Liver cancer,and in particular hepatocellular carcinoma(HCC)is a disease of rising prevalence and incidence.To date,definitive treatment options include either surgical excision or ablation of the affected area.With i...Liver cancer,and in particular hepatocellular carcinoma(HCC)is a disease of rising prevalence and incidence.To date,definitive treatment options include either surgical excision or ablation of the affected area.With increasing research on several pathways that could be involved in the progression of HCC,new elements within these pathways emerge as potential targets for novel therapies.The WNT/β-catenin pathway favors the presence of M2 tumor-associated macrophages which in turn promote tumor growth and metastasis.The inhibition of this pathway is considered a good candidate for such targeted therapeutic interventions.Interestingly,as Huang et al show in their recently published article,Calculus bovis which is used in traditional Chinese medicine can exert an inhibitory effect on theβ-catenin pathway and become a potential candidate for targeted pharmacotherapy against liver cancer.展开更多
Hepatocellular carcinoma is one of the leading causes of cancer-related deaths globally,and effective treatments are urgently needed.The present study aimed to investigate the inhibitory effect of Calculus Bovis(CB)on...Hepatocellular carcinoma is one of the leading causes of cancer-related deaths globally,and effective treatments are urgently needed.The present study aimed to investigate the inhibitory effect of Calculus Bovis(CB)on liver cancer and the underlying mechanisms.CB inhibited M2 tumor-associated macrophage polarization and modulated the Wnt/β-catenin signaling pathway,thereby suppressing the proliferation of liver cancer cells.The inhibitory effect on liver cancer growth was confirmed by both in vivo and in vitro experiments(detailed by Huang et al).The present study provides a theoretical basis for the application of CB for the treatment of liver cancer,providing new avenues for liver cancer treatment.展开更多
Liver cancer remains a significant global health challenge,characterized by high incidence and mortality rates.Despite advancements in medical treatments,the prognosis for liver cancer patients remains poor,highlighti...Liver cancer remains a significant global health challenge,characterized by high incidence and mortality rates.Despite advancements in medical treatments,the prognosis for liver cancer patients remains poor,highlighting the urgent need for novel therapeutic approaches.Traditional Chinese medicine(TCM),particularly Calculus bovis(CB),has shown promise in addressing this need due to its multitarget therapeutic mechanisms.CB refers to natural or synthetic gallstones,traditionally sourced from cattle,and used in TCM for their anti-inflammatory,detoxifying,and therapeutic properties.In modern practice,synthetic CB is often utilized to ensure consistent supply and safety.This article aims to discuss the findings of Huang et al,who investigated the anti-liver cancer properties of CB,focusing on its ability to inhibit M2 tumor-associated macrophage(TAM)polarization via modulation of the Wnt/β-catenin pathway.Huang et al employed a comprehensive approach integrating chemical analysis,animal model testing,and advanced bioinformatics.They identified active components of CB using UPLC-Q-TOF-MS,evaluated its anti-neoplastic effects in a nude mouse model,and elucidated the underlying mechanisms through network pharmacology,transcriptomics,and molecular docking studies.The study demonstrated that CB significantly inhibited liver tumor growth in vivo,as evidenced by reduced tumor size and weight in treated mice.Histological analyses confirmed signs of tumor regression.CB was found to modulate the tumor microenvironment by inhibiting the polarization of M2 phenotype-TAMs,as shown by reduced expression of M2 markers and downregulation of mRNA levels of C-C motif chemokine 22,arginase-1,transforming growth factor-beta 2,and interleukin-10.The study further revealed that CB’s antineoplastic activity involved the downregulation of Wnt5B andβ-catenin and upregulation of Axin2,thus inhibiting the Wnt/β-catenin signaling pathway.These findings highlight the therapeutic potential of CB in liver cancer treatment through its modulation of the Wnt/β-catenin pathway and suppression of M2 phenotype-TAM polarization.This study underscores the value of integrating TCM with modern therapeutic strategies to develop novel effective treatments for liver cancer.展开更多
In this paper,the mechanism of the Wnt/β-catenin pathway is introduced,and the process and principle of the experiment conducted by Huang et al is explained.We discussed the reliability of the conclusion that Calculu...In this paper,the mechanism of the Wnt/β-catenin pathway is introduced,and the process and principle of the experiment conducted by Huang et al is explained.We discussed the reliability of the conclusion that Calculus bovis(C.bovis)inhibits M2 tumor-associated macrophage polarization via Wnt/β-catenin pathway modulation to suppress liver cancer.We also offer suggestions for further studies of the use of C.bovis in the treatment of liver cancer.展开更多
In this article,we comment on the work published by Huang et al,which explores the mechanisms by which Calculus bovis(CB)modulates the liver cancer immune microenvironment via the Wnt/β-catenin signalling pathway.The...In this article,we comment on the work published by Huang et al,which explores the mechanisms by which Calculus bovis(CB)modulates the liver cancer immune microenvironment via the Wnt/β-catenin signalling pathway.The study demon-strates that active components in CB effectively inhibit the activation of the Wnt/β-catenin pathway,significantly reducing the polarization of M2 tumor-associated macrophages.Both in vivo and in vitro experiments have validated the anti-tumour effects of CB,revealing its complex mechanisms of action through the modulation of immune cell functions within the tumour microenvironment.This article highlights CB’s therapeutic potential in liver cancer treatment and calls for further investigations into its mechanisms and clinical applications to develop safer,more effective options for patients.The study also revealed that key com-ponents of CB,such as bilirubin and bile acids,inhibit tumour cell proliferation and promote apoptosis through multiple pathways.Future research should explore the mechanisms of action of CB and its potential integration with existing treatments to improve the therapeutic outcomes of liver cancer patients.With multidisciplinary collaboration and advanced research,CB could become a key component of comprehensive liver cancer treatment,offering new hope for patients.展开更多
BACKGROUND Calculus bovis(CB),used in traditional Chinese medicine,exhibits anti-tumor effects in various cancer models.It also constitutes an integral component of a compound formulation known as Pien Tze Huang,which...BACKGROUND Calculus bovis(CB),used in traditional Chinese medicine,exhibits anti-tumor effects in various cancer models.It also constitutes an integral component of a compound formulation known as Pien Tze Huang,which is indicated for the treatment of liver cancer.However,its impact on the liver cancer tumor microenvironment,particularly on tumor-associated macrophages(TAMs),is not well understood.AIM To elucidate the anti-liver cancer effect of CB by inhibiting M2-TAM polarization via Wnt/β-catenin pathway modulation.METHODS This study identified the active components of CB using UPLC-Q-TOF-MS,evaluated its anti-neoplastic effects in a nude mouse model,and elucidated the underlying mechanisms via network pharmacology,transcriptomics,and molecular docking.In vitro assays were used to investigate the effects of CB-containing serum on HepG2 cells and M2-TAMs,and Wnt pathway modulation was validated by real-time reverse transcriptase-polymerase chain reaction and Western blot analysis.RESULTS This study identified 22 active components in CB,11 of which were detected in the bloodstream.Preclinical investigations have demonstrated the ability of CB to effectively inhibit liver tumor growth.An integrated approach employing network pharmacology,transcriptomics,and molecular docking implicated the Wnt signaling pathway as a target of the antineoplastic activity of CB by suppressing M2-TAM polarization.In vitro and in vivo experiments further confirmed that CB significantly hinders M2-TAM polarization and suppresses Wnt/β-catenin pathway activation.The inhibitory effect of CB on M2-TAMs was reversed when treated with the Wnt agonist SKL2001,confirming its pathway specificity.CONCLUSION This study demonstrated that CB mediates inhibition of M2-TAM polarization through the Wnt/β-catenin pathway,contributing to the suppression of liver cancer growth.展开更多
