期刊文献+
共找到6,808篇文章
< 1 2 250 >
每页显示 20 50 100
An Incremental Time-delay Neural Network for Dynamical Recurrent Associative Memory
1
作者 刘娟 Cai Zixing 《High Technology Letters》 EI CAS 2002年第1期72-75,共4页
An incremental time-delay neural network based on synapse growth, which is suitable for dynamic control and learning of autonomous robots, is proposed to improve the learning and retrieving performance of dynamical re... An incremental time-delay neural network based on synapse growth, which is suitable for dynamic control and learning of autonomous robots, is proposed to improve the learning and retrieving performance of dynamical recurrent associative memory architecture. The model allows steady and continuous establishment of associative memory for spatio-temporal regularities and time series in discrete sequence of inputs. The inserted hidden units can be taken as the long-term memories that expand the capacity of network and sometimes may fade away under certain condition. Preliminary experiment has shown that this incremental network may be a promising approach to endow autonomous robots with the ability of adapting to new data without destroying the learned patterns. The system also benefits from its potential chaos character for emergence. 展开更多
关键词 Time-delay recurrent neural network Spatio-temporal associative memory Pattern sequences learning Lifelong ontogenetic evolution Autonomous robots
在线阅读 下载PDF
A Hopfield-like hippocampal CA3 neural network model for studying associative memory in Alzheimer's disease
2
作者 Wangxiong Zhao Qingli Qiao Dan Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第22期1694-1700,共7页
Associative memory, one of the major cognitive functions in the hippocampal CA3 region, includes auto-associative memory and hetero-associative memory. Many previous studies have shown that Alzheimer's disease (AD)... Associative memory, one of the major cognitive functions in the hippocampal CA3 region, includes auto-associative memory and hetero-associative memory. Many previous studies have shown that Alzheimer's disease (AD) can lead to loss of functional synapses in the central nervous system, and associative memory functions in patients with AD are often impaired, but few studies have addressed the effect of AD on hetero-associative memory in the hippocampal CA3 region. In this study, based on a simplified anatomical structure and synaptic connections in the hippocampal CA3 region, a three-layered Hopfield-like neural network model of hippocampal CA3 was proposed and then used to simulate associative memory functions in three circumstances: normal, synaptic deletion and synaptic compensation, according to Ruppin's synaptic deletion and compensation theory. The influences of AD on hetero-associative memory were further analyzed. The simulated results showed that the established three-layered Hopfield-like neural network model of hippocampal CA3 has both auto-associative and hetero-associative memory functions. With increasing synaptic deletion level, both associative memory functions were gradually impaired and the mean firing rates of the neurons within the network model were decreased. With gradual increasing synaptic compensation, the associative memory functions of the network were improved and the mean firing rates were increased. The simulated results suggest that the Hopfield-like neural network model can effectively simulate both associative memory functions of the hippocampal CA3 region. Synaptic deletion affects both auto-associative and hetero-associative memory functions in the hippocampal CA3 region, and can also result in memory dysfunction. To some extent, synaptic compensation measures can offset two kinds of associative memory dysfunction caused by synaptic deletion in the hippocampal CA3 area. 展开更多
关键词 hippocampal CA3 region Hopfield-like neural network associative memory Alzheimer's disease Izhkevich neuronal model firing rate
在线阅读 下载PDF
GLOBAL DYNAMICS OF DELAYED BIDIRECTIONAL ASSOCIATIVE MEMORY (BAM) NEURAL NETWORKS
3
作者 周进 刘曾荣 向兰 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2005年第3期327-335,共9页
Without assuming the smoothness,monotonicity and boundedness of the activation functions, some novel criteria on the existence and global exponential stability of equilibrium point for delayed bidirectional associativ... Without assuming the smoothness,monotonicity and boundedness of the activation functions, some novel criteria on the existence and global exponential stability of equilibrium point for delayed bidirectional associative memory (BAM) neural networks are established by applying the Liapunov functional methods and matrix_algebraic techniques. It is shown that the new conditions presented in terms of a nonsingular M matrix described by the networks parameters,the connection matrix and the Lipschitz constant of the activation functions,are not only simple and practical,but also easier to check and less conservative than those imposed by similar results in recent literature. 展开更多
