期刊文献+
共找到1,243篇文章
< 1 2 63 >
每页显示 20 50 100
Reliable Space Pursuing for Reliability-based Design Optimization with Black-box Performance Functions 被引量:2
1
作者 SHAN Songqing WANG G Gary 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第1期27-35,共9页
Reliability-based design optimization (RBDO) is intrinsically a double-loop procedure since it involves an overall optimization and an iterative reliability assessment at each search point. Due to the double-loop pr... Reliability-based design optimization (RBDO) is intrinsically a double-loop procedure since it involves an overall optimization and an iterative reliability assessment at each search point. Due to the double-loop procedure, the computational expense of RBDO is normally very high. Current RBDO research focuses on problems with explicitly expressed performance functions and readily available gradients. This paper addresses a more challenging type of RBDO problem in which the performance functions are computation intensive. These computation intensive functions are often considered as a "black-box" and their gradients are not available or not reliable. On the basis of the reliable design space (RDS) concept proposed earlier by the authors, this paper proposes a Reliable Space Pursuing (RSP) approach, in which RDS is first identified and then gradually refined while optimization is performed. It fundamentally avoids the nested optimization and probabilistic assessment loop. Three well known RBDO problems from the literature are used for testing and demonstrating the effectiveness of the proposed RSP method. 展开更多
关键词 Reliability based design optimization black-box function reliable design space
在线阅读 下载PDF
AN ALGORITHM FOR AUTOMATICALLY GENERATING BLACK-BOX TEST CASES 被引量:3
2
作者 Xu Baowen Nie Changhai +1 位作者 Shi Qunfeng Lu Hong 《Journal of Electronics(China)》 2003年第1期74-77,共4页
Selection of test cases plays a key role in improving testing efficiency.Black-box testing is an important way of testing,and its validity lies on the selection of test cases in some sense.A reasonable and effective m... Selection of test cases plays a key role in improving testing efficiency.Black-box testing is an important way of testing,and its validity lies on the selection of test cases in some sense.A reasonable and effective method about the selection and generation of test cases is urgently needed.This letter first introduces some usualmethods on black-box test case generation,then proposes a new algorithm based on interface parameters and discusses its properties,finally shows the effectiveness of the algorithm. 展开更多
关键词 Software testing black-box testing Test case Interface parameters Combination coverage
在线阅读 下载PDF
A Fast Two-Stage Black-Box Deep Learning Network Attacking Method Based on Cross-Correlation 被引量:1
3
作者 Deyin Li Mingzhi Cheng +2 位作者 Yu Yang Min Lei Linfeng Shen 《Computers, Materials & Continua》 SCIE EI 2020年第7期623-635,共13页
