期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
纳米氮化硼片/纤维素复合导热膜的制备及表征 被引量:1
1
作者 聂翔 欧阳婷 《化工新型材料》 CAS CSCD 北大核心 2021年第6期70-74,共5页
采用液相超声剥离法,以两种微米级的六方氮化硼(h-BN)为原料,使用异丙醇/水共溶剂进行纳米氮化硼片(BNNS)剥离。利用紫外可见光分光光度计考察了共溶剂配方对BNNS剥离浓度的影响。通过扫描电子显微镜、透射电子显微镜、动态光散射纳米... 采用液相超声剥离法,以两种微米级的六方氮化硼(h-BN)为原料,使用异丙醇/水共溶剂进行纳米氮化硼片(BNNS)剥离。利用紫外可见光分光光度计考察了共溶剂配方对BNNS剥离浓度的影响。通过扫描电子显微镜、透射电子显微镜、动态光散射纳米粒度仪和激光闪射导热仪,研究不同尺寸h-BN原料对剥离得到BNNS的平均尺寸和尺寸分布的影响,并考察了BNNS含量对BNNS/纳米纤维素(NFC)复合膜导热性能的影响。结果表明,使用1~2μm的h-BN剥离制备的BNNS/NFC复合膜热导率在BNNS添量为55%时达到最大值19.04W/(m·K),为纯NFC的11.9倍,大于相同BNNS添量下30μm的h-BN剥离制备的BNNS/NFC复合膜热导率[15.04W/(m·K)]。 展开更多
关键词 液相超声剥离 纳米氮化硼片 纳米纤维素 导热性能
原文传递
Isotopic cross-sections in proton induced spallation reactions based on the Bayesian neural network method 被引量:16
2
作者 Chun-Wang Ma Dan Peng +3 位作者 Hui-Ling Wei Zhong-Ming Niu Yu-Ting Wang RWada 《Chinese Physics C》 SCIE CAS CSCD 2020年第1期111-122,共12页
The Bayesian neural network(BNN)method is proposed to predict the isotopic cross-sections in proton induced spallation reactions.Learning from more than 4000 data sets of isotopic cross-sections from 19 experimental m... The Bayesian neural network(BNN)method is proposed to predict the isotopic cross-sections in proton induced spallation reactions.Learning from more than 4000 data sets of isotopic cross-sections from 19 experimental measurements and 5 theoretical predictions with the SPACS parametrization,in which the mass of the spallation system ranges from 36 to 238,and the incident energy from 200 MeV/u to 1500 MeV/u,it is demonstrated that the BNN method can provide good predictions of the residue fragment cross-sections in spallation reactions. 展开更多
关键词 bnn method spallation reaction p+A SPACS parametrization cross-section prediction
原文传递
Crystalline boron nitride nanosheets by sonication-assisted hydrothermal exfoliation 被引量:11
3
作者 Zhaobo TIAN Kexin CHEN +4 位作者 Siyuan SUN Jie ZHANG Wei CUI Zhipeng XIE Guanghua LIU 《Journal of Advanced Ceramics》 SCIE CSCD 2019年第1期72-78,共7页
A simple method to prepare two-dimensional hexagonal boron nitride(h-BN) scalably is essential for practical applications. Despite intense research in this area, high-yield production of two-dimensional h-BN with larg... A simple method to prepare two-dimensional hexagonal boron nitride(h-BN) scalably is essential for practical applications. Despite intense research in this area, high-yield production of two-dimensional h-BN with large size and high crystallinity is still a key challenge. In the present work, we propose a simple exfoliation process for boron nitride nanosheets(BNNSs) with high crystallinity by sonication-assisted hydrothermal method, via the synergistic effect of the high pressure, and cavitation of the sonication. Compared with the method only by sonication, the sonication-assisted hydrothermal method can get the fewer-layer BNNSs with high crystallinity.Meanwhile, it can reach higher yield of nearly 1.68%, as the hydrothermal method with the yield of only 0.12%. The simple sonication-assisted hydrothermal method has potential applications in exfoliating other layered materials, thus opening new ways to produce other layered materials in high yield and high crystallinity. 展开更多
关键词 boron nitride NANOSHEET (bnnS) high CRYSTALLINITY sonication-assisted HYDROTHERMAL method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部