In recent years,chiral inorganic nanomaterials have become promising candidates for applications in sensing,catalysis,biomedicine,and photonics.Plasmonic nanomaterials with an intrinsic chiral structure exhibit intrig...In recent years,chiral inorganic nanomaterials have become promising candidates for applications in sensing,catalysis,biomedicine,and photonics.Plasmonic nanomaterials with an intrinsic chiral structure exhibit intriguing geometry‑dependent optical chirality,which benefits the combination of plasmonic characteristics with chirality.Recent advances in the biomolecule‑directed geometric control of intrinsically chiral plasmonic nanomaterials have further provided great opportunities for their widespread applications in many emerging technological areas.In this review,we present the recent progress in biosensing using chiral inorganic nanomaterials,with a particular focus on electrochemical and enzyme‑mimicking catalytic approaches.This paper commences with a review of the basic tenets underlying chiral nanocatalysts,incorporating the chiral ligand‑induced mechanism and the architectures of intrinsically chiral nanostructures.Additionally,it methodically expounds upon the applications of chiral nanocatalysts in the realms of electrochemical biosensing and enzyme‑mimicking catalytic biosensing respectively.Conclusively,it proffers a prospective view of the hurdles and prospects that accompany the deployment of chiral nanoprobes for nascent biosensing applications.By rational design of the chiral nanoprobes,it is envisioned that biosensing with increasing sensitivity and resolution toward the single‑molecule level can be achieved,which will substantially promote sensing applications in many emerging interdisciplinary areas.展开更多
Ultrasmall palladium nanoclusters have garnered significant attention due to their exceptional catalytic performance.However,their high surface energy always leads to aggregation,reducing the number of active sites an...Ultrasmall palladium nanoclusters have garnered significant attention due to their exceptional catalytic performance.However,their high surface energy always leads to aggregation,reducing the number of active sites and thereby decreasing catalytic efficiency.Herein,a molecular cage(RCC3)was utilized as a confined environment to stabilize ultrasmall PdNCs.The excellent solubility and open framework of cages not only enhance the solubility of palladium nanoclusters but also significantly improve their catalytic activity and stability.The prepared palladium nanoclusters were found to exhibit both peroxidase-like and oxidase-like activities.Under acidic conditions,the protonation of the molecular cage framework facilitates the assembly of ionic Pd nanoclusters with negatively charged enzymes through electrostatic interactions,forming a cascade system.The system is capable of detecting substrates,such as glucose and ascorbic acid,providing a highly catalytic platform for biosensing applications.展开更多
Realizing the point-of-care tumor markers biodetection with good convenience and high sensitivity possesses great significance for prompting cancer monitoring and screening in biomedical study field.Herein,the quantum...Realizing the point-of-care tumor markers biodetection with good convenience and high sensitivity possesses great significance for prompting cancer monitoring and screening in biomedical study field.Herein,the quantum dots luminescence and microfluidic biochip with machine vision algorithm-based intelligent biosensing platform have been designed and manufactured for point-of-care tumor markers diagnostics.The employed quantum dots with excellent photoluminescent performance are modified with specific antibody as the optical labeling agents for the designed sandwich structure immunoassay.The corresponding biosensing investigations of the designed biodetection platform illustrate several advantages involving high sensitivity(~0.021 ng mL^(−1)),outstanding accessibility,and great integrability.Moreover,related test results of human-sourced artificial saliva samples demonstrate better detection capabilities compared with commercially utilized rapid test strips.Combining these infusive abilities,our elaborate biosensing platform is expected to exhibit potential applications for the future point-of-care tumor markers diagnostic area.展开更多
