gases composed of ammonia gas and hepatic gas. The neural network toolbox in MATLAB software was used to simulate the detection. The results showed that the neural network trained by trainbr function has high average identification accuracy and faster detection speed, and it is also insensitive to noise; therefore, it is suitable to identify the concentration of pemidous gases in pig house. These data provide a reference for intelligent monitoring of pemicious gases in pigsty. 展开更多
关键词 bp neural network pig house -Quantitative detection of gas
在线阅读 下载PDF
Prediction of Injection-Production Ratio with BP Neural Network
9
作者 袁爱武 郑晓松 王东城 《Petroleum Science》 SCIE CAS CSCD 2004年第4期62-65,共4页
Injection of water to enhance oil production is commonplace, and improvements in understanding the process are economically important. This study examines predictive models of the injection-to-production ratio. First... Injection of water to enhance oil production is commonplace, and improvements in understanding the process are economically important. This study examines predictive models of the injection-to-production ratio. Firstly, the error between the fitting and actual injection-production ratio is calculated with such methods as the injection-production ratio and water-oil ratio method, the material balance method, the multiple regression method, the gray theory GM (1,1) model and the back-propogation (BP) neural network method by computer applications in this paper. The relative average errors calculated are respectively 1.67%, 1.08%, 19.2%, 1.38% and 0.88%. Secondly, the reasons for the errors from different prediction methods are analyzed theoretically, indicating that the prediction precision of the BP neural network method is high, and that it has a better self-adaptability, so that it can reflect the internal relationship between the injection-production ratio and the influencing factors. Therefore, the BP neural network method is suitable to the prediction of injection-production ratio. 展开更多
关键词 Injection-production ratio (IPR) bp neural network gray theory PREDICTION
原文传递
Matlab/NNToolbox在压力传感器温度补偿中的应用
10
作者 杨德旭 刘志侠 陶学宗 《沈阳农业大学学报》 CAS CSCD 北大核心 2007年第6期871-873,共3页
压力传感器易受温度、磁场等外界因素的干扰,其测量精度会受到影响。以对温度干扰最敏感的压力传感器为例,阐述如何应用Matlab软件提供的神经网络工具NNToolbox来实现压力传感器的温度补偿。补偿结果表明:温度对压力传感器的干扰波动由... 压力传感器易受温度、磁场等外界因素的干扰,其测量精度会受到影响。以对温度干扰最敏感的压力传感器为例,阐述如何应用Matlab软件提供的神经网络工具NNToolbox来实现压力传感器的温度补偿。补偿结果表明:温度对压力传感器的干扰波动由补偿前的22%减小到补偿后的1.1%,压力传感器的测量精度提高了20倍。由此可见,利用Matlab/NNToolbox对压力传感器温度补偿具有简单精确、补偿效果明显、灵活性强等优点。 展开更多
关键词 压力传感器 matlab 温度干扰 测量精度 神经网络工具箱
在线阅读 下载PDF
Spatial Interpolation of Soil Nutrients Based on BP Neural Network 被引量:3
11
作者 李晴 程家昌 胡月明 《Agricultural Science & Technology》 CAS 2014年第3期506-511,共6页
With Zengcheng City, Guangdong Province, as the object of study, 200 soil sampling points were col ected for the spatial interpolation prediction of soil properties by using Kriging method and BP neural network method... With Zengcheng City, Guangdong Province, as the object of study, 200 soil sampling points were col ected for the spatial interpolation prediction of soil properties by using Kriging method and BP neural network method. After comparing the interpolation results with the measured values, the root mean square error of the prediction data was obtained. The results showed that the interpolation accuracy of BP neural network was higher than that of Kriging method under the same cir-cumstances, and there was no smoothness in using BP neural network method when there were few sample points. In addition, with no requirement on the distri-bution of sample data, BP neural network method had stronger generalization ability than traditional interpolation method, which was an alternative interpolation method. 展开更多
关键词 bp neural network Soil nutrients Spatial prediction KRIGING
在线阅读 下载PDF
Multi-Objective Optimization and Analysis Model of Sintering Process Based on BP Neural Network 被引量:19
12
作者 ZHANG Jun-hong XIE An-guo SHEN Feng-man 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2007年第2期1-5,共5页
A multi-objective optimization and analysis model of the sintering process based on BP neural network is presented. Genetic algorithms are combined to simplify the BP neural network, which can reduce the learning time... A multi-objective optimization and analysis model of the sintering process based on BP neural network is presented. Genetic algorithms are combined to simplify the BP neural network, which can reduce the learning time and increase the forecasting accuracy of the network model. This model has been experimented in the sintering process, and the production cost, the energy consumption, the quality (revolving intensity), and the output are considered at the same time. Moreover, the relation between some factors and the multi-objectives has been analyzed, and the results are consistent with the process. Different objectives are emphasized at different practical periods, and this can provide a theoretical basis for the manager. 展开更多