Liver cancer,one of the most common malignancies worldwide,ranks sixth in incidence and third in mortality.Liver cancer treatment options are diverse,inclu-ding surgical resection,liver transplantation,percutaneous ab...Liver cancer,one of the most common malignancies worldwide,ranks sixth in incidence and third in mortality.Liver cancer treatment options are diverse,inclu-ding surgical resection,liver transplantation,percutaneous ablation,transarterial chemoembolization,radiotherapy,chemotherapy,targeted therapy,immuno-therapy,and traditional Chinese medicine(TCM).A multidisciplinary team(MDT)is essential to customize treatment plans based on tumor staging,liver function,and performance status(PS),ensuring individualized patient care.Treatment decisions require a MDT to tailor strategies based on tumor staging,liver function,and PS,ensuring personalized care.The approval of new first-line and second-line drugs and the establishment of standard treatments based on immune checkpoint inhibitors have significantly expanded treatment options for advanced liver cancer,improving overall prognosis.However,many patients do not respond effectively to these treatments and ultimately succumb to the disease.Modern oncology treatments,while extending patient survival,often come with severe side effects,resistance,and damage to the body,negatively impacting quality of life.Huang et al's study published at World Journal of Gastroenterology rigorously validates the anticancer properties of Calculus bovis,enhancing our understanding of TCM and contributing to new liver cancer treatment strategies.For over 5000 years,TCM has been used in East Asian countries like China to treat various diseases,including liver conditions.Analysis of real-world clinical data suggests that for patients with advanced-stage tumors lacking effective treatments,integrated TCM therapies could provide significant breakthroughs.展开更多
In this editorial,we comment on the recent article by Huang et al.The editorial focuses specifically on the molecular mechanisms of hepatocellular carcinoma(HCC),mechanism of Wnt/β-catenin pathway in HCC,and protecti...In this editorial,we comment on the recent article by Huang et al.The editorial focuses specifically on the molecular mechanisms of hepatocellular carcinoma(HCC),mechanism of Wnt/β-catenin pathway in HCC,and protective mechanism of Calculus bovis(CB)in HCC.Liver cancer is the fourth most common cause of cancer-related deaths globally.The most prevalent kind of primary liver cancer,HCC,is typically brought on by long-term viral infections(hepatitis B and C),non-alcoholic steatohepatitis,excessive alcohol consumption,and other conditions that can cause the liver to become chronically inflamed and cirrhotic.CB is a wellknown traditional remedy in China and Japan and has been used extensively to treat a variety of diseases,such as high fever,convulsions,and stroke.Disturbances in lipid metabolism,cholesterol metabolism,bile acid metabolism,alcohol metabolism,and xenobiotic detoxification lead to fatty liver disease and liver cirrhosis.Succinate,which is a tricarboxylic acid cycle intermediate,is vital to energy production and mitochondrial metabolism.It is also thought to be a signaling molecule in metabolism and in the development and spread of liver malignancies.The Wnt/β-catenin pathway is made up of a group of proteins that are essential for both adult tissue homeostasis and embryonic development.Cancer is frequently caused by the dysregulation of the Wnt/β-catenin signaling pathway.In HCC liver carcinogenesis,Wnt/β-catenin signaling is activated by the expression of downstream target genes.Communication between the liver and the gut exists via the portal vein,biliary tract,and systemic circulation.This"gutliver axis"controls intestinal physiology.One of the main factors contributing to the development,progression,and treatment resistance of HCC is the abnormal activation of the Wnt/β-Catenin signaling pathway.Therefore,understanding this pathway is essential to treating HCC.Eleven ingredients of CB,particularly oleanolic acid,ergosterol,and ursolic acid,have anti-primary liver cancer properties.Additionally,CB is important in the treatment of primary liver cancer through pathways linked to immune system function and apoptosis.CB also inhibits the proliferation of cancer stem cells and tumor cells and controls the tumor microenvironment.In the future,clinicians may be able to recommend one of many potential new drugs from CB ingredients to treat HCC expression,development,and progress.展开更多
Despite significant advances in our understanding of the molecular pathogenesis of liver cancer and the availability of novel pharmacotherapies,liver cancer remains the fourth leading cause of cancer-related mortality...Despite significant advances in our understanding of the molecular pathogenesis of liver cancer and the availability of novel pharmacotherapies,liver cancer remains the fourth leading cause of cancer-related mortality worldwide.Tumor relapse,resistance to current anti-cancer drugs,metastasis,and organ toxicity are the major challenges that prevent considerable improvements in patient survival and quality of life.Calculus bovis(CB),an ancient Chinese medicinal drug,has been used to treat various pathologies,including stroke,convulsion,epilepsy,pain,and cancer.In this editorial,we discuss the research findings recently published by Huang et al on the therapeutic effects of CB in inhibiting the development of liver cancer.Utilizing the comprehensive transcriptomic analyses,in vitro experiments,and in vivo studies,the authors demonstrated that CB treatment inhibits the tumor-promoting M2 phenotype of tumor-associated macrophages via downregulating Wnt pathway.While multiple studies have been performed to explore the molecular mechanisms regulated by CB,this study uniquely shows its role in modulating the M2 phenotype of macrophages present within the tumor microenvironment.This study opens new avenues of future investigations aimed at investigating this drug’s efficacy in various mouse models including the effects of combination therapy,and against drug-resistant tumors.展开更多
In this manuscript,we comment on the article,which explores the anti-cancer effects of Calculus bovis(CB)in tumor biology.We highlight its potential,particularly in hepatocellular carcinoma(HCC),where it inhibits the ...In this manuscript,we comment on the article,which explores the anti-cancer effects of Calculus bovis(CB)in tumor biology.We highlight its potential,particularly in hepatocellular carcinoma(HCC),where it inhibits the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin pathways and induces apoptosis.CB contains compounds such as oleanolic acid and ursolic acid that target interleukin-6,mitogen-activated protein kinase 8,vascular endothelial growth factor,and caspase-3,offering anti-inflammatory and hepatoprotective benefits.The manuscript also discusses CB sativus(CBS),an artificial substitute,which has shown efficacy in reducing hepatic inflammation and oxidative stress in animal models.We emphasize the need for further research on the effects of CBS on the gut-liver axis and gut microbiota,and on targeting Wnt signaling and M2 tumor-associated macrophage as potential therapeutic strategies against HCC.展开更多
