In this paper,we construct two fully decoupled,second-order semi-discrete numerical schemes for the Boussinesq equations based on the scalar auxiliary variable(SAV)approach.By introducing a scalar auxiliary variable,t...In this paper,we construct two fully decoupled,second-order semi-discrete numerical schemes for the Boussinesq equations based on the scalar auxiliary variable(SAV)approach.By introducing a scalar auxiliary variable,the original Boussinesq system is transformed into an equivalent one.Then we discretize it using the second-order backward di erentiation formula(BDF2)and Crank-Nicolson(CN)to obtain two second-order time-advanced schemes.In both numerical schemes,a pressure-correction method is employed to decouple the velocity and pressure.These two schemes possess the desired property that they can be fully decoupled with satisfying unconditional stability.We rigorously prove both the unconditional stability and unique solvability of the discrete schemes.Furthermore,we provide detailed implementations of the decoupling procedures.Finally,various 2D numerical simulations are performed to verify the accuracy and energy stability of the proposed schemes.展开更多
The Boussinesq equations,pivotal in the analysis of water wave dynamics,effectively model weakly nonlinear and long wave approximations.This study utilizes the complete discriminant system within a polynomial approach...The Boussinesq equations,pivotal in the analysis of water wave dynamics,effectively model weakly nonlinear and long wave approximations.This study utilizes the complete discriminant system within a polynomial approach to derive exact traveling wave solutions for the coupled Boussinesq equation.The solutions are articulated through soliton,trigonometric,rational,and Jacobi elliptic functions.Notably,the introduction of Jacobi elliptic function solutions for this model marks a pioneering advancement.Contour plots of the solutions obtained by assigning values to various parameters are generated and subsequently analyzed.The methodology proposed in this study offers a systematic means to tackle nonlinear partial differential equations in mathematical physics,thereby enhancing comprehension of the physical attributes and dynamics of water waves.展开更多
The homogeneous balance method, which is simple and straightforward, is extended to seek for Backlund transformation, exact bell shape soliton solutions and similarity reduction of the Boussinesq equation. The method...The homogeneous balance method, which is simple and straightforward, is extended to seek for Backlund transformation, exact bell shape soliton solutions and similarity reduction of the Boussinesq equation. The method can be used in general.展开更多
In this article, a novel (G'/G)-expansion method is proposed to search for the traveling wave solutions of nonlinear evolution equations. We construct abundant traveling wave solutions involving parameters to the B...In this article, a novel (G'/G)-expansion method is proposed to search for the traveling wave solutions of nonlinear evolution equations. We construct abundant traveling wave solutions involving parameters to the Boussinesq equation by means of the suggested method. The performance of the method is reliable and useful, and gives more general exact solutions than the existing methods. The new (G'/G)-expansion method provides not only more general forms of solutions but also cuspon, peakon, soliton, and periodic waves.展开更多
By using the modified mapping method, we find some new exact solutions of the generalized Boussinesq equation and the Boussinesq-Burgers equation. The solutions obtained in this paper include Jacobian elliptic functio...By using the modified mapping method, we find some new exact solutions of the generalized Boussinesq equation and the Boussinesq-Burgers equation. The solutions obtained in this paper include Jacobian elliptic function solutions, combined Jacobian elliptic function solutions, soliton solutions, triangular function solutions.展开更多
Nonlinear water wave propagation passing a submerged shelf is studied experimentally and numerically. The applicability of two different wave propagation models has been investigated. One is higher-order Boussinesq eq...Nonlinear water wave propagation passing a submerged shelf is studied experimentally and numerically. The applicability of two different wave propagation models has been investigated. One is higher-order Boussinesq equations derived by Zou (1999) and the other is the classic Boussinesq equations, Physical experiments are conducted, three different front slopes (1:10, 1:5 and 1:2) of the shelf are set up in the experiment and their effects on wave propagation are investigated. Comparisons of numerical results with test data are made, the model of higher-order Boussinesq equations agrees much better with the measurements than the model of the classical Boussinesq equations, The results show that the higher-order Boussinesq equations can also be applied to the steeper slope case although the mild slope assumption is employed in the derivation of the higher order terms of higher order Boussinesq equations.展开更多