Deep learning networks are widely used in various systems that require classification.However,deep learning networks are vulnerable to adversarial attacks.The study on adversarial attacks plays an important role in de... Deep learning networks are widely used in various systems that require classification.However,deep learning networks are vulnerable to adversarial attacks.The study on adversarial attacks plays an important role in defense.Black-box attacks require less knowledge about target models than white-box attacks do,which means black-box attacks are easier to launch and more valuable.However,the state-of-arts black-box attacks still suffer in low success rates and large visual distances between generative adversarial images and original images.This paper proposes a kind of fast black-box attack based on the cross-correlation(FBACC)method.The attack is carried out in two stages.In the first stage,an adversarial image,which would be missclassified as the target label,is generated by using gradient descending learning.By far the image may look a lot different than the original one.Then,in the second stage,visual quality keeps getting improved on the condition that the label keeps being missclassified.By using the cross-correlation method,the error of the smooth region is ignored,and the number of iterations is reduced.Compared with the proposed black-box adversarial attack methods,FBACC achieves a better fooling rate and fewer iterations.When attacking LeNet5 and AlexNet respectively,the fooling rates are 100%and 89.56%.When attacking them at the same time,the fooling rate is 69.78%.FBACC method also provides a new adversarial attack method for the study of defense against adversarial attacks. 展开更多
关键词 black-box adversarial attack CROSS-CORRELATION two-module
在线阅读 下载PDF
<i>PP</i>and <i>P<span style='text-decoration:overline;'>P</span></i>Multi-Particles Production Investigation Based on CCNN Black-Box Approach
4
作者 El-Sayed A. El-Dahshan 《Journal of Applied Mathematics and Physics》 2017年第6期1398-1409,共12页
The multiplicity distribution (P(nch)) of charged particles produced in a high energy collision is a key quantity to understand the mechanism of multiparticle production. This paper describes the novel application of ... The multiplicity distribution (P(nch)) of charged particles produced in a high energy collision is a key quantity to understand the mechanism of multiparticle production. This paper describes the novel application of an artificial neural network (ANN) black-box modeling approach based on the cascade correlation (CC) algorithm formulated to calculate and predict multiplicity distribution of proton-proton (antiproton) (PP and PP ) inelastic interactions full phase space at a wide range of center-mass of energy . In addition, the formulated cascade correlation neural network (CCNN) model is used to empirically calculate the average multiplicity distribution nch> as a function of . The CCNN model was designed based on available experimental data for = 30.4 GeV, 44.5 GeV, 52.6 GeV, 62.2 GeV, 200 GeV, 300 GeV, 540 GeV, 900 GeV, 1000 GeV, 1800 GeV, and 7 TeV. Our obtained empirical results for P(nch), as well as nch> for (PP and PP) collisions are compared with the corresponding theoretical ones which obtained from other models. This comparison shows a good agreement with the available experimental data (up to 7 TeV) and other theoretical ones. At full large hadron collider (LHC) energy ( = 14 TeV) we have predicted P(nch) and nch> which also, show a good agreement with different theoretical models. 展开更多
关键词 Proton-Proton and Proton-Antiproton Collisions Multiparticle PRODUCTION Multiplicity Distributions Intelligent Computational Techniques CCNN-Neural Networks black-box Modeling Approach
