This study presents a wireless photovoltaic fault monitoring system integrating an STM32 microcontroller with an Improved Horned Lizard Optimization Algorithm(IHLOA)and a Multi-Layer Perceptron(MLP)neural network.The ...This study presents a wireless photovoltaic fault monitoring system integrating an STM32 microcontroller with an Improved Horned Lizard Optimization Algorithm(IHLOA)and a Multi-Layer Perceptron(MLP)neural network.The IHLOA algorithm introduces three key innovations:(1)chaotic initialization to enhance population diversity and global search capability,(2)adaptive random walk strategies to escape local optima,and(3)a cross-strategy mechanism to accelerate convergence and enhance fault detection accuracy and robustness.The system comprises both hardware and software components.The hardware includes sensors such as the BH1750 light intensity sensor,DS18B20 temperature sensor,and INA226 current and voltage sensor,all interfaced with the STM32F103C8T6 microcontroller and the ESP8266 module for wireless data transmission.The software,developed using QT Creator,incorporates an IHLOA-MLP model for fault diagnosis.The user-friendly interface facilitates intuitive monitoring and scalability for multiple systems.Experimental validation on a PV array demonstrates that the IHLOA-MLP model achieves a fault detection accuracy of 94.55%,which is 2.4%higher than the standard MLP,while reducing variance by 63.64%compared to the standard MLP.This highlights its accuracy and robustness.When compared to other optimization algorithms such as BKA-MLP(94.10%accuracy)and HLOA-MLP(94.00%accuracy),the IHLOA-MLP further reduces variance to 0.08,showcasing its superior performance.The system selects voltage as a feature vector to maintain circuit stability,avoiding efficiency impacts from series current sensors.This combined hardware and software approach further reduces false alarms to 0.1%through a consecutive-judgment mechanism,significantly enhancing practical reliability.This work provides a cost-effective and scalable solution for improving the stability and safety of PV systems in real-world applications.展开更多
Antiviral software systems (AVSs) have problems in identifying polymorphic variants of viruses without explicit signatures for such variants. Alignment-based techniques from bioinformatics may provide a novel way to g...Antiviral software systems (AVSs) have problems in identifying polymorphic variants of viruses without explicit signatures for such variants. Alignment-based techniques from bioinformatics may provide a novel way to generate signatures from consensuses found in polymorphic variant code. We demonstrate how multiple sequence alignment supplemented with gap penalties leads to viral code signatures that generalize successfully to previously known polymorphic variants of JS. Cassandra virus and previously unknown polymorphic variants of W32.CTX/W32.Cholera and W32.Kitti viruses. The implications are that future smart AVSs may be able to generate effective signatures automatically from actual viral code by varying gap penalties to cover for both known and unknown polymorphic variants.展开更多
Visual information acquisition is an important component of the AGV robot. The system adopts STM32F4 embedded application of the ARM Cortex-M4 kernel as the main control module,using shift algorithm to finish on a spe...Visual information acquisition is an important component of the AGV robot. The system adopts STM32F4 embedded application of the ARM Cortex-M4 kernel as the main control module,using shift algorithm to finish on a specific color piece of target tracking. For multi-sensor fusion of three methods,quaternion method is used to correct the attitude,the stability of AGV robot visual information acquisition and image clarity are improved.展开更多
The Internet of Things (IoT) and Cloud computing are gaining popularity due to their numerous advantages, including the efficient utilization of internetand computing resources. In recent years, many more IoT applicat...The Internet of Things (IoT) and Cloud computing are gaining popularity due to their numerous advantages, including the efficient utilization of internetand computing resources. In recent years, many more IoT applications have beenextensively used. For instance, Healthcare applications execute computations utilizing the user’s private data stored on cloud servers. However, the main obstaclesfaced by the extensive acceptance and usage of these emerging technologies aresecurity and privacy. Moreover, many healthcare data management system applications have emerged, offering solutions for distinct circumstances. But still, theexisting system has issues with specific security issues, privacy-preserving rate,information loss, etc. Hence, the overall system performance is reduced significantly. A unique blockchain-based technique is proposed to improve anonymityin terms of data access and data privacy to overcome the above-mentioned issues.Initially, the registration phase is done for the device and the user. After that, theGeo-Location and IP Address values collected during registration are convertedinto Hash values using Adler 32 hashing algorithm, and the private and publickeys are generated using the key generation centre. Then the authentication is performed through login. The user then submits a request to the blockchain server,which redirects the request to the associated IoT device in order to obtain thesensed IoT data. The detected data is anonymized in the device and stored inthe cloud server using the Linear Scaling based Rider Optimization algorithmwith integrated KL Anonymity (LSR-KLA) approach. After that, the Time-stamp-based Public and Private Key Schnorr Signature (TSPP-SS) mechanismis used to permit the authorized user to access the data, and the blockchain servertracks the entire transaction. The experimental findings showed that the proposedLSR-KLA and TSPP-SS technique provides better performance in terms of higherprivacy-preserving rate, lower information loss, execution time, and Central Processing Unit (CPU) usage than the existing techniques. Thus, the proposed method allows for better data privacy in the smart healthcare network.展开更多
The concept of computability is defined more exactly and illustrated as an example of Boolean functions and cryptanalysis. To define a Boolean function is not necessary to record its formula. To do that the reduced (c...The concept of computability is defined more exactly and illustrated as an example of Boolean functions and cryptanalysis. To define a Boolean function is not necessary to record its formula. To do that the reduced (compact) description of values is determined in the truth table or in the statement of the problem. We obtain estimates of computation time, the volume of a compact descriptions and the range of variables under which it takes the value 0 or 1, depending polynomially on the number of arguments.展开更多
基金supported by the National Natural Science Foundation of China(12064027,12464010)2022 Jiangxi Province High-level and Highskilled Leading Talent Training Project Selected(No.63)+1 种基金Jiujiang"Xuncheng Talents"(No.JJXC2023032)Jiujiang Natural Science Foundation Project(Key Technologies Research on Autonomous Cruise Solar-Powered UAV-2025-1).