Iron-porphyrin metal-organic frameworks(MOFs)have emerged as a remarkable class of semiconductors with adjustable photoelectrical properties and peroxidase-mimicking activities,yet their full potential remains largely...Iron-porphyrin metal-organic frameworks(MOFs)have emerged as a remarkable class of semiconductors with adjustable photoelectrical properties and peroxidase-mimicking activities,yet their full potential remains largely unexplored.The organic photoelectrochemical transistor(OPECT)has been proven to be a prominent platform for diverse applications.Herein,iron-porphyrin MOFs,as bifunctional photo-gating module and horseradish peroxidase-mimicking nanozyme,is explored for novel OPECT bioanalysis.Exemplified by alpha-fetoprotein(AFP)-dependent sandwich immunorecognition and therein glucose oxidase(GOx)-generated H_(2)O_(2)to etch CdS quantum dots on the surface of iron-porphyrin MOFs,this OPECT bioanalysis achieved high-performance AFP detection with a low detection limit of 24 fg/mL.This work featured a bifunctional iron-porphyrin MOFs gated OPECT,which is envisioned to inspire more interest in developing the diverse MOFs-nanozymes toward novel optoelectronics and beyond.展开更多
Fluorescent probes have revolutionized optical imaging and biosensing by enabling real-time visualization, quantification, and tracking of biological processes at molecular and cellular levels. These probes, ranging f...Fluorescent probes have revolutionized optical imaging and biosensing by enabling real-time visualization, quantification, and tracking of biological processes at molecular and cellular levels. These probes, ranging from organic dyes to genetically encoded proteins and nanomaterials, provide unparalleled specificity, sensitivity, and multiplexing capabilities. However, challenges such as brightness, photobleaching, biocompatibility, and emission range continue to drive innovation in probe design and application. This special issue, comprising four review papers and seven original research studies, highlights cutting-edge advancements in fluorescent probe technologies and their transformative roles in super-resolution imaging, in vivo diagnostics, and cancer therapeutics.展开更多
DNA nanomaterials hold great promise in biomedical fields due to its excellent sequence programmability,molecular recognition ability and biocompatibility.Hybridization chain reaction(HCR)is a simple and efficient iso...DNA nanomaterials hold great promise in biomedical fields due to its excellent sequence programmability,molecular recognition ability and biocompatibility.Hybridization chain reaction(HCR)is a simple and efficient isothermal enzyme-free amplification strategy of DNA,generating nicked double helices with repeated units.Through the design of HCR hairpins,multiple nanomaterials with desired functions are assembled by DNA,exhibiting great potential in biomedical applications.Herein,the recent progress of HCR-based DNA nanomaterials for biosensing,bioimaging and therapeutics are summarized.Representative works are exemplified to demonstrate how HCR-based DNA nanomaterials are designed and constructed.The challenges and prospects of the development of HCR-based DNA nanomaterials are discussed.We envision that rationally designing HCR-based DNA nanomaterials will facilitate the development of biomedical applications.展开更多
Harnessing the unique attributes of metal-based nanowires(MNWs),such as their adaptability,high aspect ratio and conductivity,this review elucidates their burgeoning role as a distinct class of nanomaterials poised to...Harnessing the unique attributes of metal-based nanowires(MNWs),such as their adaptability,high aspect ratio and conductivity,this review elucidates their burgeoning role as a distinct class of nanomaterials poised to revolutionize sensor technologies.We provide an in-depth examination of MNW assembly methods,highlighting procedural details,foundational principles and performance metrics.Manufacturing ele ctrochemical biosensors and field-effect transistor(FET)biosensors by MNWs offers advantages such as enhanced sensitivity,improved signal-to-noise ratios and increased surface area for efficient biomolecule immobilization.MNWs contribute to precise and reliable biosensing platforms,optimizing the performance of these devices for various applications,such as diagnostics and environmental monitoring.Electrochemical biosensors are noted for their speed,costeffectiveness,ease of use and compatibility with compact instrumentation,offering potential for precise biomarker quantification.Meanwhile,FET biosensors demonstrate the potential for early-stage biomarker identification and pharmaceutical applications with nanoscale materials like MNWs,thereby enhancing their detection capabilities.Additionally,we explore the prospects of integrating machine learning and digital health with MNWs in electrical biosensing,charting an innovative path for future advancements in this field.This advancement is facilitated by their electronic properties,compact design and compatibility with existing technologies.We expect this review to highlight future trends and challenges in the use of MNWs for biosensors.展开更多