This editorial examines the therapeutic potential of traditional Chinese medicine(TCM)for aggressive cancers,particularly liver cancer.It highlights the study by Huang et al,which shows how Calculus bovis,a component ...This editorial examines the therapeutic potential of traditional Chinese medicine(TCM)for aggressive cancers,particularly liver cancer.It highlights the study by Huang et al,which shows how Calculus bovis,a component of the TCM Pien Tze Huang,suppresses liver cancer by inhibiting M2 macrophage polarization via the Wnt/β-catenin pathway.This research emphasizes the importance of transitioning from effective TCM formulations to isolating active components and understanding their mechanisms.While the study provides valuable insights,it primarily focuses on the Wnt/β-catenin pathway and does not delve deeply into the mechanisms of individual components.Future research should aim to comprehensively study these components,explore their interactions,and validate findings through clinical trials.This approach will integrate traditional wisdom with modern scientific validation,advancing the development of innovative cancer treatments based on TCM formulations.展开更多
In the ongoing quest for new treatments in medicine,traditional Chinese medicine offers unique insights and potential.Recently,studies on the ability of Calculus bovis to inhibit M2-type tumour-associated macrophage p...In the ongoing quest for new treatments in medicine,traditional Chinese medicine offers unique insights and potential.Recently,studies on the ability of Calculus bovis to inhibit M2-type tumour-associated macrophage polarisation by modulating the Wnt/β-catenin signalling pathway to suppress liver cancer have undoubtedly revealed new benefits and hope for this field of research.The purpose of this article is to comment on this study and explore its strengths and weaknesses,thereby providing ideas for the future treatment of liver cancer.展开更多
AIM:To explore the interventional effects and mechanism of in vitro cultivated Calculus Bovis compound preparation(ICCBco) on pulmonary lesions in portal hypertensive rabbits with schistosomiasis. METHODS:The experime...AIM:To explore the interventional effects and mechanism of in vitro cultivated Calculus Bovis compound preparation(ICCBco) on pulmonary lesions in portal hypertensive rabbits with schistosomiasis. METHODS:The experimental group included 20 portal hypertensive rabbits with schistosomiasis treated by ICCBco.The control group included 20 portal hypertensive rabbits with schistosomiasis treated by praziquantel. The morphological changes of the pulmonary tissues were observed under light and electron microscopy.The expression of fibronectin(FN) and laminin(LN) in the lung tissues was analyzed by immunohistochemistry. RESULTS:Under light microscope,the alveolar exudation in the lung tissue was more frequently observed in the control group,while the alveolar space was fairly dry in the lung tissue of ICCBco group.Under electron microscope,more alveolar exudation in the lung tissue,and moremacrophages,alveolar angiotelectasis and the blurred three-tier structure of alveolar-capillary barrier could be seen in the control group.In ICCBco group,fibers within the alveolar interspace slightly increased in some lung regions,and the structure of typeⅠepithelium,basement membrane and endodermis was complete,and no obvious exudation from the alveolar space,and novascular congestion could be observed.There was a positive or strong positive expression of FN and LN in the lung tissue of the control group,while there was a negative or weak positive expression of FN and LN in ICCBco group. CONCLUSION:ICCBco can effectively prevent pulmonary complications in portal hypertensive rabbits with schistosomiasis by means of improving lung microcirculation and lowering the content of extracellular matrix.展开更多
AIM:To prospectively examine the association between presence of Streptococcus bovis(S.bovis)in colonic suction fluid and the endoscopic findings on colonoscopy.METHODS:From May 2012 to March 2013,203 consecutivepatie...AIM:To prospectively examine the association between presence of Streptococcus bovis(S.bovis)in colonic suction fluid and the endoscopic findings on colonoscopy.METHODS:From May 2012 to March 2013,203 consecutivepatients who underwent colonoscopy for any reason were enrolled in the study.Exclusion criteria included:antibiotic use in the previous month,age younger than18 years,and inadequate preparation for colonoscopy.The colonoscopy was performed for the total length of the colon or to the occluding tumor.The endoscopic findings were registered.Samples were obtained proximal to the colonoscopic part of the suction tube from each patient and sent to the clinical microbiology laboratory for isolation and identification of S.bovis.Samples were incubated in enrichment media with addition of antibiotic disks for inhibition of growth of Gram-negative rods.The samples were seeded on differential growth media;suspected positive colonies were isolated and identified with Gram staining,catalase,and pyrrolidonyl arylamidase tests,and further identified using a VITEK2 system.Statistical analyses were performed using the Student’s t andχ2 tests.RESULTS:Of the 203 patients recruited,49(24%)patients were found to be S.bovis carriers;of them,the endoscopic findings included:17(34.7%)cases with malignant tumors,11(22.4%)with large polyps,5(10.2%)with medium-sized polyps,6(12.2%)with small polyps,4(8.1%)with colitis,and 6(12.2%)normal colonoscopies.Of 154 patients found negative for S.bovis,the endoscopic findings included:none with malignant tumors,9(5.8%)cases with large polyps,11(7.1%)with medium-sized polyps,26(16.9%)with small polyps,7(4.5%)with colitis,and101(65.6%)normal colonoscopies.S.bovis(Grampositive coccus)is considered part of the normal intestinal flora.There is an association between S.bovis bacteremia and colonic neoplasia.It is not well understood whether the bacterium has a pathogenetic role in the development of neoplasia or constitutes an epiphenomenon of colorectal neoplasms.There was a clear relationship between positivity for S.bovis in colonic suction fluid and findings of malignant tumors and large polyps in the colon.CONCLUSION:There is an association between S.bovis bacteremia and malignant colonic lesions;this should prompt for development of a reliable screening method for advanced colonic lesions.展开更多
OBJECTIVE:To investigate the pathway through which Calculus Bovis Sativus (CBS) up-regulates hepatic multidrug resistance-associated protein 2 (Mrp2) and Mrp4 in 17α-ethynylestradiol (EE)-induced cholestasis.METHODS:...OBJECTIVE:To investigate the pathway through which Calculus Bovis Sativus (CBS) up-regulates hepatic multidrug resistance-associated protein 2 (Mrp2) and Mrp4 in 17α-ethynylestradiol (EE)-induced cholestasis.METHODS:Five groups of rats were designed:control group,EE+ICI182780 group,EE group,EE+CBS 50 mg/kg group and EE + CBS 150 mg/kg group.CBS (50 and 150 mg.kg-1· d-1) was orally given to rats by gavage for five consecutive days in coadministration with EE.The levels of cholestasis biomarkers,alanine aminotransferase (ALT),aspartate aminotransferase (AST),alkaline phosphatase (ALP) and total bilirubin (TBIL) were determined by biochemical methods.The bile flow was measured.The histopathology of the liver tissue was evaluated.The expression of Mrp2,Mrp3,Mrp4,estrogen receptor α(ERα) and ERβ was determined by Western blotting.RESULTS:CBS markedly improved EE-induced cholestasis.EE exposure significantly reduced hepatic Mrp2 and Mrp4 expression compared with the control group.EE also dramatically up-regulated the expression of Mrp3.Compared to the EE group,CBS notably up-regulated hepatic Mrp2 and Mrp4 but failed to influence the Mrp3 level significantly.ICI182780,an ER antagonist,showed similar beneficial effects as CBS.Decreased expression of Mrp2 and Mrp4 caused by EE was also restored by IC1182780.Additionally,EE significantly induced hepatic ERα expression,which was reversed by ICI182780 or CBS (150 mg/kg) treatment,suggesting that CB5 exerted a moderate regulatory effect on ER signaling.CONCLUSION:CBS up-regulated hepatic Mrp2 and Mrp4 expression in EE-induced cholestasis,which might be associated with its regulation of ER signaling.展开更多