在线阅读 下载PDF
Investigating Black-Box Model for Wind Power Forecasting Using Local Interpretable Model-Agnostic Explanations Algorithm 被引量:1
5
作者 Mao Yang Chuanyu Xu +2 位作者 Yuying Bai Miaomiao Ma Xin Su 《CSEE Journal of Power and Energy Systems》 2025年第1期227-242,共16页
Wind power forecasting(WPF)is important for safe,stable,and reliable integration of new energy technologies into power systems.Machine learning(ML)algorithms have recently attracted increasing attention in the field o... Wind power forecasting(WPF)is important for safe,stable,and reliable integration of new energy technologies into power systems.Machine learning(ML)algorithms have recently attracted increasing attention in the field of WPF.However,opaque decisions and lack of trustworthiness of black-box models for WPF could cause scheduling risks.This study develops a method for identifying risky models in practical applications and avoiding the risks.First,a local interpretable model-agnostic explanations algorithm is introduced and improved for WPF model analysis.On that basis,a novel index is presented to quantify the level at which neural networks or other black-box models can trust features involved in training.Then,by revealing the operational mechanism for local samples,human interpretability of the black-box model is examined under different accuracies,time horizons,and seasons.This interpretability provides a basis for several technical routes for WPF from the viewpoint of the forecasting model.Moreover,further improvements in accuracy of WPF are explored by evaluating possibilities of using interpretable ML models that use multi-horizons global trust modeling and multi-seasons interpretable feature selection methods.Experimental results from a wind farm in China show that error can be robustly reduced. 展开更多
关键词 black-box model correlation analysis feature trust index local interpretability local interpretable modelagnostic explanations(LIME) wind power forecasting
原文传递
Black-Box Rare-Event Simulation for Safety Testing of AI Agents:An Overview
6
作者 Yuan-Lu Bai Zhi-Yuan Huang +1 位作者 Henry Lam Ding Zhao 《Journal of the Operations Research Society of China》 2025年第3期750-774,共25页
This paper provides an overview of black-box rare-event simulation methods applicable to the safety testing of artificial intelligence agents.We explore the challenges and efficiency criteria in black-box simulation,e... This paper provides an overview of black-box rare-event simulation methods applicable to the safety testing of artificial intelligence agents.We explore the challenges and efficiency criteria in black-box simulation,especially emphasizing the subtle occurrence and control of underestimation errors.The paper reviews various adaptive methods,such as the cross-entropy method and adaptive multilevel splitting,highlighting both their empirical effectiveness and theoretical limitations.Additionally,it offers a comparative analysis of different confidence interval constructions for crude Monte Carlo methods,aiming to mitigate underestimation errors through effective uncertainty quantification.The paper concludes with a certifiable deep importance sampling approach,using deep neural networks to develop conservative estimators that address underestimation issues. 展开更多