关键词 bp neural network MULTI-OBJECTIVE OPTIMIZATION SINTER
在线阅读 下载PDF
STUDY ON INJECTION AND IGNITION CONTROL OF GASOLINE ENGINE BASED ON BP NEURAL NETWORK 被引量:13
13
作者 Zhang Cuiping Yang QingfoCollege of Mechanical Engineering,Taiyuan University of Technology,Taiyuan 030024, China 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2003年第4期441-444,共4页
According to advantages of neural network and characteristics of operatingprocedures of engine, a new strategy is represented on the control of fuel injection and ignitiontiming of gasoline engine based on improved BP... According to advantages of neural network and characteristics of operatingprocedures of engine, a new strategy is represented on the control of fuel injection and ignitiontiming of gasoline engine based on improved BP network algorithm. The optimum ignition advance angleand fuel injection pulse band of engine under different speed and load are tested for the samplestraining network, focusing on the study of the design method and procedure of BP neural network inengine injection and ignition control. The results show that artificial neural network technique canmeet the requirement of engine injection and ignition control. The method is feasible for improvingpower performance, economy and emission performances of gasoline engine. 展开更多
关键词 neural network bp algorithm Gasoline engine CONTROL
在线阅读 下载PDF
Mechanical Property Prediction of Strip Model Based on PSO-BP Neural Network 被引量:20
14
作者 WANG Ping HUANG Zhen-yi +1 位作者 ZHANG Ming-ya ZHAO Xue-wu 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2008年第3期87-91,共5页
Mechanical property prediction of hot rolled strip is one of the hotspots in material processing research. To avoid the local infinitesimal defect and slow constringency in pure BP algorithm, a kind of global optimiza... Mechanical property prediction of hot rolled strip is one of the hotspots in material processing research. To avoid the local infinitesimal defect and slow constringency in pure BP algorithm, a kind of global optimization algorithm-particle swarm optimization (PSO) is adopted. The algorithm is combined with the BP rapid training algorithm, and then, a kind of new neural network (NN) called PSO-BP NN is established. With the advantages of global optimization ability and the rapid constringency of the BP rapid training algorithm, the new algorithm fully shows the ability of nonlinear approach of multilayer feedforward network, improves the performance of NN, and provides a favorable basis for further online application of a comprehensive model. 展开更多
关键词 particle swarm optimization algorithm bp neural network hot continuous rolling strip mechanical property prediction
原文传递
Using a Multi-Output Neural Network Model to Standardize Heterogeneous Fisheries Data
15
作者 XU Zhenqi LIU Yang WANG Jintao 《Journal of Ocean University of China》 2025年第5期1373-1385,I0667-I0676,共23页
Biological data in fishery ecology have complex structures and are highly heterogeneous.Catch per unit effort(CPUE)estimated from fishery-dependent data are often used to characterize abundance indices(AI)of fish spec... Biological data in fishery ecology have complex structures and are highly heterogeneous.Catch per unit effort(CPUE)estimated from fishery-dependent data are often used to characterize abundance indices(AI)of fish species,which is critical in fish stock assessment.However,additional considerations need to be undertaken to ensure robust estimation because of the latently complicated structures in fishery-dependent data.Here,we elaborated the process of constructing multi-output artificial neural network models to standardize CPUE for heterogeneous fishing operations and applied it to the skipjack tuna(Katsuwonus pelamis)in the western and central Pacific Ocean(WCPO).Seasonal,spatial,and environmental factors were input variables,and the CPUE of four types of skipjack tuna fisheries were set as output variables.The optimal structure for multi-output neural network was evaluated by systematic comparison in 100 runs hold-out cross-validation.The results showed that the final multi-output neural network model with high accuracy can predict the spatial and temporal trends of skipjack tuna abundance. 展开更多
关键词 western and central Pacific Ocean skipjack tuna bp neural network multi-output model CPUE standardization ENSO
在线阅读 下载PDF
Mechanical Properties Prediction of the Mechanical Clinching Joints Based on Genetic Algorithm and BP Neural Network 被引量:23
16
作者 LONG Jiangqi LAN Fengchong +1 位作者 CHEN Jiqing YU Ping 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第1期36-41,共6页