Intravesical bacillus Calmette-Guerin(BCG) instillation has been adopted for the treatment of patients with superficial bladder cancer. Severe adverse events due to local instillation of BCG are uncommon, with an over...Intravesical bacillus Calmette-Guerin(BCG) instillation has been adopted for the treatment of patients with superficial bladder cancer. Severe adverse events due to local instillation of BCG are uncommon, with an overall rate of serious complications of less than 5%. We report the case of an immunocompetent adult patient with multi-system effects, namely pneumonitis, granulomatous hepatitis and meningitis, who responded well to standard treatment for Mycobacterium bovis. This case highlights the importance of a thorough assessment of this type of patient.展开更多
The protective effects of in vitro cultivated calculus bovis (ICCB) on the cerebral and myocardial cells in hypoxic mice and the mechanism were examined. In one group, mice were intragastrically (i.g.) given ICCB ...The protective effects of in vitro cultivated calculus bovis (ICCB) on the cerebral and myocardial cells in hypoxic mice and the mechanism were examined. In one group, mice were intragastrically (i.g.) given ICCB for 15 days and then they were subjected to acute cerebral ischemia by decapitation, and then the panting time was recorded. In the other group, 12 min after exposure to hypoxia, mice was administered the ICCB i.g. for 5 days, and then the blood serum and tissues of brain, heart, liver were harvested and examined for SOD, GSH-px and T-AOC activity and content of MDA. The tissues of brain and heart were observed electron-microscopically for ultrastructural changes. The corpus striatum and hippocampus of brain were collected and examined for content of dopamine (DA) and norepinephrine (NE). The ultrastrural examination showed that the pathological change in brain and heart in the ICCB group was very slight, while abnormal changes in the control group were obviously more serious. ICCB significantly prolonged the panting time of the hypoxic mice (P〈0.001), increased the activity of SOD, GSH-px, T-AOC in serum and tissues of brain, liver, heart and elevated the content of DA and NE. ICCB also pronouncedly reduced content of MDA in serum and tissues of brain, heart and liver. Significant differences in these parameters were noted between ICCB group and controls. It is concluded that ICCB can exert protective effect on the cells of brain and myocardium by enhancing the tolerance of the tissues to hypoxia and the body's ability to remove free radicals and regulating the neurotransmitters.展开更多
Objective:To determine the presence of Babesia bovis(B.bovis) in large ruminants in southern Punjab and its effect on hematological and serum biochemical profile of host animals.Methods:Blood samples were collected fr...Objective:To determine the presence of Babesia bovis(B.bovis) in large ruminants in southern Punjab and its effect on hematological and serum biochemical profile of host animals.Methods:Blood samples were collected from 144 large ruminants,including 105 cattle and 39 buffaloes,from six districts in southern Punjab including Multan,Layyah,Muzaffar Garh,Bhakar,Bahawalnagar and Vehari.Data on the characteristics of animals and herds were collected through questionnaires.Different blood(hemoglobin,glucose) and serum(ALT,AST,LDH,cholesterol)parameters of calves and cattle were measured and compared between parasite positive and negative samples to demonstrate the effect of B.bovis on the blood and serological profile of infected animals.Results:27 out of 144 animals.from 5 out of 6 sampling districts,produced the541-bp fragment specific for B.bovis.Age of animals(P=0.02).presence of ticks on animals(P=0.04)and presence of ticks on dogs associated with herds(P=0.5) were among the major risk factors involved in the spread of bovine babesiosis in the study area.ALT concentrations were the only serum biochemical values that significantly varied between parasite positive and negative cattle.Conclusions:This study has reported for the first time the presence of B.bovis in large ruminant and the results can lead to the prevention of babesiosis in the region to increase the livestock output.展开更多
Background:Endolysins,the bacteriophage-originated peptidoglycan hydrolases,are a promising replacement for antibiotics due to immediate lytic activity and no antibiotic resistance.The objectives of this study were to...Background:Endolysins,the bacteriophage-originated peptidoglycan hydrolases,are a promising replacement for antibiotics due to immediate lytic activity and no antibiotic resistance.The objectives of this study were to investigate the lytic activity of endolysin LyJH307 against S.bovis and to explore changes in rumen fermentation and microbiota in an in vitro system.Two treatments were used:1)control,corn grain without LyJH307;and 2)LyJH307,corn grain with LyJH307(4 U/mL).An in vitro fermentation experiment was performed using mixture of rumen fluid collected from two cannulated Holstein steers(450±30 kg)and artificial saliva buffer mixed as 1:3 ratio for 12 h incubation time.In vitro dry matter digestibility,pH,volatile fatty acids,and lactate concentration were estimated at 12 h,and the gas production was measured at 6,9,and 12 h.The rumen bacterial community was analyzed using 16S rRNA amplicon sequencing.Results:LyJH307 supplementation at 6 h incubation markedly decreased the absolute abundance of S.bovis(approximately 70% compared to control,P=0.0289)and increased ruminal pH(P=0.0335)at the 12 h incubation.The acetate proportion(P=0.0362)was significantly increased after LyJH307 addition,whereas propionate(P=0.0379)was decreased.LyJH307 supplementation increased D-lactate(P=0.0340)without any change in L-lactate concentration(P>0.10).There were no significant differences in Shannon’s index,Simpson’s index,Chao1 estimates,and evenness(P>0.10).Based on Bray-Curtis dissimilarity matrices,the LyJH307 affected the overall shift in microbiota(P=0.097).LyJH307 supplementation induced an increase of 11 genera containing Lachnoclostridium,WCHB1-41,unclassified genus Selenomonadaceae,Paraprevotella,vadinBE97,Ruminococcus gauvreauii group,Lactobacillus,Anaerorhabdus furcosa group,Victivallaceae,Desulfuromonadaceae,and Sediminispirochaeta.The predicted functional features represented by the Kyoto Encyclopedia of Genes and Genomes pathways were changed by LyJH307 toward a decrease of carbohydrate metabolism.Conclusions:LyJH307 caused a reduction of S.bovis and an increase of pH with shifts in minor microbiota and its metabolic pathways related to carbohydrate metabolism.This study provides the first insight into the availability of endolysin as a specific modulator for rumen and shows the possibility of endolysin degradation by rumen microbiota.展开更多
文摘Liver cancer,and in particular hepatocellular carcinoma(HCC)is a disease of rising prevalence and incidence.To date,definitive treatment options include either surgical excision or ablation of the affected area.With increasing research on several pathways that could be involved in the progression of HCC,new elements within these pathways emerge as potential targets for novel therapies.The WNT/β-catenin pathway favors the presence of M2 tumor-associated macrophages which in turn promote tumor growth and metastasis.The inhibition of this pathway is considered a good candidate for such targeted therapeutic interventions.Interestingly,as Huang et al show in their recently published article,Calculus bovis which is used in traditional Chinese medicine can exert an inhibitory effect on theβ-catenin pathway and become a potential candidate for targeted pharmacotherapy against liver cancer.