关键词 Rare-event simulation black-box systems AI system safety UNDERESTIMATION
原文传递
基于遥感图像场景分类的频域量化对抗攻击
7
作者 王熠 李智 +3 位作者 张丽 石雪丽 刘登波 卢妤 《计算机工程》 北大核心 2026年第1期266-281,共16页
深度神经网络在遥感图像的场景分类任务中取得巨大成功。然而,由于对抗样本具有较强的可迁移性,基于遥感图像的场景分类网络的脆弱性不容忽视。为了增强遥感图像场景分类网络的鲁棒性,确保其在各种环境和条件下的可靠性和安全性,有效提... 深度神经网络在遥感图像的场景分类任务中取得巨大成功。然而,由于对抗样本具有较强的可迁移性,基于遥感图像的场景分类网络的脆弱性不容忽视。为了增强遥感图像场景分类网络的鲁棒性,确保其在各种环境和条件下的可靠性和安全性,有效提高其实际应用价值,提出一种频域的量化对抗攻击(FDQ)方法。首先,将输入图像进行离散余弦变换(DCT),在频域中利用量化筛选器有效捕捉使图像正确分类的关键特征在频域中的突出区域;然后,提出一个基于类的注意力损失,使得量化筛选器逐渐丢失这些使图像正确分类的关键特征,模型的注意力逐渐偏离与原始类别毫不相干的特征和区域。所提方法利用模型的注意力分布实现特征层级的黑盒攻击,通过找到不同网络中的共同防御漏洞,实现针对遥感图像生成且具有通用性的对抗样本。实验结果表明,FDQ方法可在遥感图像场景分类任务中成功攻击大多数最先进的深度神经网络,与目前最先进的基于遥感图像场景分类任务的攻击方法相比,FDQ在基准数据集UCM和AID上基于RegNetX-400MF架构的攻击成功率分别提高了35.43%和23.63%。实验表明FDQ具有良好的攻击性和可迁移性,很难被防御系统抵御。 展开更多
关键词 对抗攻击 对抗样本 深度神经网络 遥感图像 场景分类 黑盒攻击
在线阅读 下载PDF
基于双重引导的目标对抗攻击方法
8
作者 孙月 张兴兰 《浙江大学学报(工学版)》 北大核心 2026年第1期81-89,共9页
为了提升目标对抗样本的迁移性能,提出基于目标类别印象和正则化对抗样本双重引导的生成式对抗攻击方法.利用UNet模型的跳跃连接机制生成浅层特征的对抗扰动,增强对抗样本的攻击性.将目标类别的类印象图和标签作为输入,引导生成器生成... 为了提升目标对抗样本的迁移性能,提出基于目标类别印象和正则化对抗样本双重引导的生成式对抗攻击方法.利用UNet模型的跳跃连接机制生成浅层特征的对抗扰动,增强对抗样本的攻击性.将目标类别的类印象图和标签作为输入,引导生成器生成含有目标类别特征的对抗扰动,提高目标攻击成功率.在训练阶段对生成的对抗扰动使用Dropout技术,降低生成器对替代模型的依赖,以提升对抗样本的泛化性能.实验结果表明,在MNIST、CIFAR10以及SVHN数据集上,所提方法生成的对抗样本在ResNet18、DenseNet等分类模型上均有较好的目标迁移攻击效果,平均黑盒目标攻击成功率比基准攻击方法 MIM提高了1.6%以上,说明所提方法生成的对抗样本可以更有效地评估深度模型的鲁棒性. 展开更多
关键词 深度学习 对抗攻击 对抗样本 黑盒攻击 目标攻击
在线阅读 下载PDF
Inferring the dynamics of “black-box” systems using a learning machine 被引量:1
9
作者 Hong Zhao 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2021年第7期72-81,共10页
Given a segment of a time series of a system at a particular set of parameter values, is it possible to infer the dynamic behavior of the system in its parameter space? Here, we show that this goal can be achieved to ... Given a segment of a time series of a system at a particular set of parameter values, is it possible to infer the dynamic behavior of the system in its parameter space? Here, we show that this goal can be achieved to a certain extent using a self-evolution learning machine. It is found that following an appropriate training strategy that monotonously decreases the cost function, the learning machine in different training stages is just like the system at different parameter sets. Consequently, the dynamic properties of the system are, in turn, usually revealed in the simple-to-complex order. The underlying mechanism can be attributed to the training strategy, which results in the learning machine collapsing to a qualitatively equivalent system of the system behind the time series. Thus, the learning machine enables a novel way of probing the dynamic properties of a “black-box” system without artificially establishing the equations of motion. The given illustrative examples include a representative model of low-dimensional nonlinear dynamical systems and a spatiotemporal model of reaction-diffusion systems. 展开更多
关键词 PREDICTION learning machine inverse problems black-box”system nonlinear dynamics
原文传递
Probabilistic movement primitive based motion learning for a lower limb exoskeleton with black-box optimization 被引量:1
10
作者 Jiaqi WANG Yongzhuo GAO +1 位作者 Dongmei WU Wei DONG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2023年第1期104-116,共13页