An extended Fan's algebraic method is used for constructing exact traveling wave solution of nonlinearpartial differential equations.The key idea of this method is to introduce an auxiliary ordinary differential e...An extended Fan's algebraic method is used for constructing exact traveling wave solution of nonlinearpartial differential equations.The key idea of this method is to introduce an auxiliary ordinary differential equationwhich is regarded as an extended elliptic equation and whose degree Υ is expanded to the case of r>4.The efficiency ofthe method is demonstrated by the KdV equation and the variant Boussinesq equations.The results indicate that themethod not only offers all solutions obtained by using Fu's and Fan's methods,but also some new solutions.展开更多
The goal of this paper is to consider the global well-posedness to n-dimensional (n 〉 3) Boussinesq equations with fractional dissipation. More precisely, it is proved that there exists a unique global regular solu...The goal of this paper is to consider the global well-posedness to n-dimensional (n 〉 3) Boussinesq equations with fractional dissipation. More precisely, it is proved that there exists a unique global regular solution to the Boussinesq equations provided the real parameter α satisfies α≥1/2 +n/4.展开更多
The direct method proposed by Clarkson and Kruskal is modified to obtain some conditional similarity solutions of a nonlinear physics model. Taking the -dimensional Boussinesq equation as a simple example, six types o...The direct method proposed by Clarkson and Kruskal is modified to obtain some conditional similarity solutions of a nonlinear physics model. Taking the -dimensional Boussinesq equation as a simple example, six types of conditional similarity reductions are obtained.展开更多
Two new exact, rational and periodic wave solutions are derived for the two-dimensional Boussinesq equation. For the first solution it is obtained by performing an appropriate limiting procedure on the soliton solutio...Two new exact, rational and periodic wave solutions are derived for the two-dimensional Boussinesq equation. For the first solution it is obtained by performing an appropriate limiting procedure on the soliton solutions obtained by Hirota bilinear method. The second one in terms of Riemann theta function is explicitly presented by virtue of Hirota bilinear method and its asymptotic property is also analyzed in detail. Moreover, it is of interest to note that classical soliton solutions can be reduced from the periodic wave solutions.展开更多
We present an F-expansion method for finding periodic wave solutions of nonlinear evolution equations in mathematical physics, which can be thought of as a concentration of extended Jacobi elliptic function expansion ...We present an F-expansion method for finding periodic wave solutions of nonlinear evolution equations in mathematical physics, which can be thought of as a concentration of extended Jacobi elliptic function expansion method proposed recently. By using the F-expansion, without calculating Jacobi elliptic functions, we obtain simultaneously many periodic wave solutions expressed by various Jacobi elliptic functions for the variant Boussinesq equations. When the modulus m approaches 1 and O, the hyperbolic function solutions (including the solitary wave solutions) and trigonometric solutions are also given respectively.展开更多
In this paper, we consider the global existence of solutions for the Cauchy problem of the generalized sixth order bad Boussinesq equation. Moreover, we show that the supremum norm of the solution decays algebraically...In this paper, we consider the global existence of solutions for the Cauchy problem of the generalized sixth order bad Boussinesq equation. Moreover, we show that the supremum norm of the solution decays algebraically to zero as (1 + t)-(1/7) when t approaches to infinity, provided the initial data are sufficiently small and regular.展开更多
This paper deals with the stochastic 2D Boussinesq equations with partial viscosity. This is a coupled system of Navier-Stokes/Euler equations and the transport equation for temperature under additive noise. Global we...This paper deals with the stochastic 2D Boussinesq equations with partial viscosity. This is a coupled system of Navier-Stokes/Euler equations and the transport equation for temperature under additive noise. Global well-posedness result of this system under partial viscosity is proved by using classical energy estimates method.展开更多
Based on the wave breaking model by Li and Wang (1999), this work is to apply Dally's analytical solution to the wave-height decay instead of the empirical and semi-empirical hypotheses of wave-height distribution...Based on the wave breaking model by Li and Wang (1999), this work is to apply Dally's analytical solution to the wave-height decay instead of the empirical and semi-empirical hypotheses of wave-height distribution within the wave breaking zone. This enhances the applicability of the model. Computational results of shoaling, location of wave breaking, wave-height decay after wave breaking, set-down and set-up for incident regular waves are shown to have good agreement with experimental and field data.展开更多