文摘Hepatocellular carcinoma is one of the leading causes of cancer-related deaths globally,and effective treatments are urgently needed.The present study aimed to investigate the inhibitory effect of Calculus Bovis(CB)on liver cancer and the underlying mechanisms.CB inhibited M2 tumor-associated macrophage polarization and modulated the Wnt/β-catenin signaling pathway,thereby suppressing the proliferation of liver cancer cells.The inhibitory effect on liver cancer growth was confirmed by both in vivo and in vitro experiments(detailed by Huang et al).The present study provides a theoretical basis for the application of CB for the treatment of liver cancer,providing new avenues for liver cancer treatment.
文摘Liver cancer remains a significant global health challenge,characterized by high incidence and mortality rates.Despite advancements in medical treatments,the prognosis for liver cancer patients remains poor,highlighting the urgent need for novel therapeutic approaches.Traditional Chinese medicine(TCM),particularly Calculus bovis(CB),has shown promise in addressing this need due to its multitarget therapeutic mechanisms.CB refers to natural or synthetic gallstones,traditionally sourced from cattle,and used in TCM for their anti-inflammatory,detoxifying,and therapeutic properties.In modern practice,synthetic CB is often utilized to ensure consistent supply and safety.This article aims to discuss the findings of Huang et al,who investigated the anti-liver cancer properties of CB,focusing on its ability to inhibit M2 tumor-associated macrophage(TAM)polarization via modulation of the Wnt/β-catenin pathway.Huang et al employed a comprehensive approach integrating chemical analysis,animal model testing,and advanced bioinformatics.They identified active components of CB using UPLC-Q-TOF-MS,evaluated its anti-neoplastic effects in a nude mouse model,and elucidated the underlying mechanisms through network pharmacology,transcriptomics,and molecular docking studies.The study demonstrated that CB significantly inhibited liver tumor growth in vivo,as evidenced by reduced tumor size and weight in treated mice.Histological analyses confirmed signs of tumor regression.CB was found to modulate the tumor microenvironment by inhibiting the polarization of M2 phenotype-TAMs,as shown by reduced expression of M2 markers and downregulation of mRNA levels of C-C motif chemokine 22,arginase-1,transforming growth factor-beta 2,and interleukin-10.The study further revealed that CB’s antineoplastic activity involved the downregulation of Wnt5B andβ-catenin and upregulation of Axin2,thus inhibiting the Wnt/β-catenin signaling pathway.These findings highlight the therapeutic potential of CB in liver cancer treatment through its modulation of the Wnt/β-catenin pathway and suppression of M2 phenotype-TAM polarization.This study underscores the value of integrating TCM with modern therapeutic strategies to develop novel effective treatments for liver cancer.
文摘In this paper,the mechanism of the Wnt/β-catenin pathway is introduced,and the process and principle of the experiment conducted by Huang et al is explained.We discussed the reliability of the conclusion that Calculus bovis(C.bovis)inhibits M2 tumor-associated macrophage polarization via Wnt/β-catenin pathway modulation to suppress liver cancer.We also offer suggestions for further studies of the use of C.bovis in the treatment of liver cancer.
文摘In this article,we comment on the work published by Huang et al,which explores the mechanisms by which Calculus bovis(CB)modulates the liver cancer immune microenvironment via the Wnt/β-catenin signalling pathway.The study demon-strates that active components in CB effectively inhibit the activation of the Wnt/β-catenin pathway,significantly reducing the polarization of M2 tumor-associated macrophages.Both in vivo and in vitro experiments have validated the anti-tumour effects of CB,revealing its complex mechanisms of action through the modulation of immune cell functions within the tumour microenvironment.This article highlights CB’s therapeutic potential in liver cancer treatment and calls for further investigations into its mechanisms and clinical applications to develop safer,more effective options for patients.The study also revealed that key com-ponents of CB,such as bilirubin and bile acids,inhibit tumour cell proliferation and promote apoptosis through multiple pathways.Future research should explore the mechanisms of action of CB and its potential integration with existing treatments to improve the therapeutic outcomes of liver cancer patients.With multidisciplinary collaboration and advanced research,CB could become a key component of comprehensive liver cancer treatment,offering new hope for patients.