The efficient immobilization of capture antibodies is crucial for timely pathogen detection during global pandemic outbreaks.Therefore,we proposed a silica-binding protein featuring core functional domains(cSP).It com...The efficient immobilization of capture antibodies is crucial for timely pathogen detection during global pandemic outbreaks.Therefore,we proposed a silica-binding protein featuring core functional domains(cSP).It comprises a peptide with a silica-binding tag designed to adhere to silica surfaces and tandem protein G fragments(2C2)for effective antibody capture.This innovation facilitates precise site-directed immobilization of antibodies onto silica surfaces.We applied cSP to silica-coated optical fibers,creating a fiber-optic biolayer interferometer(FO-BLI)biosensor capable of monitoring the monkeypox virus(MPXV)protein A29L in spiked clinical samples to rapidly detect the MPXV.The cSP-based FO-BLI biosensor for MPXV demonstrated a limit of detection(LOD)of 0.62 ng/mL in buffer,comparable to the 0.52 ng/mL LOD achieved using a conventional streptavidin(SA)-based FO-BLI biosensor.Furthermore,it achieved LODs of 0.77 ng/mL in spiked serum and 0.80 ng/mL in spiked saliva,exhibiting no cross-reactivity with other viral antigens.The MPXV detection process was completed within 14 min.We further proposed a cSP-based multi-virus biosensor strategy capable of detecting various pandemic strains,such as MPXV,the latest coronavirus disease(COVID)variants,and influenza A protein,to extend its versatility.The proposed cSP-modified FO-BLI biosensor has a high potential for rapidly and accurately detecting MPXV antigens,making valuable contributions to epidemiological studies.展开更多
Mercury(Hg^(2+))has been recognized as a global pollutant with a toxic,mobile,and persistent nature.It adversely affects the ecosystem and human health.Already developed biosensors for Hg^(2+)detection majorly suffer ...Mercury(Hg^(2+))has been recognized as a global pollutant with a toxic,mobile,and persistent nature.It adversely affects the ecosystem and human health.Already developed biosensors for Hg^(2+)detection majorly suffer from poor sensitivity and specificity.Herein,a colorimetric/fluorimetric dual-mode sensing approach is designed for the quantitative detection of Hg^(2+).This novel sensing approach utilizes nanofluorophores,i.e.,fluorescent copper nanoclusters-doped zirconia metal-organic framework(CuNCs@Zr-MOF)nanoconjugate(blue color)and N-methyl mesoporphyrin IX(NMM)(red color)in combination with peroxidase-mimicking G-quadruplex DNAzyme(PMDNAzyme).In the presence of Hg^(2+),dabcyl conjugated complementary DNA with T-T mismatches form the stable duplex with the CuNCs@Zr-MOF@G-quadruplex structure through T-Hg^(2+)-T base pairing.It causes the quenching of fluorescence of CuNCs@Zr-MOF(463 nm)due to the Förster resonance energy transfer(FRET)system.Moreover,the G-quadruplex(G4)structure of the aptamer enhances the fluorescence emission of NMM(610 nm).Besides this,the peroxidase-like activity of G4/hemin DNAzyme offers the colorimetric detection of Hg^(2+).The formation of duplex with PMDNAzyme increases the catalytic activity.This novel biosensing probe quantitatively detected Hg^(2+)using both fluorimetry and colorimetry approaches with a low detection limit of 0.59 and 36.3 nM,respectively.It was also observed that the presence of interfering metal ions in case of real aqueous samples does not affect the performance of this novel biosensing probe.These findings confirm the considerable potential of the proposed biosensing probe to screen the concentration of Hg^(2+)in aquatic products.展开更多