This paper aims to propose an improved numerical model for wave breaking in the nearshore region based on the fully nonlinear form of Boussinesq equations. The model uses the κ equation turbulence scheme to determine...This paper aims to propose an improved numerical model for wave breaking in the nearshore region based on the fully nonlinear form of Boussinesq equations. The model uses the κ equation turbulence scheme to determine the eddy viscosity in the Boussinesq equations. To calculate the turbulence production term in the equation, a new formula is derived based on the concept of surface roller. By use of this formula, the turbulence production in the one-equation turbulence scheme is directly related to the difference between the water particle velocity and the wave celerity. The model is verified by Hansen and Svendsen's experimental data (1979) in terms of wave height and setup and setdown. The comparison between the model and experimental results of wave height and setup and setdown shows satisfactory agreement. The modeled turbulence energy decreases as waves attenuate in the surf zone. The modeled production term peaks at the breaking point and decreases as waves propagate shoreward. It is also suggested that both convection and diffusion play their important roles in the transport of turbulence energy immediately after wave breaking. When waves approach to the shoreline, the production and dissipation of turbulence energy are almost balanced. By use of the slot technique for the simulation of the movable shoreline boundary, wave runup in the swash zone is well simulated by the present model.展开更多
The symmetries of the (2+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq (INHB) equations, which describe the atmospheric gravity waves (GWs), are researched in this paper. The Lie symmetries...The symmetries of the (2+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq (INHB) equations, which describe the atmospheric gravity waves (GWs), are researched in this paper. The Lie symmetries and the corresponding reductions are obtained by means of classical Lie group approach. Calculation shows the INHB equations are invariant under some Galilean transformations, scaling transformations, and space-time translations. The symmetry reduction equations and similar solutions of the INHB equations are proposed.展开更多
The Boussinesq equation is one of important prototypic models in nonlinear physics. Various nonlinear excitations of the Boussinesq equation have been found by many methods. However, it is very difficult to find inter...The Boussinesq equation is one of important prototypic models in nonlinear physics. Various nonlinear excitations of the Boussinesq equation have been found by many methods. However, it is very difficult to find interaction solutions among different types of nonlinear excitations. In this peper, two equivalent very simple methods, the truncated Painleve analysis and the generalized tanh function expansion approaches, are developed to find interaction solutions between solitons and any other types of Boussinesq waves.展开更多
In order to study the water flow in the drainage layer of highway under steady-state condition, one-dimensional (1D) Boussinesq equation-based model with Dupuit-Forchheimer assumption was established and the semi-an...In order to study the water flow in the drainage layer of highway under steady-state condition, one-dimensional (1D) Boussinesq equation-based model with Dupuit-Forchheimer assumption was established and the semi-analytical solutions to predict the water-table height were presented. In order to validate the model, a two-dimensional (2D) saturated flow model based on the Laplace equation was applied for the purpose of the model comparison. The water-table elevations predicted by ID Boussinesq equation-based model and 2D Laplace equation-based model match each other well, which indicates that the horizontal flow in drainage layer is dominated. Also, it validates the 1D Boussinesq equation-based model which can be applied to predict the water-table elevation in drainage layer. Further, the analysis was conducted to examine the effect of infiltration rate, hydraulic conductivity and slope of drainage layer on the water-table elevation. The results show that water-table falls down as the ratio of Is to K decreases and the slope increases. If the aquifer becomes confined by the top of drainage layer due to the larger ratio of Is to K or smaller slope, the solution presented in this work can also be applied to approximate the water-table elevation in unconfined sub-section as well as hydraulic head in the confined sub-section.展开更多
The Adomian decomposition method (ADM) is an approximate analytic method for solving nonlinear equations. Generally, an approximate solution can be ob- tained by using only a few terms. However, in applications, we ...The Adomian decomposition method (ADM) is an approximate analytic method for solving nonlinear equations. Generally, an approximate solution can be ob- tained by using only a few terms. However, in applications, we need to use it flexibly according to the real problem. In this paper, based on the ADM, we give a modified asymptotic Adomian decomposition method and use it to solve the nonlinear Boussinesq equation describing groundwater flows. The example shows effectiveness of the modified asymptotic Adomian decomposition method.展开更多