As a wearable robot,an exoskeleton provides a direct transfer of mechanical power to assist or augment the wearer’s movement with an anthropomorphic configuration.When an exoskeleton is used to facilitate the wearer... As a wearable robot,an exoskeleton provides a direct transfer of mechanical power to assist or augment the wearer’s movement with an anthropomorphic configuration.When an exoskeleton is used to facilitate the wearer’s movement,a motion generation process often plays an important role in high-level control.One of the main challenges in this area is to generate in real time a reference trajectory that is parallel with human intention and can adapt to different situations.In this paper,we first describe a novel motion modeling method based on probabilistic movement primitive(ProMP)for a lower limb exoskeleton,which is a new and powerful representative tool for generating motion trajectories.To adapt the trajectory to different situations when the exoskeleton is used by different wearers,we propose a novel motion learning scheme based on black-box optimization(BBO)PIBB combined with ProMP.The motion model is first learned by ProMP offline,which can generate reference trajectories for use by exoskeleton controllers online.PIBB is adopted to learn and update the model for online trajectory generation,which provides the capability of adaptation of the system and eliminates the effects of uncertainties.Simulations and experiments involving six subjects using the lower limb exoskeleton HEXO demonstrate the effectiveness of the proposed methods. 展开更多
关键词 Lower limb exoskeleton Human-robot interaction Motion learning Trajectory generation Movement primitive black-box optimization
原文传递
Optimization of operating conditions in the steam turbine blade cascade using the black-box method 被引量:1
11
作者 Vahid Sadrian Esmail Lakzian +3 位作者 Davood Hoseinzade Behrad Haghighi M.M.Rashidi Heuy Dong Kim 《Propulsion and Power Research》 SCIE 2023年第4期467-485,共19页
Water droplets cause corrosion and erosion,condensation loss,and thermal efficiency reduction in low-pressure steam turbines.In this study,multi-objective optimization was carried out using the black-box method throug... Water droplets cause corrosion and erosion,condensation loss,and thermal efficiency reduction in low-pressure steam turbines.In this study,multi-objective optimization was carried out using the black-box method through the automatic linking of a genetic algorithm(GA)and a computational fluid dynamics(CFD)code to find the optimal values of two design variables(inlet stagnation temperature and cascade pressure ratio)to reduce wetness in the last stages of turbines.The wet steam flow numerical model was used to calculate the optimization parameters,including wetness fraction rate,mean droplet radius,erosion rate,condensation loss rate,kinetic energy rate,and mass flow rate.Examining the validation results showed a good agreement between the experimental data and the numerical outcomes.According to the optimization results,the inlet stagnation temperature and the cascade pressure ratio were proposed to be 388.67(K)and 0.55(-),respectively.In particular,the suggested optimaltemperature and pressure ratio improved the liquid mass fraction and mean droplet radius by about 32%and 29%,respectively.Also,in the identified optimal operating state,the ratios of erosion,condensation loss,and kinetic energy fell by 76%,32.7%,and 15.85%,respectively,while the mass flow rate ratio rose by 0.68%. 展开更多