For optimal design of mechanical clinching steel-aluminum joints,the back propagation(BP)neural network is used to research the mapping relationship between joining technique parameters including sheet thickness,sheet... For optimal design of mechanical clinching steel-aluminum joints,the back propagation(BP)neural network is used to research the mapping relationship between joining technique parameters including sheet thickness,sheet hardness,joint bottom diameter etc.,and mechanical properties of shearing and peeling in order to investigate joining technology between various material plates in the steel-aluminum hybrid structure car body.Genetic algorithm(GA)is adopted to optimize the back-propagation neural network connection weights.The training and validating samples are made by the BTM Tog-L-Loc system with different technologic parameters.The training samples'parameters and the corresponding joints'mechanical properties are supplied to the artificial neural network(ANN)for training.The validating samples'experimental data is used for checking up the prediction outputs.The calculation results show that GA can improve the model's prediction precision and generalization ability of BP neural network.The comparative analysis between the experimental data and the prediction outputs shows that ANN prediction models after training can effectively predict the mechanical properties of mechanical clinching joints and prove the feasibility and reliability of the intelligent neural networks system when used in the mechanical properties prediction of mechanical clinching joints.The prediction results can be used for a reference in the design of mechanical clinching steel-aluminum joints. 展开更多
关键词 genetic algorithm bp neural network mechanical clinching JOINT properties prediction
在线阅读 下载PDF
A Human Body Posture Recognition Algorithm Based on BP Neural Network for Wireless Body Area Networks 被引量:11
17
作者 Fengye Hu Lu Wang +2 位作者 Shanshan Wang Xiaolan Liu Gengxin He 《China Communications》 SCIE CSCD 2016年第8期198-208,共11页
Human body posture recognition has attracted considerable attention in recent years in wireless body area networks(WBAN). In order to precisely recognize human body posture,many recognition algorithms have been propos... Human body posture recognition has attracted considerable attention in recent years in wireless body area networks(WBAN). In order to precisely recognize human body posture,many recognition algorithms have been proposed.However, the recognition rate is relatively low. In this paper, we apply back propagation(BP) neural network as a classifier to recognizing human body posture, where signals are collected from VG350 acceleration sensor and a posture signal collection system based on WBAN is designed. Human body signal vector magnitude(SVM) and tri-axial acceleration sensor data are used to describe the human body postures. We are able to recognize 4postures: Walk, Run, Squat and Sit. Our posture recognition rate is up to 91.67%. Furthermore, we find an implied relationship between hidden layer neurons and the posture recognition rate. The proposed human body posture recognition algorithm lays the foundation for the subsequent applications. 展开更多
关键词 wireless body area networks bp neural network signal vector magnitude posture recognition rate
在线阅读 下载PDF
Gesture Recognition Based on BP Neural Network Improved by Chaotic Genetic Algorithm 被引量:18
18
作者 Dong-Jie Li Yang-Yang Li +1 位作者 Jun-Xiang Li Yu Fu 《International Journal of Automation and computing》 EI CSCD 2018年第3期267-276,共10页
Aim at the defects of easy to fall into the local minimum point and the low convergence speed of back propagation(BP)neural network in the gesture recognition, a new method that combines the chaos algorithm with the... Aim at the defects of easy to fall into the local minimum point and the low convergence speed of back propagation(BP)neural network in the gesture recognition, a new method that combines the chaos algorithm with the genetic algorithm(CGA) is proposed. According to the ergodicity of chaos algorithm and global convergence of genetic algorithm, the basic idea of this paper is to encode the weights and thresholds of BP neural network and obtain a general optimal solution with genetic algorithm, and then the general optimal solution is optimized to the accurate optimal solution by adding chaotic disturbance. The optimal results of the chaotic genetic algorithm are used as the initial weights and thresholds of the BP neural network to recognize the gesture. Simulation and experimental results show that the real-time performance and accuracy of the gesture recognition are greatly improved with CGA. 展开更多
关键词 Gesture recognition back propagation bp neural network chaos algorithm genetic algorithm data glove.