关键词 bidirectional associative memory (BAM) neural network global exponential stability Liapunov function
在线阅读 下载PDF
STABILITY OF BIDIRECTIONAL ASSOCIATIVE MEMORY NEURAL NETWORKS WITH DELAYS 被引量:11
4
作者 Liao Xiaoxin(Dept. of Auto. Control. Huazhong Univ. of Science & Technology, Wuhan 430074)Liao Yang(Dept. of Computer Science, Nanjing University, Nanjing 210093)Liao Yu (Wuhan Soundy Science & Commerce Company, Wuhan 430070) 《Journal of Electronics(China)》 1998年第4期372-377,共6页
In this paper the globally asymptotic stability of more general two-layer nonlinear feedback associative memory neural networks with time delays is examined. The sufficient conditions of existence, uniqueness and glob... In this paper the globally asymptotic stability of more general two-layer nonlinear feedback associative memory neural networks with time delays is examined. The sufficient conditions of existence, uniqueness and globally asymptotic stability of the equilibrum position are given. Finally, two interesting examples to illustrate the theory are given. 展开更多
关键词 neural networkS associative memories STABILITY
在线阅读 下载PDF
QUALITATIVE ANALYSIS OF BIDIRECTIONAL ASSOCIATIVE MEMORY NEURAL NETWORKS 被引量:4
5
作者 Liao Xiaoxin Liao Yang Liao Yu(Dept. of Auto. Control, Huazhong University of Science & Technology, Wuhan 430074) (Dept of Computer Science, Nanjing University, Nanjing 210093) ( Wuhan Soundy Science & Commerce Company, Wuhan 430070) 《Journal of Electronics(China)》 1998年第3期208-214,共7页
In this paper, the global exponential stability of an equilibrium position for general bidirectional associative memory neural networks are studied. The sufficient conditions of existence and uniqueness of the equilib... In this paper, the global exponential stability of an equilibrium position for general bidirectional associative memory neural networks are studied. The sufficient conditions of existence and uniqueness of the equilibrium position are given. The method of energy function is examined. Two examples are given to illustrate the theory. 展开更多
关键词 neural networkS associative memories Stability energy FUNCTION
在线阅读 下载PDF
Multi-Valued Associative Memory Neural Network 被引量:1
6
作者 修春波 刘向东 张宇河 《Journal of Beijing Institute of Technology》 EI CAS 2003年第4期352-356,共5页
A novel learning method for multi-valued associative memory network is introduced, which is based on Hebb rule, but utilizes more information. According to the current probe vector, the connection weights matrix could... A novel learning method for multi-valued associative memory network is introduced, which is based on Hebb rule, but utilizes more information. According to the current probe vector, the connection weights matrix could be chosen dynamically. Double-valued and multi-valued associative memory are all realized in our simulation experiment. The experimental results show that the method could enhance the associative success rate. 展开更多
关键词 associative memory learning method neural network gray-scale images
在线阅读 下载PDF
CHAOTIC NEURAL NETWORK FOR ASSOCIATIVE MEMORY 被引量:1
7
作者 Zhang Yifeng Yang Luxi He Zhenya(Department of Radio Engineering, Nanjing, 210018) 《Journal of Electronics(China)》 1999年第2期130-137,共8页
Based on current research on applications of chaotic neuron network for information processing, the stability and convergence of chaotic neuron network are proved from the viewpoint of energy function. Moreover, a new... Based on current research on applications of chaotic neuron network for information processing, the stability and convergence of chaotic neuron network are proved from the viewpoint of energy function. Moreover, a new auto-associative matrix is devised for artificial neural network composed of chaotic neurons, thus, an improved chaotic neuron network for associative memory is built up. Finally, the associative recalling process of the network is analyzed in detail and explanations of improvement are given. 展开更多
关键词 CHAOTIC MAP associative memory neural networkS
在线阅读 下载PDF
Double-pattern associative memory neural network with pattern loop
8
作者 JianWANG ZongyuanMAO 《控制理论与应用(英文版)》 EI 2004年第2期193-195,共3页
A double-pattern associative memory neural network with “pattern loop” is proposed. It can store 2N bit bipolar binary patterns up to the order of 2 2N , retrieve part or all of the stored patterns which all have th... A double-pattern associative memory neural network with “pattern loop” is proposed. It can store 2N bit bipolar binary patterns up to the order of 2 2N , retrieve part or all of the stored patterns which all have the minimum Hamming distance with input pattern, completely eliminate spurious patterns, and has higher storing efficiency and reliability than conventional associative memory. The length of a pattern stored in this associative memory can be easily extended from 2N to kN. 展开更多