关键词 black-box optimization Wet steam flow Steam turbine cascade Erosion rate Condensation loss
原文传递
Black-box membership inference attacks based on shadow model 被引量:1
12
作者 Han Zhen Zhou Wen'an +1 位作者 Han Xiaoxuan Wu Jie 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2024年第4期1-16,共16页
Membership inference attacks on machine learning models have drawn significant attention.While current research primarily utilizes shadow modeling techniques,which require knowledge of the target model and training da... Membership inference attacks on machine learning models have drawn significant attention.While current research primarily utilizes shadow modeling techniques,which require knowledge of the target model and training data,practical scenarios involve black-box access to the target model with no available information.Limited training data further complicate the implementation of these attacks.In this paper,we experimentally compare common data enhancement schemes and propose a data synthesis framework based on the variational autoencoder generative adversarial network(VAE-GAN)to extend the training data for shadow models.Meanwhile,this paper proposes a shadow model training algorithm based on adversarial training to improve the shadow model's ability to mimic the predicted behavior of the target model when the target model's information is unknown.By conducting attack experiments on different models under the black-box access setting,this paper verifies the effectiveness of the VAE-GAN-based data synthesis framework for improving the accuracy of membership inference attack.Furthermore,we verify that the shadow model,trained by using the adversarial training approach,effectively improves the degree of mimicking the predicted behavior of the target model.Compared with existing research methods,the method proposed in this paper achieves a 2%improvement in attack accuracy and delivers better attack performance. 展开更多
关键词 machine learning membership inference attack shadow model black-box model
原文传递
自适应约束上界的对抗攻击优化方法
13
作者 周强 李哲 +1 位作者 陶蔚 陶卿 《计算机科学》 北大核心 2026年第1期404-412,共9页
深度神经网络易受对抗样本攻击。现有迁移攻击优化方法普遍使用固定的约束上界表示不可察觉性强度,重点关注如何提升攻击成功率,忽略了样本间的敏感性差异,导致不可察觉性(FID)效果有待提高。受自适应梯度方法的启发,以提高不可察觉性... 深度神经网络易受对抗样本攻击。现有迁移攻击优化方法普遍使用固定的约束上界表示不可察觉性强度,重点关注如何提升攻击成功率,忽略了样本间的敏感性差异,导致不可察觉性(FID)效果有待提高。受自适应梯度方法的启发,以提高不可察觉性为主要目的,提出了一种自适应约束上界的对抗攻击优化方法。首先,通过梯度幅值建立敏感性指标,量化不同样本的敏感性差异程度;在此基础上,自适应确定对抗攻击优化方法的约束上界,实现敏感样本低强度、非敏感样本高强度对抗扰动的差异化处理;最后,通过替换投影算子和步长,将自适应约束机制无缝集成至现有攻击方法。ImageNet-Compatible数据集上的实验表明,所提方法在相同的黑盒攻击成功率下,FID较传统固定约束方法降低2.68%~3.49%;基于该方法的MI-LA对抗攻击算法较对抗攻击领域表现优异的5种攻击方法,FID降低6.32%~26.35%。 展开更多
关键词 对抗攻击 自适应 约束上界 样本敏感性 黑盒迁移性 不可察觉性
在线阅读 下载PDF
基于GAN和元学习的伪装流量生成模型
14
作者 邹元怀 张淑芬 +2 位作者 张祖篡 高瑞 马将 《郑州大学学报(理学版)》 北大核心 2026年第1期35-42,共8页
基于深度学习的恶意流量检测模型容易受到对抗攻击的影响,为了发掘此类模型的安全漏洞并找到提高其鲁棒性的方法,提出一种对抗样本生成模型ReN-GAN。该模型基于生成对抗网络原理,能够根据流量特征自动生成相应伪装流量并利用对抗样本可... 基于深度学习的恶意流量检测模型容易受到对抗攻击的影响,为了发掘此类模型的安全漏洞并找到提高其鲁棒性的方法,提出一种对抗样本生成模型ReN-GAN。该模型基于生成对抗网络原理,能够根据流量特征自动生成相应伪装流量并利用对抗样本可迁移性实现黑盒攻击。通过引入动量迭代方法和添加扰动的约束机制,在保证原始流量功能性的同时提高了伪装流量对抗样本的泛化能力。在训练过程中结合元学习理论进行优化,使得目标集成模型能够更有效地捕捉各模型的共同决策边界,提高了生成对抗样本的可迁移性。实验结果表明,ReN-GAN模型在保持原始流量特性的前提下,生成的对抗样本在黑盒检测模型上的平均逃逸率达到了54.1%,且比其他方法显著缩短了生成时间。此外,在以基于DNN的分类器为攻击目标进行训练时,ReN-GAN模型仅需5次迭代即可生成逃逸率为62%的伪装流量,大幅减少了交互次数。 展开更多
