In the present work, three-dimensional molecular dynamics simulation is carried out to elucidate the nanoinden- tation behaviors of CuZr Bulk metallic glasses (BMGs). The substrate indenter system is modeled using h...In the present work, three-dimensional molecular dynamics simulation is carried out to elucidate the nanoinden- tation behaviors of CuZr Bulk metallic glasses (BMGs). The substrate indenter system is modeled using hybrid interatomic potentials including both many-body Finnis Sinclair (FS) and two-body Morse potentials. A spherical rigid indenter (diameter= 60 A(1 A = 10 ^-10 m)) is employed to simulate the indentation process. Three samples of BMGs including Cu25Zr75, CusoZr50, and Cu75Zr25 are designed and the metallic glasses are formed by rapid cooling from the melt state at about 2000 K. The radial distribution functions are analyzed to reveal the dynamical evolution of the structure of the atoms with different compositions and different cooling rates. The mechanical behavior can be well understood in terms of load-depth curves and Hardness-depth curves during the nanoindentation process. Our results indicate a positive linear relationship between the hardness and the Cu concentration of the BMG sample. To reveal the importance of cooling rate provided during the processing of BMGs, we investigate the indentation behaviors of CusoZr50 at three different quenching rates. Nanoindentation results and radial distribution function (RDF) curves at room temperature indicate that a sample can be made harder and more stable by slowing down the quenching rate.展开更多
索尼美高梅音乐娱乐公司(Sony BMG Music Entertainment)新推出的在音乐CD上的数字版权保护技术(DRM),会自动安装在用户的电脑上,并被病毒利用,引起了广大用户的强烈不满,对索尼BMG的诉讼也随之而起。美国、意大利以及更多的集...索尼美高梅音乐娱乐公司(Sony BMG Music Entertainment)新推出的在音乐CD上的数字版权保护技术(DRM),会自动安装在用户的电脑上,并被病毒利用,引起了广大用户的强烈不满,对索尼BMG的诉讼也随之而起。美国、意大利以及更多的集体诉讼正在起诉索尼BMG销售的CD带有反盗版程序,侵犯了消费者的知情权以及违反了间谍软件法等。展开更多
Metallic glass composites hold significant potential as structural materials.However,few methods are available to enhance their mechanical properties postcasting.In this study,simple pre-tensile training was applied t...Metallic glass composites hold significant potential as structural materials.However,few methods are available to enhance their mechanical properties postcasting.In this study,simple pre-tensile training was applied to a TRIP-reinforced metallic glass composite,resulting in a more than one-third increase in plasticity,while the reliability of plasticity was also enhanced.The deformation mechanism was further elucidated,revealing that pre-tension induced the formation of multilayered nanostructures at the dendrite-glass interface.This microstructural evolution facilitates the formation of finer martensite laths within the dendrites and multiple shear bands in the glass matrix during compression,thereby enabling more uniform plastic deformation.These findings suggest that simple preloading treatments may offer a viable approach to regulating the microstructure of as-cast metallic glass composites and optimizing their mechanical properties.展开更多
基金supported by the Higher Education Commission (HEC) of Pakistan (Grant No. +923445490402)
文摘In the present work, three-dimensional molecular dynamics simulation is carried out to elucidate the nanoinden- tation behaviors of CuZr Bulk metallic glasses (BMGs). The substrate indenter system is modeled using hybrid interatomic potentials including both many-body Finnis Sinclair (FS) and two-body Morse potentials. A spherical rigid indenter (diameter= 60 A(1 A = 10 ^-10 m)) is employed to simulate the indentation process. Three samples of BMGs including Cu25Zr75, CusoZr50, and Cu75Zr25 are designed and the metallic glasses are formed by rapid cooling from the melt state at about 2000 K. The radial distribution functions are analyzed to reveal the dynamical evolution of the structure of the atoms with different compositions and different cooling rates. The mechanical behavior can be well understood in terms of load-depth curves and Hardness-depth curves during the nanoindentation process. Our results indicate a positive linear relationship between the hardness and the Cu concentration of the BMG sample. To reveal the importance of cooling rate provided during the processing of BMGs, we investigate the indentation behaviors of CusoZr50 at three different quenching rates. Nanoindentation results and radial distribution function (RDF) curves at room temperature indicate that a sample can be made harder and more stable by slowing down the quenching rate.
文摘索尼美高梅音乐娱乐公司(Sony BMG Music Entertainment)新推出的在音乐CD上的数字版权保护技术(DRM),会自动安装在用户的电脑上,并被病毒利用,引起了广大用户的强烈不满,对索尼BMG的诉讼也随之而起。美国、意大利以及更多的集体诉讼正在起诉索尼BMG销售的CD带有反盗版程序,侵犯了消费者的知情权以及违反了间谍软件法等。
基金financially supported by the National Key Research and Development Plan(No.2021YFA1600600)the National Natural Science Foundation of China(Nos.52271093 and 52074257)+3 种基金the Rare Earth Advanced Materials Technology Innovation Center(No.CXZX-B-2023110011)the Space Application System of China Manned Space Program(No.YYMT1201-EXP08)the special fund for Science and Technology Innovation Teams of Shanxi Province(No.202304051001036)the Fundamental Research Funds for the Central Universities(No.N2325008)
文摘Metallic glass composites hold significant potential as structural materials.However,few methods are available to enhance their mechanical properties postcasting.In this study,simple pre-tensile training was applied to a TRIP-reinforced metallic glass composite,resulting in a more than one-third increase in plasticity,while the reliability of plasticity was also enhanced.The deformation mechanism was further elucidated,revealing that pre-tension induced the formation of multilayered nanostructures at the dendrite-glass interface.This microstructural evolution facilitates the formation of finer martensite laths within the dendrites and multiple shear bands in the glass matrix during compression,thereby enabling more uniform plastic deformation.These findings suggest that simple preloading treatments may offer a viable approach to regulating the microstructure of as-cast metallic glass composites and optimizing their mechanical properties.