Objective:We conducted a comprehensive physicochemical analysis of one-dimensional ZnO nanowires(1DZnO),incorporating anti-CYFRA 21-1 immobilization to promote fast optical biomarker detection up to 10 ng ml−1.Impact ...Objective:We conducted a comprehensive physicochemical analysis of one-dimensional ZnO nanowires(1DZnO),incorporating anti-CYFRA 21-1 immobilization to promote fast optical biomarker detection up to 10 ng ml−1.Impact Statement:This study highlights the effectiveness of proof-of-concept 1DZnO nanoplatforms for rapid cancer biomarker detection by examining the nanoscale integration of 1DZnO with these bioreceptors to deliver reliable photoluminescent output signals.Introduction:The urgent need for swift and accurate prognoses in healthcare settings drives the rise of sensitive biosensing nanoplatforms for cancer detection,which has benefited from biomarker identification.CYFRA 21-1 is a reliable target for the early prediction of cancer formation that can be perceptible in blood,saliva,and serum.However,1DZnO nanostructures have been barely applied for CYFRA 21-1 detection.Methods:We assessed the nanoscale interaction between 1DZnO and anti-CYFRA 21-1 antibodies to develop rapid CYFRA 21-1 detection in two distinct matrices:PhosphateBuffered Saline(PBS)buffer and artificial saliva.The chemical modifications were tracked utilizing Fourier transform infrared spectroscopy,while transmission electron microscopy and energy dispersive spectroscopy confirmed antigen-antibody interplay over nanostructures.Results:Our results show high antibody immobilization efficiencies,affirming the effectiveness of 1DZnO nanoplatforms for rapid CYFRA 21-1 testing within a 5-min detection window in both PBS and artificial saliva.Photoluminescence measurements also revealed distinct optical responses across biomarker concentrations ranging from 10 to 1,000 ng ml^(−1).Conclusion:Discernible PL signal responses obtained after 5 min affirm the potential of 1DZnO nanoplatforms for further advancement in optical biomarker detection for application in early cancer prognosis.展开更多
Persistent luminescence nanoparticles (PLNPs) are a series of emerging luminescent nanomaterials which can emit persistently after ceasing the external excitation. Due to the long decay time of persistent luminescence...Persistent luminescence nanoparticles (PLNPs) are a series of emerging luminescent nanomaterials which can emit persistently after ceasing the external excitation. Due to the long decay time of persistent luminescence, the background autofluorescence in complex sample and tissues can be effectively eliminated, thus significantly improving the sensitivity of bioanalysis. Besides, such a long decay time of luminescence also makes PLNPs valuable for long-term bioimaging. Benefiting from these merits, PLNPs have been widely used for biomedical applications, especially biosensing and bioimaging. In this review,we conclude the progress in the application of PLNPs at biosensing and bioimaging in recent years, and also provide our understanding of the prospects.展开更多
RGD peptides has been used to detect cell surface integrin and direct clinical effective therapeutic drug selection. Herein we report that a quick one step detection of cell surface marker that was realized by a speci...RGD peptides has been used to detect cell surface integrin and direct clinical effective therapeutic drug selection. Herein we report that a quick one step detection of cell surface marker that was realized by a specially designed NiF e-based magnetic biosensing cell chip combined with functionalized magnetic nanoparticles. Magnetic nanoparticles with 20-30 nm in diameter were prepared by coprecipitation and modified with RGD-4C, and the resultant RGD-functionalized magnetic nanoparticles were used for targeting cancer cells cultured on the NiF e-based magnetic biosensing chip and distinguish the amount of cell surface receptor-integrin.Cell lines such as Calu3, Hela, A549, CaF br, HEK293 and HUVEC exhibiting different integrin expression were chosen as test samples. Calu3, Hela, HEK293 and HUVEC cells were successfully identified. This approach has advantages in the qualitative screening test. Compared with traditional method, it is fast, sensitive, low cost,easy-operative, and needs very little human intervention. The novel method has great potential in applications such as fast clinical cell surface marker detection, and diagnosis of early cancer, and can be easily extended to other biomedical applications based on molecular recognition.展开更多