关键词 生成对抗网络 恶意流量 对抗样本 元学习 黑盒攻击
在线阅读 下载PDF
A Stochastic Adaptive Radial Basis Function Algorithm for Costly Black-Box Optimization
15
作者 Zhe Zhou Fu-Sheng Bai 《Journal of the Operations Research Society of China》 EI CSCD 2018年第4期587-609,共23页
In this paper,we present a stochastic adaptive algorithm using radial basis function models for global optimization of costly black-box functions.The exploration radii in local searches are generated adaptively.Each i... In this paper,we present a stochastic adaptive algorithm using radial basis function models for global optimization of costly black-box functions.The exploration radii in local searches are generated adaptively.Each iteration point is selected from some randomly generated trial points according to certain criteria.A restarting strategy is adopted to build the restarting version of the algorithm.The performance of the presented algorithm and its restarting version are tested on 13 standard numerical examples.The numerical results suggest that the algorithm and its restarting version are very effective. 展开更多
关键词 Global optimization Costly black-box optimization Radial basis function Stochastic algorithm
原文传递
MSLFuzzer:black-box fuzzing of SOHO router devices via message segment list inference
16
作者 Yixuan Cheng Wenqing Fan +3 位作者 Wei Huang Jingyu Yang Gaoqing Yu Wen Liu 《Cybersecurity》 EI CSCD 2024年第4期89-109,共21页
The popularity of small office and home office routers has brought convenience,but it also caused many security issues due to vulnerabilities.Black-box fuzzing through network protocols to discover vulnerabilities bec... The popularity of small office and home office routers has brought convenience,but it also caused many security issues due to vulnerabilities.Black-box fuzzing through network protocols to discover vulnerabilities becomes a viable option.The main drawbacks of state-of-the-art black-box fuzzers can be summarized as follows.First,the feedback process neglects to discover the mising felds in the raw message.Secondly,the guidance of the raw message content in the mutation process is aimless.Finally,the randomized validity of the test case structure can cause most fuzzing tests to end up with an invalid response of the tested device.To address these challenges,we propose a novel black-box fuzzing framework called MSL Fuzzer.MSL Fuzzer infers the raw message structure according to the response from a tested device and generates a message segment list.Furthermore,MSL Fuzzer performs semantic,sequence,and stability analyses on each message segment to enhance the complementation of missing fields in the raw message and guide the mutation process.We construct a dataset of 35 real-world vulnerabilities and evaluate MSL Fuzzer.The evaluation results show that MSL Fuzzer can find more vulnerabilities and elicit more types of responses from fuzzing targets.Additionally,MSL Fuzzer successfully discovered 10 previously unknown vulnerabilities. 展开更多
关键词 Vulnerability discovery black-box fuzzing SOHO routers Feedback mechanism
原文传递
Black-box Modeling of Converters in Renewable Energy Systems for EMC Assessment:Overview and Discussion of Available Models
17
作者 Lu Wan Abduselam H.Beshir +4 位作者 Xinglong Wu Xiaokang Liu Flavia Grassi Giordano Spadacini Sergio A.Pignari 《Chinese Journal of Electrical Engineering》 CSCD 2022年第2期13-28,共16页