关键词 associative memory Hamming distance neural network
在线阅读 下载PDF
Stability Analysis for Memristive Recurrent Neural Network and Its Application to Associative Memory 被引量:2
9
作者 Gang Bao Yuanyuan Chen +1 位作者 Siyu Wen Zhicen Lai 《自动化学报》 EI CSCD 北大核心 2017年第12期2244-2252,共9页
在线阅读 下载PDF
A method for predicting random vibration response of train-track-bridge system based on GA-BP neural network
10
作者 Jianfeng Mao Yun Zhang +2 位作者 Li Zheng Mansoor Khan Zhiwu Yu 《High-Speed Railway》 2025年第4期305-317,共13页
To enhance the efficiency of stochastic vibration analysis for the Train-Track-Bridge(TTB)coupled system,this paper proposes a prediction method based on a Genetic Algorithm-optimized Backpropagation(GA-BP)neural netw... To enhance the efficiency of stochastic vibration analysis for the Train-Track-Bridge(TTB)coupled system,this paper proposes a prediction method based on a Genetic Algorithm-optimized Backpropagation(GA-BP)neural network.First,initial track irregularity samples and random parameter sets of the Vehicle-Bridge System(VBS)are generated using the stochastic harmonic function method.Then,the stochastic dynamic responses corresponding to the sample sets are calculated using a developed stochastic vibration analysis model of the TTB system.The track irregularity data and vehicle-bridge random parameters are used as input variables,while the corresponding stochastic responses serve as output variables for training the BP neural network to construct the prediction model.Subsequently,the Genetic Algorithm(GA)is applied to optimize the BP neural network by considering the randomness in excitation and parameters of the TTB system,improving model accuracy.After optimization,the trained GA-BP model enables rapid and accurate prediction of vehicle-bridge responses.To validate the proposed method,predictions of vehicle-bridge responses under varying train speeds are compared with numerical simulation results.The findings demonstrate that the proposed method offers notable advantages in predicting the stochastic vibration response of high-speed railway TTB coupled systems. 展开更多
关键词 Train-track-bridge system Genetic algorithm bp neural network Random response prediction Random parameters
在线阅读 下载PDF
Mechanical Properties Prediction of the Mechanical Clinching Joints Based on Genetic Algorithm and BP Neural Network 被引量:23
11
作者 LONG Jiangqi LAN Fengchong +1 位作者 CHEN Jiqing YU Ping 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第1期36-41,共6页
For optimal design of mechanical clinching steel-aluminum joints,the back propagation(BP)neural network is used to research the mapping relationship between joining technique parameters including sheet thickness,sheet... For optimal design of mechanical clinching steel-aluminum joints,the back propagation(BP)neural network is used to research the mapping relationship between joining technique parameters including sheet thickness,sheet hardness,joint bottom diameter etc.,and mechanical properties of shearing and peeling in order to investigate joining technology between various material plates in the steel-aluminum hybrid structure car body.Genetic algorithm(GA)is adopted to optimize the back-propagation neural network connection weights.The training and validating samples are made by the BTM Tog-L-Loc system with different technologic parameters.The training samples'parameters and the corresponding joints'mechanical properties are supplied to the artificial neural network(ANN)for training.The validating samples'experimental data is used for checking up the prediction outputs.The calculation results show that GA can improve the model's prediction precision and generalization ability of BP neural network.The comparative analysis between the experimental data and the prediction outputs shows that ANN prediction models after training can effectively predict the mechanical properties of mechanical clinching joints and prove the feasibility and reliability of the intelligent neural networks system when used in the mechanical properties prediction of mechanical clinching joints.The prediction results can be used for a reference in the design of mechanical clinching steel-aluminum joints. 展开更多
关键词 genetic algorithm bp neural network mechanical clinching JOINT properties prediction
在线阅读 下载PDF
Gesture Recognition Based on BP Neural Network Improved by Chaotic Genetic Algorithm 被引量:18
12