Nanomaterial-based artificial enzymes(or nanozymes) have attracted great attention in the past few years owing to their capability not only to mimic functionality but also to overcome the inherent drawbacks of the nat...Nanomaterial-based artificial enzymes(or nanozymes) have attracted great attention in the past few years owing to their capability not only to mimic functionality but also to overcome the inherent drawbacks of the natural enzymes.Numerous advantages of nanozymes such as diverse enzyme-mimicking activities,low cost,high stability,robustness,unique surface chemistry,and ease of surface tunability and biocompatibility have allowed their integration in a wide range of biosensing applications. Several metal,metal oxide,metal–organic framework-based nanozymes have been exploited for the development of biosensing systems,which present the potential for point-of-care analysis. To highlight recent progress in the field,in this review,more than 260 research articles are discussed systematically with suitable recent examples,elucidating the role of nanozymes to reinforce,miniaturize,and improve the performance of point-of-care diagnostics addressing the ASSURED(a ordable,sensitive,specific,user-friendly,rapid and robust,equipment-free and deliverable to the end user) criteria formulated by World Health Organization. The review reveals that many biosensing strategies such as electrochemical,colorimetric,fluorescent,and immunological sensors required to achieve the ASSURED standards can be implemented by using enzyme-mimicking activities of nanomaterials as signal producing components. However,basic system functionality is still lacking. Since the enzyme-mimicking properties of the nanomaterials are dictated by their size,shape,composition,surface charge,surface chemistry as well as external parameters such as pH or temperature,these factors play a crucial role in the design and function of nanozyme-based point-of-care diagnostics. Therefore,it requires a deliberate exertion to integrate various parameters for truly ASSURED solutions to be realized. This review also discusses possible limitations and research gaps to provide readers a brief scenario of the emerging role of nanozymes in state-of-the-art POC diagnosis system development for futuristic biosensing applications.展开更多
Graphitic carbon nitride(g-C3 N4),as a visible-light-active organic semiconductor,has attracted growing attentions in photocatalysis and photoluminescence-based biosensing.Here,we demonstrated the intrinsic photooxida...Graphitic carbon nitride(g-C3 N4),as a visible-light-active organic semiconductor,has attracted growing attentions in photocatalysis and photoluminescence-based biosensing.Here,we demonstrated the intrinsic photooxidase activity of g-C3 N4 and then surface molecular imprinting on g-C3 N4 nanozymes was achieved for improved biosensing.Upon blue LED irradiation,the g-C3 N4 exhibited superior enzymatic activity for oxidation of chromogenic substrate like 3,3’,5,5’-tetramethylbenzidine(TMB)without destructive H2 O2.The oxidation was mainly ascribed to ·O2^-that was generated during light irradiation.The surface molecular imprinting on g-C3 N4 can lead to an over 1000-fold alleviation in matrix-interference from serum samples,4-fold improved enzymatic activity as well as enhanced substrate specificity comparing with bare g-C3 N4 during colorimetric sensing.Also,the MIP-g-C3 N4 possesses a high affinity to TMB with a Km value of only 22 μmol/L,much lower than other comment nanozymes like AuNPs,Fe3 O4 NPs,etc.It was successfully applied for detection of cysteine in serum sample with satisfactory recoveries.展开更多
Current cell-based biosensors have progressed substantially from mere alternatives to molecular bioreceptors into enabling tools for interfacing molecular machineries and gene circuits with microelectronics and for de...Current cell-based biosensors have progressed substantially from mere alternatives to molecular bioreceptors into enabling tools for interfacing molecular machineries and gene circuits with microelectronics and for developing groundbreaking sensing and theragnostic platforms.The recent literature concerning whole-cell biosensors is reviewed with an emphasis on mammalian cells,and the challenges and breakthroughs brought along in biomedical analyses through novel biosensing concepts and the synthetic biology toolbox.These recent innovations allow development of cell-based biosensing platforms having tailored performances and capable to reach the levels of sensitivity,dynamic range,and stability suitable for high analytic/medical relevance.They also pave the way for the construction of flexible biosensing platforms with utility across biological research and clinical applications.The work is intended to stimulate interest in generation of cell-based biosensors and improve their acceptance and exploitation.展开更多