文摘This study presents a wireless photovoltaic fault monitoring system integrating an STM32 microcontroller with an Improved Horned Lizard Optimization Algorithm(IHLOA)and a Multi-Layer Perceptron(MLP)neural network.The IHLOA algorithm introduces three key innovations:(1)chaotic initialization to enhance population diversity and global search capability,(2)adaptive random walk strategies to escape local optima,and(3)a cross-strategy mechanism to accelerate convergence and enhance fault detection accuracy and robustness.The system comprises both hardware and software components.The hardware includes sensors such as the BH1750 light intensity sensor,DS18B20 temperature sensor,and INA226 current and voltage sensor,all interfaced with the STM32F103C8T6 microcontroller and the ESP8266 module for wireless data transmission.The software,developed using QT Creator,incorporates an IHLOA-MLP model for fault diagnosis.The user-friendly interface facilitates intuitive monitoring and scalability for multiple systems.Experimental validation on a PV array demonstrates that the IHLOA-MLP model achieves a fault detection accuracy of 94.55%,which is 2.4%higher than the standard MLP,while reducing variance by 63.64%compared to the standard MLP.This highlights its accuracy and robustness.When compared to other optimization algorithms such as BKA-MLP(94.10%accuracy)and HLOA-MLP(94.00%accuracy),the IHLOA-MLP further reduces variance to 0.08,showcasing its superior performance.The system selects voltage as a feature vector to maintain circuit stability,avoiding efficiency impacts from series current sensors.This combined hardware and software approach further reduces false alarms to 0.1%through a consecutive-judgment mechanism,significantly enhancing practical reliability.This work provides a cost-effective and scalable solution for improving the stability and safety of PV systems in real-world applications.
文摘Antiviral software systems (AVSs) have problems in identifying polymorphic variants of viruses without explicit signatures for such variants. Alignment-based techniques from bioinformatics may provide a novel way to generate signatures from consensuses found in polymorphic variant code. We demonstrate how multiple sequence alignment supplemented with gap penalties leads to viral code signatures that generalize successfully to previously known polymorphic variants of JS. Cassandra virus and previously unknown polymorphic variants of W32.CTX/W32.Cholera and W32.Kitti viruses. The implications are that future smart AVSs may be able to generate effective signatures automatically from actual viral code by varying gap penalties to cover for both known and unknown polymorphic variants.
基金supported by the National Key Technology R&D Program(2015BAK06B04)the key technology R&D Program of Tianjin(14ZCZDSF00022,15ZXZNGX00260)
文摘Visual information acquisition is an important component of the AGV robot. The system adopts STM32F4 embedded application of the ARM Cortex-M4 kernel as the main control module,using shift algorithm to finish on a specific color piece of target tracking. For multi-sensor fusion of three methods,quaternion method is used to correct the attitude,the stability of AGV robot visual information acquisition and image clarity are improved.
文摘The Internet of Things (IoT) and Cloud computing are gaining popularity due to their numerous advantages, including the efficient utilization of internetand computing resources. In recent years, many more IoT applications have beenextensively used. For instance, Healthcare applications execute computations utilizing the user’s private data stored on cloud servers. However, the main obstaclesfaced by the extensive acceptance and usage of these emerging technologies aresecurity and privacy. Moreover, many healthcare data management system applications have emerged, offering solutions for distinct circumstances. But still, theexisting system has issues with specific security issues, privacy-preserving rate,information loss, etc. Hence, the overall system performance is reduced significantly. A unique blockchain-based technique is proposed to improve anonymityin terms of data access and data privacy to overcome the above-mentioned issues.Initially, the registration phase is done for the device and the user. After that, theGeo-Location and IP Address values collected during registration are convertedinto Hash values using Adler 32 hashing algorithm, and the private and publickeys are generated using the key generation centre. Then the authentication is performed through login. The user then submits a request to the blockchain server,which redirects the request to the associated IoT device in order to obtain thesensed IoT data. The detected data is anonymized in the device and stored inthe cloud server using the Linear Scaling based Rider Optimization algorithmwith integrated KL Anonymity (LSR-KLA) approach. After that, the Time-stamp-based Public and Private Key Schnorr Signature (TSPP-SS) mechanismis used to permit the authorized user to access the data, and the blockchain servertracks the entire transaction. The experimental findings showed that the proposedLSR-KLA and TSPP-SS technique provides better performance in terms of higherprivacy-preserving rate, lower information loss, execution time, and Central Processing Unit (CPU) usage than the existing techniques. Thus, the proposed method allows for better data privacy in the smart healthcare network.
文摘The concept of computability is defined more exactly and illustrated as an example of Boolean functions and cryptanalysis. To define a Boolean function is not necessary to record its formula. To do that the reduced (compact) description of values is determined in the truth table or in the statement of the problem. We obtain estimates of computation time, the volume of a compact descriptions and the range of variables under which it takes the value 0 or 1, depending polynomially on the number of arguments.