Single phase 0.76(Bi_(0.5)Na_(0.5))TiO_(3)–0.24SrTiO_(3) ferroelectric ceramics have been synthesized with homogenous anatase and hierarchical rutile TiO_(2) raw reactants(BNST-A and BNST-R).Either calcined powder pe...Single phase 0.76(Bi_(0.5)Na_(0.5))TiO_(3)–0.24SrTiO_(3) ferroelectric ceramics have been synthesized with homogenous anatase and hierarchical rutile TiO_(2) raw reactants(BNST-A and BNST-R).Either calcined powder persists the microstructure characteristics of raw reactants.As the result,when the sintering temperature increases from 1000 to 1200℃,the average grain size and density of BNST-A increase from 0.49 to 1.48μm and 5.02 to 5.61 g/cm^(3),while those of BNST-R from 0.86 to 1.44μm and 5.37 to 5.61 g/cm^(3).BNST-A illustrates a predominant ergodic relaxor state,and BNST-R prefers a non-ergodic relaxor state,as evidenced by the distinct polarization-electric field loops and current-electric field curves.Especially,such a distinct ferroelectric state is independent of sintering temperature.It is believed that the special hierarchical microstructure of rutile TiO_(2) reactant is beneficial to form denser ceramics with larger grains,and thus suppresses the contributions of polar nanoregions and defect-induced built-in field to ferroelectric property,leading to non-ergodic relaxor state.This work clearly demonstrates the nonnegligible effects of TiO_(2) reactants on the microstructure and properties of BNST ferroelectric ceramics.展开更多
Anxiety is a common disease in the modern society which significantly affects people’s daily lives and function,thus it has become an increasingly highlighted issue.Anxiety is regulated by neural circuits in the brai...Anxiety is a common disease in the modern society which significantly affects people’s daily lives and function,thus it has become an increasingly highlighted issue.Anxiety is regulated by neural circuits in the brain.Therefore,the basal mechanism of anxiety has been studied,especially research based on the related neural circuits.For a long time,due to the limitations of science and technology,there was no breakthrough in research regarding anxiety.However,in recent years,due to the progress of technology,the research on anxiety neural circuits has made great progress.For example,the interaction among various brain regions,such as the central nucleus of the amygdala(CeA),the ventral tegmental area(VTA),the ventral hippocampus(vHPC),and so on.This article focuses on three brain regions:including BLA,BNST,and VTA,and illustrate their different roles and mechanisms in regulating anxiety.On this basis,this intensive study of anxiety will further promote the progress of anxiety research and provide therapeutic targets for the related treatment.展开更多
The bed nucleus of the stria terminalis(BNST) plays a critical role in regulating anxiety, yet the involved specific cell types and their connections functioning in anxiety-related behaviors remains elusive. Here we i...The bed nucleus of the stria terminalis(BNST) plays a critical role in regulating anxiety, yet the involved specific cell types and their connections functioning in anxiety-related behaviors remains elusive. Here we identified two cell subpopulations—corticotropin-releasing hormone-positive(CRH+) and protein kinase C-δ-positive(PKC-δ+) neurons—each displayed discrete emotionally valenced behaviors in the anterior-dorsal BNST(ad BNST). Using whole-cell patch-clamp recordings and virus-assisted circuit tracing techniques, we delineated the local and long-range connectivity networks in a cell-type-specific manner. The results show that the CRH+ and PKC-δ+ neurons received inputs from similar brain regions and exhibited significant differences in the downstream projection density. In addition, in vivo calcium imaging as well as gain-and loss-of-function studies characterized the physiological response properties and the functional heterogeneities in modulating anxiety, further suggesting the similarity and individuality between the two ad BNST cell types. These results provide novel insights into the circuit architecture of ad BNST neurons underlying the functionally specific neural pathways that relate to anxiety disorders.展开更多
基金supported by the National Key R&D Program of China(No.2020YFA0711504)the National Natural Science Foundation of China(Nos.12174179,51721001)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20221251)the Dengfeng B project of Nanjing University。
文摘Single phase 0.76(Bi_(0.5)Na_(0.5))TiO_(3)–0.24SrTiO_(3) ferroelectric ceramics have been synthesized with homogenous anatase and hierarchical rutile TiO_(2) raw reactants(BNST-A and BNST-R).Either calcined powder persists the microstructure characteristics of raw reactants.As the result,when the sintering temperature increases from 1000 to 1200℃,the average grain size and density of BNST-A increase from 0.49 to 1.48μm and 5.02 to 5.61 g/cm^(3),while those of BNST-R from 0.86 to 1.44μm and 5.37 to 5.61 g/cm^(3).BNST-A illustrates a predominant ergodic relaxor state,and BNST-R prefers a non-ergodic relaxor state,as evidenced by the distinct polarization-electric field loops and current-electric field curves.Especially,such a distinct ferroelectric state is independent of sintering temperature.It is believed that the special hierarchical microstructure of rutile TiO_(2) reactant is beneficial to form denser ceramics with larger grains,and thus suppresses the contributions of polar nanoregions and defect-induced built-in field to ferroelectric property,leading to non-ergodic relaxor state.This work clearly demonstrates the nonnegligible effects of TiO_(2) reactants on the microstructure and properties of BNST ferroelectric ceramics.
文摘Anxiety is a common disease in the modern society which significantly affects people’s daily lives and function,thus it has become an increasingly highlighted issue.Anxiety is regulated by neural circuits in the brain.Therefore,the basal mechanism of anxiety has been studied,especially research based on the related neural circuits.For a long time,due to the limitations of science and technology,there was no breakthrough in research regarding anxiety.However,in recent years,due to the progress of technology,the research on anxiety neural circuits has made great progress.For example,the interaction among various brain regions,such as the central nucleus of the amygdala(CeA),the ventral tegmental area(VTA),the ventral hippocampus(vHPC),and so on.This article focuses on three brain regions:including BLA,BNST,and VTA,and illustrate their different roles and mechanisms in regulating anxiety.On this basis,this intensive study of anxiety will further promote the progress of anxiety research and provide therapeutic targets for the related treatment.
基金This work was supported by the National Natural Science Foundation of China(31671105)Science Fund for Creative Research Group of China(61721092),“National Basic Research Program of China”(973 program 2015CB755603)Director Fund of the Wuhan National Laboratory for Optoelectronics and partly supported by the open funds of the State Key Laboratory of Medical Neurobiology,Fudan University.
文摘The bed nucleus of the stria terminalis(BNST) plays a critical role in regulating anxiety, yet the involved specific cell types and their connections functioning in anxiety-related behaviors remains elusive. Here we identified two cell subpopulations—corticotropin-releasing hormone-positive(CRH+) and protein kinase C-δ-positive(PKC-δ+) neurons—each displayed discrete emotionally valenced behaviors in the anterior-dorsal BNST(ad BNST). Using whole-cell patch-clamp recordings and virus-assisted circuit tracing techniques, we delineated the local and long-range connectivity networks in a cell-type-specific manner. The results show that the CRH+ and PKC-δ+ neurons received inputs from similar brain regions and exhibited significant differences in the downstream projection density. In addition, in vivo calcium imaging as well as gain-and loss-of-function studies characterized the physiological response properties and the functional heterogeneities in modulating anxiety, further suggesting the similarity and individuality between the two ad BNST cell types. These results provide novel insights into the circuit architecture of ad BNST neurons underlying the functionally specific neural pathways that relate to anxiety disorders.