原文传递
BP neural networks and random forest models to detect damage by Dendrolimus punctatus Walker 被引量:8
19
作者 Zhanghua Xu Xuying Huang +4 位作者 Lu Lin Qianfeng Wang Jian Liu Kunyong Yu Chongcheng Chen 《Journal of Forestry Research》 SCIE CAS CSCD 2020年第1期107-121,共15页
The construction of a pest detection algorithm is an important step to couple"ground-space"characteristics,which is also the basis for rapid and accurate monitoring and detection of pest damage.In four exper... The construction of a pest detection algorithm is an important step to couple"ground-space"characteristics,which is also the basis for rapid and accurate monitoring and detection of pest damage.In four experimental areas in Sanming City,Jiangle County,Sha County and Yanping District in Fujian Province,sample data on pest damage in 182 sets of Dendrolimus punctatus were collected.The data were randomly divided into a training set and testing set,and five duplicate tests and one eliminating-indicator test were done.Based on the characterization analysis of the host for D.punctatus damage,seven characteristic indicators of ground and remote sensing including leaf area index,standard error of leaf area index(SEL)of pine forest,normalized difference vegetation index(NDVI),wetness from tasseled cap transformation(WET),green band(B2),red band(B3),near-infrared band(B4)of remote sensing image are obtained to construct BP neural networks and random forest models of pest levels.The detection results of these two algorithms were comprehensively compared from the aspects of detection precision,kappa coefficient,receiver operating characteristic curve,and a paired t test.The results showed that the seven indicators all were responsive to pest damage,and NDVI was relatively weak;the average pest damage detection precision of six tests by BP neural networks was 77.29%,the kappa coefficient was 0.6869 and after the RF algorithm,the respective values were 79.30%and 0.7151,showing that the latter is more optimized,but there was no significant difference(p>0.05);the detection precision,kappa coefficient and AUC of the RF algorithm was higher than the BP neural networks for three pest levels(no damage,moderate damage and severe damage).The detection precision and AUC of BP neural networks were a little higher for mild damage,but the difference was not significant(p>0.05)except for the kappa coefficient for the no damage level(p<0.05).An"over-fitting"phenomenon tends to occur in BP neural networks,while RF method is more robust,providing a detection effect that is better than the BP neural networks.Thus,the application of the random forest algorithm for pest damage and multilevel dispersed variables is thus feasible and suggests that attention to the proportionality of sample data from various categories is needed when collecting data. 展开更多
关键词 bp neural networks Detection precision Kappa coefficient Pine moth Random forest ROC curve
在线阅读 下载PDF
BP Neural Network of Continuous Casting Technological Parameters and Secondary Dendrite Arm Spacing of Spring Steel 被引量:10
20
作者 HANG Li-hong WANG Ai-guo +2 位作者 TIAN Nai-yuan ZHANG Wei-cun FAN Qiao-li 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2011年第8期25-29,共5页
The continuous casting technological parameters have a great influence on the secondary dendrite arm spacing of the slab, which determines the segregation behavior of materials. Therefore, the identification of techno... The continuous casting technological parameters have a great influence on the secondary dendrite arm spacing of the slab, which determines the segregation behavior of materials. Therefore, the identification of technological parameters of continuous casting process directly impacts the property of slab. The relationships between continuous casting technological parameters and cooling rate of slab for spring steel were built using BP neural network model, based on which, the relevant secondary dendrite arm spacing was calculated. The simulation calculation was also carried out using the industrial data. The simulation results show that compared with that of the traditional method, the absolute error of calculation result obtained with BP neural network model reduced from 0. 015 to 0. 0005, and the relative error reduced from 6, 76 % to 0.22 %. BP neural network model had a more precise accuracy in the optimization of continuous casting technological parameters. 展开更多
关键词 continuous casting technological parameter secondary dendrite arm spacing bp neural network
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部