作者 Dong-Jie Li Yang-Yang Li +1 位作者 Jun-Xiang Li Yu Fu 《International Journal of Automation and computing》 EI CSCD 2018年第3期267-276,共10页
Aim at the defects of easy to fall into the local minimum point and the low convergence speed of back propagation(BP)neural network in the gesture recognition, a new method that combines the chaos algorithm with the... Aim at the defects of easy to fall into the local minimum point and the low convergence speed of back propagation(BP)neural network in the gesture recognition, a new method that combines the chaos algorithm with the genetic algorithm(CGA) is proposed. According to the ergodicity of chaos algorithm and global convergence of genetic algorithm, the basic idea of this paper is to encode the weights and thresholds of BP neural network and obtain a general optimal solution with genetic algorithm, and then the general optimal solution is optimized to the accurate optimal solution by adding chaotic disturbance. The optimal results of the chaotic genetic algorithm are used as the initial weights and thresholds of the BP neural network to recognize the gesture. Simulation and experimental results show that the real-time performance and accuracy of the gesture recognition are greatly improved with CGA. 展开更多
关键词 Gesture recognition back propagation bp neural network chaos algorithm genetic algorithm data glove.
原文传递
Fault Diagnosis Based on BP Neural Network Optimized by Beetle Algorithm 被引量:10
13
作者 Maohua Xiao Wei Zhang +2 位作者 Kai Wen Yue Zhu Yilidaer Yiliyasi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第6期252-261,共10页
In the process of Wavelet Analysis,only the low-frequency signals are re-decomposed,and the high-frequency signals are no longer decomposed,resulting in a decrease in frequency resolution with increasing frequency.The... In the process of Wavelet Analysis,only the low-frequency signals are re-decomposed,and the high-frequency signals are no longer decomposed,resulting in a decrease in frequency resolution with increasing frequency.Therefore,in this paper,firstly,Wavelet Packet Decomposition is used for feature extraction of vibration signals,which makes up for the shortcomings of Wavelet Analysis in extracting fault features of nonlinear vibration signals,and different energy values in different frequency bands are obtained by Wavelet Packet Decomposition.The features are visualized by the K-Means clustering method,and the results show that the extracted energy features can accurately distinguish the different states of the bearing.Then a fault diagnosis model based on BP Neural Network optimized by Beetle Algo-rithm is proposed to identify the bearing faults.Compared with the Particle Swarm Algorithm,Beetle Algorithm can quickly find the error extreme value,which greatly reduces the training time of the model.At last,two experiments are conducted,which show that the accuracy of the model can reach more than 95%,and the model has a certain anti-interference ability. 展开更多
关键词 Rolling bearing bp neural network Beetle algorithm Wavelet packet transform
在线阅读 下载PDF
An Image Encryption Algorithm Based on BP Neural Network and Hyperchaotic System 被引量:10
14
作者 Feifei Yang Jun Mou +1 位作者 Yinghong Cao Ran Chu 《China Communications》 SCIE CSCD 2020年第5期21-28,共8页
To reduce the bandwidth and storage resources of image information in communication transmission, and improve the secure communication of information. In this paper, an image compression and encryption algorithm based... To reduce the bandwidth and storage resources of image information in communication transmission, and improve the secure communication of information. In this paper, an image compression and encryption algorithm based on fractional-order memristive hyperchaotic system and BP neural network is proposed. In this algorithm, the image pixel values are compressed by BP neural network, the chaotic sequences of the fractional-order memristive hyperchaotic system are used to diffuse the pixel values. The experimental simulation results indicate that the proposed algorithm not only can effectively compress and encrypt image, but also have better security features. Therefore, this work provides theoretical guidance and experimental basis for the safe transmission and storage of image information in practical communication. 展开更多
关键词 bp neural network fractional-order hyperchaotic system image encryption algorithm secure communication
在线阅读 下载PDF
Intelligent direct analysis of physical and mechanical parameters of tunnel surrounding rock based on adaptive immunity algorithm and BP neural network 被引量:3
15
作者 Xiao-rui Wang1,2, Yuan-han Wang1, Xiao-feng Jia31.School of Civil Engineering and Mechanics,Huazhong University of Science and Technology, Wuhan 430074,China 2.Department of Civil Engineering,Nanyang Institute of Technology,Nanyang 473004,China 3.Department of Chemistry and Bioengineering,Nanyang Institute of Technology,Nanyang 473004,China. 《Journal of Pharmaceutical Analysis》 SCIE CAS 2009年第1期22-30,共9页