A multifunctional nanocomposite of AgNPs@GQDs is prepared by synergistic in-situ growth of silver nanoparticles(AgNPs)on the complex of tannic acid(TA)and graphene quantum dots(GQDs)for the construction of dual-mode b...A multifunctional nanocomposite of AgNPs@GQDs is prepared by synergistic in-situ growth of silver nanoparticles(AgNPs)on the complex of tannic acid(TA)and graphene quantum dots(GQDs)for the construction of dual-mode biosensing platform and cancer theranostics.The nanocomposite exhibits a hydrogen peroxide(H_(2)O_(2))-responsive degradation,in which Ag^(0)is oxidized to Ag^(+)along with the release of oxidized TA and GQDs.The degradation induces the decreased absorbance and enhanced fluorescence(FL)intensity due to the suppression of Forster resonance ene rgy transfer(FRET)in AgNPs@GQDs,which is employed for colorimetric/fluorescence dual-mode sensing of H_(2)O_(2).The intrinsic peroxidase-like activity of GQDs nanozyme can effectively catalyze the oxidation reaction,enhancing the detection sensitivity significantly.Based on the generation of H_(2)O_(2)from the oxidation of glucose with the catalysis of glucose oxidase(GOx),this nanoprobe is versatilely used for the determination of glucose in human serum.Further,through combining the H_(2)O_(2)-responsive degradation of AgNPs@GQDs with high H_(2)O_(2)level in cancer cells,the nanocomposites exhibit good performance in cancer cell recognition and therapy,in which the synergistic anticancer effect of Ag^(+)and oxidized TA contribute to effective cell death,and the liberated GQDs are used to monitor the therapeutic effect by cell imaging.展开更多
Controlling the charge transfer and thus enhancing the excitons’lifetime are the key to the realization of efficient photoelectrochemical(PEC)devices.Moreover,fabrication of flexible and collapsible sensors can great...Controlling the charge transfer and thus enhancing the excitons’lifetime are the key to the realization of efficient photoelectrochemical(PEC)devices.Moreover,fabrication of flexible and collapsible sensors can greatly facilitate the implementation of smart PEC sensing devices into practical applications.Herein,we sagely designed and successfully fabricated three-dimensional flexible Au nanoparticles-decorated TiO_(2) nanotube arrays(Au@TiO2)for the efficient PEC biosensing of glucose.The Schottky barrier derived from the Au@TiO2 heterostructure efficiently separates the charge carriers at the junction interfaces,thus greatly increasing the concentration and lifetime of holes left in the valence band of TiO2.The separated holes further evidently generate the active hydroxyl radicals,which can specifically recognize and oxidize glucose.As a result,Au@TiO_(2) exhibits excellent photoelectric activity and selectivity,far superior to TiO_(2) without decorated Au nanoparticles.In addition,such asymmetric Au@TiO_(2) system has been proved to feature the intrinsic flexibility nature,since its PEC biosensing performance is almost unaffected under indirect light irradiation and serious tensile strain.展开更多
An organic-inorganic hybrid Fe^(Ⅲ)–Pr^(Ⅲ)-included 2-germano-20-tungstate[Pr(H_(2)O)_(8)]2 H_(2)[Fe_(4)(H_(2)O)_(4)(pca)_(4) Ge_(2)W_(20)O_(72)]•34H_(2)O(Hpca=2-pyridinecarboxylic acid)(1)was hydrothermally prepare...An organic-inorganic hybrid Fe^(Ⅲ)–Pr^(Ⅲ)-included 2-germano-20-tungstate[Pr(H_(2)O)_(8)]2 H_(2)[Fe_(4)(H_(2)O)_(4)(pca)_(4) Ge_(2)W_(20)O_(72)]•34H_(2)O(Hpca=2-pyridinecarboxylic acid)(1)was hydrothermally prepared.Its polyoxoanion comprises one tetra-Fe^(Ⅲ)incorporated[Fe_(4)(H_(2)O)_(4)(pca)_(4) Ge_(2)W_(20)O_(72)]^(8-)hybrid entity and two[Pr(H_(2)O)_(8)]^(3+)ornamental cations.The[Fe_(4)(H_(2)O)_(4)(pca)4 Ge_(2)W_(20)O_(72)]^(8-)2-germano-20-tungstate entity can be regarded as an infrequent S-type[Ge_(2)W_(20)O_(72)]^(16-)cluster pocketed by four[Fe(H_(2)O)(pca)]2+cations.The S-type[Ge_(2)W_(20)O_(72)]16-cluster could be imagined as condensation of two divacant Keggin[α-GeW _(10)O_(37)]^(10-)segments by sharing two atoms.It is of interest is that carboxyl O and pyridine N atoms on pca ligands concurrently bind with Fe ^(3+)cations in a five-membered heterocyclic fashion to increase the stability of the whole structure.Furthermore,the electrochemical biosensing properties of 1 as the modified electrode material have been investigated for detecting norepinephrine(NPP),showing a low detection limit of 3.25μmol/L.This work not only enriches structures of heterometallic german-otungstates(GTs),but also expands applications of polyoxometalates(POMs)in the electrochemical biosensing field.展开更多