基金Supported by National Natural Science Foundation of China,No.82074450Education Department of Hunan Province,No.21A0243,No.21B0374,No.22B0397,and No.22B0392+2 种基金Research Project of"Academician Liu Liang Workstation"of Hunan University of Traditional Chinese Medicine,No.21YS003Hunan Administration of Traditional Chinese Medicine,No.B2023001 and No.B2023009Hunan Provincial Natural Science Foundation of China,No.2023JJ40481。
文摘BACKGROUND Calculus bovis(CB),used in traditional Chinese medicine,exhibits anti-tumor effects in various cancer models.It also constitutes an integral component of a compound formulation known as Pien Tze Huang,which is indicated for the treatment of liver cancer.However,its impact on the liver cancer tumor microenvironment,particularly on tumor-associated macrophages(TAMs),is not well understood.AIM To elucidate the anti-liver cancer effect of CB by inhibiting M2-TAM polarization via Wnt/β-catenin pathway modulation.METHODS This study identified the active components of CB using UPLC-Q-TOF-MS,evaluated its anti-neoplastic effects in a nude mouse model,and elucidated the underlying mechanisms via network pharmacology,transcriptomics,and molecular docking.In vitro assays were used to investigate the effects of CB-containing serum on HepG2 cells and M2-TAMs,and Wnt pathway modulation was validated by real-time reverse transcriptase-polymerase chain reaction and Western blot analysis.RESULTS This study identified 22 active components in CB,11 of which were detected in the bloodstream.Preclinical investigations have demonstrated the ability of CB to effectively inhibit liver tumor growth.An integrated approach employing network pharmacology,transcriptomics,and molecular docking implicated the Wnt signaling pathway as a target of the antineoplastic activity of CB by suppressing M2-TAM polarization.In vitro and in vivo experiments further confirmed that CB significantly hinders M2-TAM polarization and suppresses Wnt/β-catenin pathway activation.The inhibitory effect of CB on M2-TAMs was reversed when treated with the Wnt agonist SKL2001,confirming its pathway specificity.CONCLUSION This study demonstrated that CB mediates inhibition of M2-TAM polarization through the Wnt/β-catenin pathway,contributing to the suppression of liver cancer growth.
文摘Liver cancer,one of the most common malignancies worldwide,ranks sixth in incidence and third in mortality.Liver cancer treatment options are diverse,inclu-ding surgical resection,liver transplantation,percutaneous ablation,transarterial chemoembolization,radiotherapy,chemotherapy,targeted therapy,immuno-therapy,and traditional Chinese medicine(TCM).A multidisciplinary team(MDT)is essential to customize treatment plans based on tumor staging,liver function,and performance status(PS),ensuring individualized patient care.Treatment decisions require a MDT to tailor strategies based on tumor staging,liver function,and PS,ensuring personalized care.The approval of new first-line and second-line drugs and the establishment of standard treatments based on immune checkpoint inhibitors have significantly expanded treatment options for advanced liver cancer,improving overall prognosis.However,many patients do not respond effectively to these treatments and ultimately succumb to the disease.Modern oncology treatments,while extending patient survival,often come with severe side effects,resistance,and damage to the body,negatively impacting quality of life.Huang et al's study published at World Journal of Gastroenterology rigorously validates the anticancer properties of Calculus bovis,enhancing our understanding of TCM and contributing to new liver cancer treatment strategies.For over 5000 years,TCM has been used in East Asian countries like China to treat various diseases,including liver conditions.Analysis of real-world clinical data suggests that for patients with advanced-stage tumors lacking effective treatments,integrated TCM therapies could provide significant breakthroughs.
文摘In this editorial,we comment on the recent article by Huang et al.The editorial focuses specifically on the molecular mechanisms of hepatocellular carcinoma(HCC),mechanism of Wnt/β-catenin pathway in HCC,and protective mechanism of Calculus bovis(CB)in HCC.Liver cancer is the fourth most common cause of cancer-related deaths globally.The most prevalent kind of primary liver cancer,HCC,is typically brought on by long-term viral infections(hepatitis B and C),non-alcoholic steatohepatitis,excessive alcohol consumption,and other conditions that can cause the liver to become chronically inflamed and cirrhotic.CB is a wellknown traditional remedy in China and Japan and has been used extensively to treat a variety of diseases,such as high fever,convulsions,and stroke.Disturbances in lipid metabolism,cholesterol metabolism,bile acid metabolism,alcohol metabolism,and xenobiotic detoxification lead to fatty liver disease and liver cirrhosis.Succinate,which is a tricarboxylic acid cycle intermediate,is vital to energy production and mitochondrial metabolism.It is also thought to be a signaling molecule in metabolism and in the development and spread of liver malignancies.The Wnt/β-catenin pathway is made up of a group of proteins that are essential for both adult tissue homeostasis and embryonic development.Cancer is frequently caused by the dysregulation of the Wnt/β-catenin signaling pathway.In HCC liver carcinogenesis,Wnt/β-catenin signaling is activated by the expression of downstream target genes.Communication between the liver and the gut exists via the portal vein,biliary tract,and systemic circulation.This"gutliver axis"controls intestinal physiology.One of the main factors contributing to the development,progression,and treatment resistance of HCC is the abnormal activation of the Wnt/β-Catenin signaling pathway.Therefore,understanding this pathway is essential to treating HCC.Eleven ingredients of CB,particularly oleanolic acid,ergosterol,and ursolic acid,have anti-primary liver cancer properties.Additionally,CB is important in the treatment of primary liver cancer through pathways linked to immune system function and apoptosis.CB also inhibits the proliferation of cancer stem cells and tumor cells and controls the tumor microenvironment.In the future,clinicians may be able to recommend one of many potential new drugs from CB ingredients to treat HCC expression,development,and progress.
基金Supported by the National Institutes of Health grants,No.K99HL146954 and No.R00HL146954the UTHSC College of Pharmacy Research Seed Grant award,No.2023.
文摘Despite significant advances in our understanding of the molecular pathogenesis of liver cancer and the availability of novel pharmacotherapies,liver cancer remains the fourth leading cause of cancer-related mortality worldwide.Tumor relapse,resistance to current anti-cancer drugs,metastasis,and organ toxicity are the major challenges that prevent considerable improvements in patient survival and quality of life.Calculus bovis(CB),an ancient Chinese medicinal drug,has been used to treat various pathologies,including stroke,convulsion,epilepsy,pain,and cancer.In this editorial,we discuss the research findings recently published by Huang et al on the therapeutic effects of CB in inhibiting the development of liver cancer.Utilizing the comprehensive transcriptomic analyses,in vitro experiments,and in vivo studies,the authors demonstrated that CB treatment inhibits the tumor-promoting M2 phenotype of tumor-associated macrophages via downregulating Wnt pathway.While multiple studies have been performed to explore the molecular mechanisms regulated by CB,this study uniquely shows its role in modulating the M2 phenotype of macrophages present within the tumor microenvironment.This study opens new avenues of future investigations aimed at investigating this drug’s efficacy in various mouse models including the effects of combination therapy,and against drug-resistant tumors.