Finite time blow up of the solutions to Boussinesq equation with linear restoring force and combined power nonlinearities is studied. Sufficient conditions on the initial data for nonexistence of global solutions are ...Finite time blow up of the solutions to Boussinesq equation with linear restoring force and combined power nonlinearities is studied. Sufficient conditions on the initial data for nonexistence of global solutions are derived. The results are valid for initial data with arbitrary high positive energy. The proofs are based on the concave method and new sign preserving functionals.展开更多
基金Supported by Research Project Supported by Shanxi Scholarship Council of China(2021-029)International Cooperation Base and Platform Project of Shanxi Province(202104041101019)+2 种基金Basic Research Plan of Shanxi Province(202203021211129)Shanxi Province Natural Science Research(202203021212249)Special/Youth Foundation of Taiyuan University of Technology(2022QN101)。
文摘In this paper,we construct two fully decoupled,second-order semi-discrete numerical schemes for the Boussinesq equations based on the scalar auxiliary variable(SAV)approach.By introducing a scalar auxiliary variable,the original Boussinesq system is transformed into an equivalent one.Then we discretize it using the second-order backward di erentiation formula(BDF2)and Crank-Nicolson(CN)to obtain two second-order time-advanced schemes.In both numerical schemes,a pressure-correction method is employed to decouple the velocity and pressure.These two schemes possess the desired property that they can be fully decoupled with satisfying unconditional stability.We rigorously prove both the unconditional stability and unique solvability of the discrete schemes.Furthermore,we provide detailed implementations of the decoupling procedures.Finally,various 2D numerical simulations are performed to verify the accuracy and energy stability of the proposed schemes.
基金supported by the National Natural Science Foundation of China(Grant No.11925204).
文摘The Boussinesq equations,pivotal in the analysis of water wave dynamics,effectively model weakly nonlinear and long wave approximations.This study utilizes the complete discriminant system within a polynomial approach to derive exact traveling wave solutions for the coupled Boussinesq equation.The solutions are articulated through soliton,trigonometric,rational,and Jacobi elliptic functions.Notably,the introduction of Jacobi elliptic function solutions for this model marks a pioneering advancement.Contour plots of the solutions obtained by assigning values to various parameters are generated and subsequently analyzed.The methodology proposed in this study offers a systematic means to tackle nonlinear partial differential equations in mathematical physics,thereby enhancing comprehension of the physical attributes and dynamics of water waves.
文摘The homogeneous balance method, which is simple and straightforward, is extended to seek for Backlund transformation, exact bell shape soliton solutions and similarity reduction of the Boussinesq equation. The method can be used in general.
文摘In this article, a novel (G'/G)-expansion method is proposed to search for the traveling wave solutions of nonlinear evolution equations. We construct abundant traveling wave solutions involving parameters to the Boussinesq equation by means of the suggested method. The performance of the method is reliable and useful, and gives more general exact solutions than the existing methods. The new (G'/G)-expansion method provides not only more general forms of solutions but also cuspon, peakon, soliton, and periodic waves.
基金Project supported by the State Key Program for Basic Research of China (Grant No 2004CB418304)the National Natural Science Foundation of China (Grant No 40405010)
文摘By using the modified mapping method, we find some new exact solutions of the generalized Boussinesq equation and the Boussinesq-Burgers equation. The solutions obtained in this paper include Jacobian elliptic function solutions, combined Jacobian elliptic function solutions, soliton solutions, triangular function solutions.
基金The project was financially supported by the National Natural Science Foundation of China(Grant No.59979002 and No 59839330)
文摘Nonlinear water wave propagation passing a submerged shelf is studied experimentally and numerically. The applicability of two different wave propagation models has been investigated. One is higher-order Boussinesq equations derived by Zou (1999) and the other is the classic Boussinesq equations, Physical experiments are conducted, three different front slopes (1:10, 1:5 and 1:2) of the shelf are set up in the experiment and their effects on wave propagation are investigated. Comparisons of numerical results with test data are made, the model of higher-order Boussinesq equations agrees much better with the measurements than the model of the classical Boussinesq equations, The results show that the higher-order Boussinesq equations can also be applied to the steeper slope case although the mild slope assumption is employed in the derivation of the higher order terms of higher order Boussinesq equations.