Because of complexity and non-predictability of the tunnel surrounding rock, the problem with the determination of the physical and mechanical parameters of the surrounding rock has become a main obstacle to theoretic... Because of complexity and non-predictability of the tunnel surrounding rock, the problem with the determination of the physical and mechanical parameters of the surrounding rock has become a main obstacle to theoretical research and numerical analysis in tunnel engineering. During design, it is a frequent practice, therefore, to give recommended values by analog based on experience. It is a key point in current research to make use of the displacement back analytic method to comparatively accurately determine the parameters of the surrounding rock whereas artificial intelligence possesses an exceptionally strong capability of identifying, expressing and coping with such complex non-linear relationships. The parameters can be verified by searching the optimal network structure, using back analysis on measured data to search optimal parameters and performing direct computation of the obtained results. In the current paper, the direct analysis is performed with the biological emulation system and the software of Fast Lagrangian Analysis of Continua (FLAC3D. The high non-linearity, network reasoning and coupling ability of the neural network are employed. The output vector required of the training of the neural network is obtained with the numerical analysis software. And the overall space search is conducted by employing the Adaptive Immunity Algorithm. As a result, we are able to avoid the shortcoming that multiple parameters and optimized parameters are easy to fall into a local extremum. At the same time, the computing speed and efficiency are increased as well. Further, in the paper satisfactory conclusions are arrived at through the intelligent direct-back analysis on the monitored and measured data at the Erdaoya tunneling project. The results show that the physical and mechanical parameters obtained by the intelligent direct-back analysis proposed in the current paper have effectively improved the recommended values in the original prospecting data. This is of practical significance to the appraisal of stability and informationization design of the surrounding rock. 展开更多
关键词 adaptive immunity algorithm bp neural network physical and mechanical parameters surrounding rock direct-back analysis
在线阅读 下载PDF
A Quantitative Seismic Topographic Effect Prediction Method Based upon BP Neural Network Algorithm and FEM Simulation
16
作者 Qifeng Jiang Mianshui Rong +1 位作者 Wei Wei Tingting Chen 《Journal of Earth Science》 SCIE CAS CSCD 2024年第4期1355-1366,共12页
Topography can strongly affect ground motion,and studies of the quantification of hill surfaces’topographic effect are relatively rare.In this paper,a new quantitative seismic topographic effect prediction method bas... Topography can strongly affect ground motion,and studies of the quantification of hill surfaces’topographic effect are relatively rare.In this paper,a new quantitative seismic topographic effect prediction method based upon the BP neural network algorithm and three-dimensional finite element method(FEM)was developed.The FEM simulation results were compared with seismic records and the results show that the PGA and response spectra have a tendency to increase with increasing elevation,but the correlation between PGA amplification factors and slope is not obvious for low hills.New BP neural network models were established for the prediction of amplification factors of PGA and response spectra.Two kinds of input variables’combinations which are convenient to achieve are proposed in this paper for the prediction of amplification factors of PGA and response spectra,respectively.The absolute values of prediction errors can be mostly within 0.1 for PGA amplification factors,and they can be mostly within 0.2 for response spectra’s amplification factors.One input variables’combination can achieve better prediction performance while the other one has better expandability of the predictive region.Particularly,the BP models only employ one hidden layer with about a hundred nodes,which makes it efficient for training. 展开更多
关键词 seismic topographic effect finite element method bp neural network algorithm earthquake disaster prevention
原文传递
CNC Thermal Compensation Based on Mind Evolutionary Algorithm Optimized BP Neural Network 被引量:6
17
作者 Yuefang Zhao Xiaohong Ren +2 位作者 Yang Hu Jin Wang Xuemei Bao 《World Journal of Engineering and Technology》 2016年第1期38-44,共7页