文摘In this manuscript,we comment on the article,which explores the anti-cancer effects of Calculus bovis(CB)in tumor biology.We highlight its potential,particularly in hepatocellular carcinoma(HCC),where it inhibits the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin pathways and induces apoptosis.CB contains compounds such as oleanolic acid and ursolic acid that target interleukin-6,mitogen-activated protein kinase 8,vascular endothelial growth factor,and caspase-3,offering anti-inflammatory and hepatoprotective benefits.The manuscript also discusses CB sativus(CBS),an artificial substitute,which has shown efficacy in reducing hepatic inflammation and oxidative stress in animal models.We emphasize the need for further research on the effects of CBS on the gut-liver axis and gut microbiota,and on targeting Wnt signaling and M2 tumor-associated macrophage as potential therapeutic strategies against HCC.
基金Supported by National Natural Science Foundation of China,No.82204909.
文摘This editorial examines the therapeutic potential of traditional Chinese medicine(TCM)for aggressive cancers,particularly liver cancer.It highlights the study by Huang et al,which shows how Calculus bovis,a component of the TCM Pien Tze Huang,suppresses liver cancer by inhibiting M2 macrophage polarization via the Wnt/β-catenin pathway.This research emphasizes the importance of transitioning from effective TCM formulations to isolating active components and understanding their mechanisms.While the study provides valuable insights,it primarily focuses on the Wnt/β-catenin pathway and does not delve deeply into the mechanisms of individual components.Future research should aim to comprehensively study these components,explore their interactions,and validate findings through clinical trials.This approach will integrate traditional wisdom with modern scientific validation,advancing the development of innovative cancer treatments based on TCM formulations.
文摘In the ongoing quest for new treatments in medicine,traditional Chinese medicine offers unique insights and potential.Recently,studies on the ability of Calculus bovis to inhibit M2-type tumour-associated macrophage polarisation by modulating the Wnt/β-catenin signalling pathway to suppress liver cancer have undoubtedly revealed new benefits and hope for this field of research.The purpose of this article is to comment on this study and explore its strengths and weaknesses,thereby providing ideas for the future treatment of liver cancer.
基金Supported by National Natural Science Foundation of China,No.A30170920
文摘AIM:To explore the interventional effects and mechanism of in vitro cultivated Calculus Bovis compound preparation(ICCBco) on pulmonary lesions in portal hypertensive rabbits with schistosomiasis. METHODS:The experimental group included 20 portal hypertensive rabbits with schistosomiasis treated by ICCBco.The control group included 20 portal hypertensive rabbits with schistosomiasis treated by praziquantel. The morphological changes of the pulmonary tissues were observed under light and electron microscopy.The expression of fibronectin(FN) and laminin(LN) in the lung tissues was analyzed by immunohistochemistry. RESULTS:Under light microscope,the alveolar exudation in the lung tissue was more frequently observed in the control group,while the alveolar space was fairly dry in the lung tissue of ICCBco group.Under electron microscope,more alveolar exudation in the lung tissue,and moremacrophages,alveolar angiotelectasis and the blurred three-tier structure of alveolar-capillary barrier could be seen in the control group.In ICCBco group,fibers within the alveolar interspace slightly increased in some lung regions,and the structure of typeⅠepithelium,basement membrane and endodermis was complete,and no obvious exudation from the alveolar space,and novascular congestion could be observed.There was a positive or strong positive expression of FN and LN in the lung tissue of the control group,while there was a negative or weak positive expression of FN and LN in ICCBco group. CONCLUSION:ICCBco can effectively prevent pulmonary complications in portal hypertensive rabbits with schistosomiasis by means of improving lung microcirculation and lowering the content of extracellular matrix.
文摘AIM:To prospectively examine the association between presence of Streptococcus bovis(S.bovis)in colonic suction fluid and the endoscopic findings on colonoscopy.METHODS:From May 2012 to March 2013,203 consecutivepatients who underwent colonoscopy for any reason were enrolled in the study.Exclusion criteria included:antibiotic use in the previous month,age younger than18 years,and inadequate preparation for colonoscopy.The colonoscopy was performed for the total length of the colon or to the occluding tumor.The endoscopic findings were registered.Samples were obtained proximal to the colonoscopic part of the suction tube from each patient and sent to the clinical microbiology laboratory for isolation and identification of S.bovis.Samples were incubated in enrichment media with addition of antibiotic disks for inhibition of growth of Gram-negative rods.The samples were seeded on differential growth media;suspected positive colonies were isolated and identified with Gram staining,catalase,and pyrrolidonyl arylamidase tests,and further identified using a VITEK2 system.Statistical analyses were performed using the Student’s t andχ2 tests.RESULTS:Of the 203 patients recruited,49(24%)patients were found to be S.bovis carriers;of them,the endoscopic findings included:17(34.7%)cases with malignant tumors,11(22.4%)with large polyps,5(10.2%)with medium-sized polyps,6(12.2%)with small polyps,4(8.1%)with colitis,and 6(12.2%)normal colonoscopies.Of 154 patients found negative for S.bovis,the endoscopic findings included:none with malignant tumors,9(5.8%)cases with large polyps,11(7.1%)with medium-sized polyps,26(16.9%)with small polyps,7(4.5%)with colitis,and101(65.6%)normal colonoscopies.S.bovis(Grampositive coccus)is considered part of the normal intestinal flora.There is an association between S.bovis bacteremia and colonic neoplasia.It is not well understood whether the bacterium has a pathogenetic role in the development of neoplasia or constitutes an epiphenomenon of colorectal neoplasms.There was a clear relationship between positivity for S.bovis in colonic suction fluid and findings of malignant tumors and large polyps in the colon.CONCLUSION:There is an association between S.bovis bacteremia and malignant colonic lesions;this should prompt for development of a reliable screening method for advanced colonic lesions.
基金Supported by the National Natural Science Foundation of China(Study of the Role and Mechanism of PDZK1 Protein in the Downregulation of Mrp2 by Estrogen in Cholestasis,No.81503146 and Study of the Choleretic Effect of Calculus Bovis Sativus Based on PDZK1 Protein Interaction Networks and Bile Acid Metabolic Profile,No.81573788)Science Foundations of Health and Family Planning Commission of Wuhan Municipality(No.WZ15Z02)
文摘OBJECTIVE:To investigate the pathway through which Calculus Bovis Sativus (CBS) up-regulates hepatic multidrug resistance-associated protein 2 (Mrp2) and Mrp4 in 17α-ethynylestradiol (EE)-induced cholestasis.METHODS:Five groups of rats were designed:control group,EE+ICI182780 group,EE group,EE+CBS 50 mg/kg group and EE + CBS 150 mg/kg group.CBS (50 and 150 mg.kg-1· d-1) was orally given to rats by gavage for five consecutive days in coadministration with EE.The levels of cholestasis biomarkers,alanine aminotransferase (ALT),aspartate aminotransferase (AST),alkaline phosphatase (ALP) and total bilirubin (TBIL) were determined by biochemical methods.The bile flow was measured.The histopathology of the liver tissue was evaluated.The expression of Mrp2,Mrp3,Mrp4,estrogen receptor α(ERα) and ERβ was determined by Western blotting.RESULTS:CBS markedly improved EE-induced cholestasis.EE exposure significantly reduced hepatic Mrp2 and Mrp4 expression compared with the control group.EE also dramatically up-regulated the expression of Mrp3.Compared to the EE group,CBS notably up-regulated hepatic Mrp2 and Mrp4 but failed to influence the Mrp3 level significantly.ICI182780,an ER antagonist,showed similar beneficial effects as CBS.Decreased expression of Mrp2 and Mrp4 caused by EE was also restored by IC1182780.Additionally,EE significantly induced hepatic ERα expression,which was reversed by ICI182780 or CBS (150 mg/kg) treatment,suggesting that CB5 exerted a moderate regulatory effect on ER signaling.CONCLUSION:CBS up-regulated hepatic Mrp2 and Mrp4 expression in EE-induced cholestasis,which might be associated with its regulation of ER signaling.