基金National Natural Science Foundation of China under Grant No.10672053
文摘An extended Fan's algebraic method is used for constructing exact traveling wave solution of nonlinearpartial differential equations.The key idea of this method is to introduce an auxiliary ordinary differential equationwhich is regarded as an extended elliptic equation and whose degree Υ is expanded to the case of r>4.The efficiency ofthe method is demonstrated by the KdV equation and the variant Boussinesq equations.The results indicate that themethod not only offers all solutions obtained by using Fu's and Fan's methods,but also some new solutions.
基金partially supported by NSFC(1117102611371059)+1 种基金BNSF(2112023)the Fundamental Research Funds for the Central Universities of China
文摘The goal of this paper is to consider the global well-posedness to n-dimensional (n 〉 3) Boussinesq equations with fractional dissipation. More precisely, it is proved that there exists a unique global regular solution to the Boussinesq equations provided the real parameter α satisfies α≥1/2 +n/4.
文摘The direct method proposed by Clarkson and Kruskal is modified to obtain some conditional similarity solutions of a nonlinear physics model. Taking the -dimensional Boussinesq equation as a simple example, six types of conditional similarity reductions are obtained.
基金The project supported by National Natural Science Foundation of China under Grant No.10771196the Natural Science Foundation of Zhejiang Province under Grant No.Y605044
文摘Two new exact, rational and periodic wave solutions are derived for the two-dimensional Boussinesq equation. For the first solution it is obtained by performing an appropriate limiting procedure on the soliton solutions obtained by Hirota bilinear method. The second one in terms of Riemann theta function is explicitly presented by virtue of Hirota bilinear method and its asymptotic property is also analyzed in detail. Moreover, it is of interest to note that classical soliton solutions can be reduced from the periodic wave solutions.
基金河南省自然科学基金,河南省教育厅自然科学基金,the Science Foundation of Henan University of Science and Technology
文摘We present an F-expansion method for finding periodic wave solutions of nonlinear evolution equations in mathematical physics, which can be thought of as a concentration of extended Jacobi elliptic function expansion method proposed recently. By using the F-expansion, without calculating Jacobi elliptic functions, we obtain simultaneously many periodic wave solutions expressed by various Jacobi elliptic functions for the variant Boussinesq equations. When the modulus m approaches 1 and O, the hyperbolic function solutions (including the solitary wave solutions) and trigonometric solutions are also given respectively.
文摘In this paper, we consider the global existence of solutions for the Cauchy problem of the generalized sixth order bad Boussinesq equation. Moreover, we show that the supremum norm of the solution decays algebraically to zero as (1 + t)-(1/7) when t approaches to infinity, provided the initial data are sufficiently small and regular.
文摘This paper deals with the stochastic 2D Boussinesq equations with partial viscosity. This is a coupled system of Navier-Stokes/Euler equations and the transport equation for temperature under additive noise. Global well-posedness result of this system under partial viscosity is proved by using classical energy estimates method.
文摘Based on the wave breaking model by Li and Wang (1999), this work is to apply Dally's analytical solution to the wave-height decay instead of the empirical and semi-empirical hypotheses of wave-height distribution within the wave breaking zone. This enhances the applicability of the model. Computational results of shoaling, location of wave breaking, wave-height decay after wave breaking, set-down and set-up for incident regular waves are shown to have good agreement with experimental and field data.
基金This study was supported by the National Natural Science Foundation of China (Grant No.50479047) and partly by the National Science Fund for Distinguished Young Scholars of China (Estuarine and Coastal Science, Grant No.40225014)
文摘This paper aims to propose an improved numerical model for wave breaking in the nearshore region based on the fully nonlinear form of Boussinesq equations. The model uses the κ equation turbulence scheme to determine the eddy viscosity in the Boussinesq equations. To calculate the turbulence production term in the equation, a new formula is derived based on the concept of surface roller. By use of this formula, the turbulence production in the one-equation turbulence scheme is directly related to the difference between the water particle velocity and the wave celerity. The model is verified by Hansen and Svendsen's experimental data (1979) in terms of wave height and setup and setdown. The comparison between the model and experimental results of wave height and setup and setdown shows satisfactory agreement. The modeled turbulence energy decreases as waves attenuate in the surf zone. The modeled production term peaks at the breaking point and decreases as waves propagate shoreward. It is also suggested that both convection and diffusion play their important roles in the transport of turbulence energy immediately after wave breaking. When waves approach to the shoreline, the production and dissipation of turbulence energy are almost balanced. By use of the slot technique for the simulation of the movable shoreline boundary, wave runup in the swash zone is well simulated by the present model.