Thermal deformation error is one of the most important factors affecting the CNCs’ accuracy, so research is conducted on the temperature errors affecting CNCs’ machining accuracy;on the basis of analyzing the unpred... Thermal deformation error is one of the most important factors affecting the CNCs’ accuracy, so research is conducted on the temperature errors affecting CNCs’ machining accuracy;on the basis of analyzing the unpredictability and pre-maturing of the results of the genetic algorithm, as well as the slow speed of the training speed of the particle algorithm, a kind of Mind Evolutionary Algorithm optimized BP neural network featuring extremely strong global search capacity was proposed;type KVC850MA/2 five-axis CNC of Changzheng Lathe Factory was used as the research subject, and the Mind Evolutionary Algorithm optimized BP neural network algorithm was used for the establishment of the compensation model between temperature changes and the CNCs’ thermal deformation errors, as well as the realization method on hardware. The simulation results indicated that this method featured extremely high practical value. 展开更多
关键词 Thermal Errors Thermal Error Compensation Genetic algorithm Mind Evolutionary algorithm bp neural network
在线阅读 下载PDF
Parameters Optimization of the Heating Furnace Control Systems Based on BP Neural Network Improved by Genetic Algorithm 被引量:4
18
作者 Qiong Wang Xiaokan Wang 《Journal on Internet of Things》 2020年第2期75-80,共6页
The heating technological requirement of the conventional PID control is difficult to guarantee which based on the precise mathematical model,because the heating furnace for heating treatment with the big inertia,the ... The heating technological requirement of the conventional PID control is difficult to guarantee which based on the precise mathematical model,because the heating furnace for heating treatment with the big inertia,the pure time delay and nonlinear time-varying.Proposed one kind optimized variable method of PID controller based on the genetic algorithm with improved BP network that better realized the completely automatic intelligent control of the entire thermal process than the classics critical purporting(Z-N)method.A heating furnace for the object was simulated with MATLAB,simulation results show that the control system has the quicker response characteristic,the better dynamic characteristic and the quite stronger robustness,which has some promotional value for the control of industrial furnace. 展开更多
关键词 Genetic algorithm parameter optimization PID control bp neural network heating furnace
在线阅读 下载PDF
Research on BP Neural Network Algorithm Based on Quasi- Newton Method 被引量:3
19
作者 Lu Peixin 《International Journal of Technology Management》 2014年第7期71-74,共4页
With more and more researches about improving BP algorithm, there are more improvement methods. The paper researches two improvement algorithms based on quasi-Newton method, DFP algorithm and L-BFGS algorithm. After f... With more and more researches about improving BP algorithm, there are more improvement methods. The paper researches two improvement algorithms based on quasi-Newton method, DFP algorithm and L-BFGS algorithm. After fully analyzing the features of quasi- Newton methods, the paper improves BP neural network algorithm. And the adjustment is made for the problems in the improvement process. The paper makes empirical analysis and proves the effectiveness of BP neural network algorithm based on quasi-Newton method. The improved algorithms are compared with the traditional BP algorithm, which indicates that the imoroved BP algorithm is better. 展开更多
关键词 Newton method bp neural network improved algorithm
在线阅读 下载PDF
Combining the genetic algorithms with artificial neural networks for optimization of board allocating 被引量:2
20
作者 曹军 张怡卓 岳琪 《Journal of Forestry Research》 SCIE CAS CSCD 2003年第1期87-88,共2页
This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in boa... This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in board allocating of furniture production. In the experiment, the rectangular flake board of 3650 mm 1850 mm was used as raw material to allocate 100 sets of Table Bucked. The utilizing rate of the board reached 94.14 % and the calculating time was only 35 s. The experiment result proofed that the method by using the GA for optimizing the weights of the ANN can raise the utilizing rate of the board and can shorten the time of the design. At the same time, this method can simultaneously searched in many directions, thus greatly in-creasing the probability of finding a global optimum. 展开更多
关键词 Artificial neural network Genetic algorithms Back propagation model (bp model) OPTIMIZATION
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部