The rational design of nanozymes with superior activities is essential for improving bioassay performances.Herein,nitrogen and boron co-doped graphene nanoribbons(NB-GNRs)are prepared by a hydrothermal method using ur...The rational design of nanozymes with superior activities is essential for improving bioassay performances.Herein,nitrogen and boron co-doped graphene nanoribbons(NB-GNRs)are prepared by a hydrothermal method using urea as the nitrogen source and boric acid as the boron source,respectively.The introduction of co-doped and edge structures provides high defects and active sites.The resultant NB-GNRs nanozymes show superior peroxidase-like activities to nitrogen-doped and boron-doped counterparts due to the synergistic effects.By taking advantage of their peroxidase-like activities,NB-GNRs are used for the first time to develop enzyme-linked immunosorbent assay for the detection of interleukin-6.The biosensors exhibit a high performance with a linear range from 0.001 ng/mL to 1000 ng/mL and a detection limit of 0.3 pg/mL.Due to their low cost and high stability,the proposed nanomaterials show great promise in biocatalysis,immunoassay development and environmental monitoring.展开更多
Integrating discrete plasmonic nanoparticles into assemblies can induce plasmonic coupling that produces collective plasmonic properties,which are not available for single nanoparticles.Theoretical analysis revealed t...Integrating discrete plasmonic nanoparticles into assemblies can induce plasmonic coupling that produces collective plasmonic properties,which are not available for single nanoparticles.Theoretical analysis revealed that plasmonic coupling derived from assemblies could produce stronger electromagnetic field enhancement effects.Thus,plasmonic assemblies enable better performance in plasmon-based applications,such as enhanced fluorescence and Raman effects.This makes them hold great potential for trace analyte detection and nanomedicine.Herein,we focus on the recent advances in various plasmonic nanoassembles such as dimers,tetramers,and core-satellite structures,and discuss their applications in biosensing and cell imaging.The fabrication strategies for self-assembled plasmonic nanostructures are described,including top-down strategies,self-assembly methods linked by DNA,ligand,polymer,amino acid,or proteins,and chemical overgrowth methods.Thereafter,their applications in biosensor and cell imaging based on dark-field imaging,surface-enhanced Raman scattering,plasmonic circular dichroism,and fluorescence imaging are discussed.Finally,the remaining challenges and prospects are elucidated.展开更多
文摘In recent years,chiral inorganic nanomaterials have become promising candidates for applications in sensing,catalysis,biomedicine,and photonics.Plasmonic nanomaterials with an intrinsic chiral structure exhibit intriguing geometry‑dependent optical chirality,which benefits the combination of plasmonic characteristics with chirality.Recent advances in the biomolecule‑directed geometric control of intrinsically chiral plasmonic nanomaterials have further provided great opportunities for their widespread applications in many emerging technological areas.In this review,we present the recent progress in biosensing using chiral inorganic nanomaterials,with a particular focus on electrochemical and enzyme‑mimicking catalytic approaches.This paper commences with a review of the basic tenets underlying chiral nanocatalysts,incorporating the chiral ligand‑induced mechanism and the architectures of intrinsically chiral nanostructures.Additionally,it methodically expounds upon the applications of chiral nanocatalysts in the realms of electrochemical biosensing and enzyme‑mimicking catalytic biosensing respectively.Conclusively,it proffers a prospective view of the hurdles and prospects that accompany the deployment of chiral nanoprobes for nascent biosensing applications.By rational design of the chiral nanoprobes,it is envisioned that biosensing with increasing sensitivity and resolution toward the single‑molecule level can be achieved,which will substantially promote sensing applications in many emerging interdisciplinary areas.