The development of renewable energy systems interfaced with the grid by power electronic converters leads to increasing issues of electromagnetic coexistence between power and communication lines,as well as severe pow... The development of renewable energy systems interfaced with the grid by power electronic converters leads to increasing issues of electromagnetic coexistence between power and communication lines,as well as severe power quality issues,such as total harmonic distortion at the consumer side.Therefore,high-frequency modeling of renewable energy systems is of great importance to guide the design and development of distribution networks involving renewable sources.Owing to system complexity,black-box modeling approaches offer more advantages than traditional circuit modeling,as far as electromagnetic compatibility(EMC)analysis and filter design are the targets.In this study,different black-box modeling techniques for power converters are introduced and systematically analyzed.First,the general theory of black-box modeling is explained.Subsequently,three different modeling approaches are compared in terms of accuracy and the required experimental setup.Finally,the possible limitations of black-box modeling of power converters are investigated and discussed. 展开更多
关键词 Renewable energy system black-box modeling electromagnetic compatibility(EMC) conducted emission(CE)
原文传递
独立供电系统传导干扰黑箱建模方法 被引量:1
18
作者 王浩宇 孙红鹏 +3 位作者 张涛 张刚 白焱 段建东 《中国电机工程学报》 北大核心 2025年第6期2347-2357,I0026,共12页
飞机和船舶中的独立供电系统具有多等级电网混合交联、多元电气设备动态加载的特点,由此造成其传导干扰多源、多径传输,传导干扰分析和抑制面临极大困难。该文提出采用黑箱建模方法,仅基于设备端口特性参数的测量,通过戴维南等效建立传... 飞机和船舶中的独立供电系统具有多等级电网混合交联、多元电气设备动态加载的特点,由此造成其传导干扰多源、多径传输,传导干扰分析和抑制面临极大困难。该文提出采用黑箱建模方法,仅基于设备端口特性参数的测量,通过戴维南等效建立传导干扰的多端口网络模型,进而可通过模型的级联构建系统级传导干扰分析模型。该方法无需设备内部电路参数和配置信息,模型通用性强。通过24 V直流供电系统验证,实验结果表明,随着系统用电设备数量和种类的增加,该方法仍能准确预测系统的传导发射情况,证明了该方法是系统级传导干扰分析的有效手段。 展开更多
关键词 传导电磁干扰 黑箱模型 戴维南等效 独立供电系统 电磁兼容
原文传递
算法的“武器化”:计算政治时代被嵌入的安全风险 被引量:10
19
作者 董青岭 关意为 《东北亚论坛》 北大核心 2025年第1期44-64,127,128,共23页
当前,由于算法技术的进步,人类社会正在迎来全面智能化转型。作为数智社会运行的底层逻辑,算法重构了权力的物质基础,形成了规定权力运行的权力,创造了新的权力主体,引发了权力结构的动态调整,因而成为了一种“元权力”。在此情形下,作... 当前,由于算法技术的进步,人类社会正在迎来全面智能化转型。作为数智社会运行的底层逻辑,算法重构了权力的物质基础,形成了规定权力运行的权力,创造了新的权力主体,引发了权力结构的动态调整,因而成为了一种“元权力”。在此情形下,作为更高级别的权力形式,算法日渐频繁地被大国用作权力竞争武器。简单来说,“算法武器化”指的是行为体有目的、有组织和有意识地运用算法获取权力,以此影响他者行为、打击竞争对手、获取利益或保障安全,最终实现政治目标。在伊朗“推特革命”和美国涉TikTok法案事例中,美国政府展现出将算法“武器化”运用的强烈意愿,试图以算法为抓手、以计算思维为指导遏制竞争对手,塑造霸权优势。在美国决策者看来,算法不仅具有操纵公众认知、干预政治进程和煽动军事对抗的强大功能,而且具有改变经济格局,塑造社会发展形态的巨大潜力。在此背景下,算法逐渐被用作综合国力竞争武器、社会规则竞争武器、前沿阵地争夺武器和权力博弈武器,催生出以算法全域渗透为特征的复杂安全风险。 展开更多
关键词 算法武器化 元权力 算法黑箱 算法规则 新质生产力
原文传递
基于多空间概率增强的图像对抗样本生成方法 被引量:1
20
作者 王华华 范子健 刘泽 《计算机应用》 北大核心 2025年第3期883-890,共8页
对抗样本能够有效评估深度神经网络的鲁棒性和安全性。针对黑盒场景下对抗攻击成功率低的问题,为提高对抗样本的可迁移性,提出一种基于多空间概率增强的对抗样本生成方法(MPEAM)。所提方法通过在对抗样本生成方法中引入2条随机数据增强... 对抗样本能够有效评估深度神经网络的鲁棒性和安全性。针对黑盒场景下对抗攻击成功率低的问题,为提高对抗样本的可迁移性,提出一种基于多空间概率增强的对抗样本生成方法(MPEAM)。所提方法通过在对抗样本生成方法中引入2条随机数据增强支路,而各支路分别基于像素空间和HSV颜色空间实现图像的随机裁剪填充(CP)和随机颜色变换(CC),并通过构建概率模型控制返回的图像样本,从而在增加原始样本多样性的同时降低对抗样本对原数据集的依赖,进而提高对抗样本的可迁移性。在此基础上,将所提方法引入集成模型中,以进一步提升黑盒场景下对抗样本攻击的成功率。在ImageNet数据集上的大量实验结果表明,相较于基准方法——迭代快速梯度符号方法(IFGSM)和动量迭代快速梯度符号方法(MIFGSM),所提方法的黑盒攻击成功率分别平均提升了28.72和8.44个百分点;相较于基于单空间概率增强的对抗攻击方法,所提方法的黑盒攻击成功率最高提升了6.81个百分点。以上验证了所提方法能够以较小的复杂度代价提高对抗样本的可迁移性,并实现黑盒场景下的有效攻击。 展开更多
关键词 对抗样本 深度神经网络 黑盒场景 可迁移性 多空间概率增强
在线阅读 下载PDF
上一页 1 2 63 下一页 到第
使用帮助 返回顶部