基金Supported by the Scientific Research Foundation for the Doctors of University of Electronic Science and Technology of China Zhongshan Institute under Grant No. 408YKQ09the National Natural Science Foundation of China under Grant No. 10735030
文摘The symmetries of the (2+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq (INHB) equations, which describe the atmospheric gravity waves (GWs), are researched in this paper. The Lie symmetries and the corresponding reductions are obtained by means of classical Lie group approach. Calculation shows the INHB equations are invariant under some Galilean transformations, scaling transformations, and space-time translations. The symmetry reduction equations and similar solutions of the INHB equations are proposed.
基金Supported by the National Natural Science Foundations of China under Grant No.11175092Scientific Research Fund of Zhejiang Provincial Education Department under Grant No.Y201017148K.C.Wong Magna Fund in Ningbo University
文摘The Boussinesq equation is one of important prototypic models in nonlinear physics. Various nonlinear excitations of the Boussinesq equation have been found by many methods. However, it is very difficult to find interaction solutions among different types of nonlinear excitations. In this peper, two equivalent very simple methods, the truncated Painleve analysis and the generalized tanh function expansion approaches, are developed to find interaction solutions between solitons and any other types of Boussinesq waves.
基金Project(511114) supported by the Natural Science Foundation of Hainan Province, ChinaProject(2009YBFZ05) supported by Postgraduate Award of Central South University, China+1 种基金Project(200731) supported by Traffic Technology Fund of Hunan Province, ChinaProject(2008BAG10B01) supported by the National Key Technology R&D Program, China
文摘In order to study the water flow in the drainage layer of highway under steady-state condition, one-dimensional (1D) Boussinesq equation-based model with Dupuit-Forchheimer assumption was established and the semi-analytical solutions to predict the water-table height were presented. In order to validate the model, a two-dimensional (2D) saturated flow model based on the Laplace equation was applied for the purpose of the model comparison. The water-table elevations predicted by ID Boussinesq equation-based model and 2D Laplace equation-based model match each other well, which indicates that the horizontal flow in drainage layer is dominated. Also, it validates the 1D Boussinesq equation-based model which can be applied to predict the water-table elevation in drainage layer. Further, the analysis was conducted to examine the effect of infiltration rate, hydraulic conductivity and slope of drainage layer on the water-table elevation. The results show that water-table falls down as the ratio of Is to K decreases and the slope increases. If the aquifer becomes confined by the top of drainage layer due to the larger ratio of Is to K or smaller slope, the solution presented in this work can also be applied to approximate the water-table elevation in unconfined sub-section as well as hydraulic head in the confined sub-section.
基金supported by the National Natural Science Funds of China for Distinguished Young Scholars(No.10825211)the Key of Natural Science Foundation of China(No.10932012)the Beijing Natural Science Foundation(No.1122015)
文摘The Adomian decomposition method (ADM) is an approximate analytic method for solving nonlinear equations. Generally, an approximate solution can be ob- tained by using only a few terms. However, in applications, we need to use it flexibly according to the real problem. In this paper, based on the ADM, we give a modified asymptotic Adomian decomposition method and use it to solve the nonlinear Boussinesq equation describing groundwater flows. The example shows effectiveness of the modified asymptotic Adomian decomposition method.
基金partially supported by Grant No.DFNI I-02/9 of the Bulgarian Science Fund
文摘Finite time blow up of the solutions to Boussinesq equation with linear restoring force and combined power nonlinearities is studied. Sufficient conditions on the initial data for nonexistence of global solutions are derived. The results are valid for initial data with arbitrary high positive energy. The proofs are based on the concave method and new sign preserving functionals.