文摘Intravesical bacillus Calmette-Guerin(BCG) instillation has been adopted for the treatment of patients with superficial bladder cancer. Severe adverse events due to local instillation of BCG are uncommon, with an overall rate of serious complications of less than 5%. We report the case of an immunocompetent adult patient with multi-system effects, namely pneumonitis, granulomatous hepatitis and meningitis, who responded well to standard treatment for Mycobacterium bovis. This case highlights the importance of a thorough assessment of this type of patient.
文摘The protective effects of in vitro cultivated calculus bovis (ICCB) on the cerebral and myocardial cells in hypoxic mice and the mechanism were examined. In one group, mice were intragastrically (i.g.) given ICCB for 15 days and then they were subjected to acute cerebral ischemia by decapitation, and then the panting time was recorded. In the other group, 12 min after exposure to hypoxia, mice was administered the ICCB i.g. for 5 days, and then the blood serum and tissues of brain, heart, liver were harvested and examined for SOD, GSH-px and T-AOC activity and content of MDA. The tissues of brain and heart were observed electron-microscopically for ultrastructural changes. The corpus striatum and hippocampus of brain were collected and examined for content of dopamine (DA) and norepinephrine (NE). The ultrastrural examination showed that the pathological change in brain and heart in the ICCB group was very slight, while abnormal changes in the control group were obviously more serious. ICCB significantly prolonged the panting time of the hypoxic mice (P〈0.001), increased the activity of SOD, GSH-px, T-AOC in serum and tissues of brain, liver, heart and elevated the content of DA and NE. ICCB also pronouncedly reduced content of MDA in serum and tissues of brain, heart and liver. Significant differences in these parameters were noted between ICCB group and controls. It is concluded that ICCB can exert protective effect on the cells of brain and myocardium by enhancing the tolerance of the tissues to hypoxia and the body's ability to remove free radicals and regulating the neurotransmitters.
基金supported by the Direetorate of Research and External Linkages,Bahauddin Zakariya University.Multan.Pakistan(grant No.DR&EI/D-40 dated 05-04-2010)
文摘Objective:To determine the presence of Babesia bovis(B.bovis) in large ruminants in southern Punjab and its effect on hematological and serum biochemical profile of host animals.Methods:Blood samples were collected from 144 large ruminants,including 105 cattle and 39 buffaloes,from six districts in southern Punjab including Multan,Layyah,Muzaffar Garh,Bhakar,Bahawalnagar and Vehari.Data on the characteristics of animals and herds were collected through questionnaires.Different blood(hemoglobin,glucose) and serum(ALT,AST,LDH,cholesterol)parameters of calves and cattle were measured and compared between parasite positive and negative samples to demonstrate the effect of B.bovis on the blood and serological profile of infected animals.Results:27 out of 144 animals.from 5 out of 6 sampling districts,produced the541-bp fragment specific for B.bovis.Age of animals(P=0.02).presence of ticks on animals(P=0.04)and presence of ticks on dogs associated with herds(P=0.5) were among the major risk factors involved in the spread of bovine babesiosis in the study area.ALT concentrations were the only serum biochemical values that significantly varied between parasite positive and negative cattle.Conclusions:This study has reported for the first time the presence of B.bovis in large ruminant and the results can lead to the prevention of babesiosis in the region to increase the livestock output.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2019R1F1A1056904).
文摘Background:Endolysins,the bacteriophage-originated peptidoglycan hydrolases,are a promising replacement for antibiotics due to immediate lytic activity and no antibiotic resistance.The objectives of this study were to investigate the lytic activity of endolysin LyJH307 against S.bovis and to explore changes in rumen fermentation and microbiota in an in vitro system.Two treatments were used:1)control,corn grain without LyJH307;and 2)LyJH307,corn grain with LyJH307(4 U/mL).An in vitro fermentation experiment was performed using mixture of rumen fluid collected from two cannulated Holstein steers(450±30 kg)and artificial saliva buffer mixed as 1:3 ratio for 12 h incubation time.In vitro dry matter digestibility,pH,volatile fatty acids,and lactate concentration were estimated at 12 h,and the gas production was measured at 6,9,and 12 h.The rumen bacterial community was analyzed using 16S rRNA amplicon sequencing.Results:LyJH307 supplementation at 6 h incubation markedly decreased the absolute abundance of S.bovis(approximately 70% compared to control,P=0.0289)and increased ruminal pH(P=0.0335)at the 12 h incubation.The acetate proportion(P=0.0362)was significantly increased after LyJH307 addition,whereas propionate(P=0.0379)was decreased.LyJH307 supplementation increased D-lactate(P=0.0340)without any change in L-lactate concentration(P>0.10).There were no significant differences in Shannon’s index,Simpson’s index,Chao1 estimates,and evenness(P>0.10).Based on Bray-Curtis dissimilarity matrices,the LyJH307 affected the overall shift in microbiota(P=0.097).LyJH307 supplementation induced an increase of 11 genera containing Lachnoclostridium,WCHB1-41,unclassified genus Selenomonadaceae,Paraprevotella,vadinBE97,Ruminococcus gauvreauii group,Lactobacillus,Anaerorhabdus furcosa group,Victivallaceae,Desulfuromonadaceae,and Sediminispirochaeta.The predicted functional features represented by the Kyoto Encyclopedia of Genes and Genomes pathways were changed by LyJH307 toward a decrease of carbohydrate metabolism.Conclusions:LyJH307 caused a reduction of S.bovis and an increase of pH with shifts in minor microbiota and its metabolic pathways related to carbohydrate metabolism.This study provides the first insight into the availability of endolysin as a specific modulator for rumen and shows the possibility of endolysin degradation by rumen microbiota.