基金supported by the Ministry of Science and Technology of China(2022YFA1505900 and 2024YFB3814900)NSFC(22202073)Natural Science Foundation of Chongqing(CSTB2023NSCQ-MSXO159).
文摘Ultrasmall palladium nanoclusters have garnered significant attention due to their exceptional catalytic performance.However,their high surface energy always leads to aggregation,reducing the number of active sites and thereby decreasing catalytic efficiency.Herein,a molecular cage(RCC3)was utilized as a confined environment to stabilize ultrasmall PdNCs.The excellent solubility and open framework of cages not only enhance the solubility of palladium nanoclusters but also significantly improve their catalytic activity and stability.The prepared palladium nanoclusters were found to exhibit both peroxidase-like and oxidase-like activities.Under acidic conditions,the protonation of the molecular cage framework facilitates the assembly of ionic Pd nanoclusters with negatively charged enzymes through electrostatic interactions,forming a cascade system.The system is capable of detecting substrates,such as glucose and ascorbic acid,providing a highly catalytic platform for biosensing applications.
基金supported by grants from the Research Grants Council of the Hong Kong Special Administrative Region,China(Project No.CRF No.PolyU C5110-20G)PolyU Grants(1-CE0H,1-W30M,1-CD4S).
文摘Realizing the point-of-care tumor markers biodetection with good convenience and high sensitivity possesses great significance for prompting cancer monitoring and screening in biomedical study field.Herein,the quantum dots luminescence and microfluidic biochip with machine vision algorithm-based intelligent biosensing platform have been designed and manufactured for point-of-care tumor markers diagnostics.The employed quantum dots with excellent photoluminescent performance are modified with specific antibody as the optical labeling agents for the designed sandwich structure immunoassay.The corresponding biosensing investigations of the designed biodetection platform illustrate several advantages involving high sensitivity(~0.021 ng mL^(−1)),outstanding accessibility,and great integrability.Moreover,related test results of human-sourced artificial saliva samples demonstrate better detection capabilities compared with commercially utilized rapid test strips.Combining these infusive abilities,our elaborate biosensing platform is expected to exhibit potential applications for the future point-of-care tumor markers diagnostic area.
基金financially supported by the National Natural Science Foundation of China(Nos.22034003,22374066)the Fundamental Research Funds for the Central Universities(No.2022300285)+1 种基金the Excellent Research Program of Nanjing University(No.ZYJH004)State Key Laboratory of Analytical Chemistry for Life Science(No.5431ZZXM2203).
文摘Iron-porphyrin metal-organic frameworks(MOFs)have emerged as a remarkable class of semiconductors with adjustable photoelectrical properties and peroxidase-mimicking activities,yet their full potential remains largely unexplored.The organic photoelectrochemical transistor(OPECT)has been proven to be a prominent platform for diverse applications.Herein,iron-porphyrin MOFs,as bifunctional photo-gating module and horseradish peroxidase-mimicking nanozyme,is explored for novel OPECT bioanalysis.Exemplified by alpha-fetoprotein(AFP)-dependent sandwich immunorecognition and therein glucose oxidase(GOx)-generated H_(2)O_(2)to etch CdS quantum dots on the surface of iron-porphyrin MOFs,this OPECT bioanalysis achieved high-performance AFP detection with a low detection limit of 24 fg/mL.This work featured a bifunctional iron-porphyrin MOFs gated OPECT,which is envisioned to inspire more interest in developing the diverse MOFs-nanozymes toward novel optoelectronics and beyond.
文摘Fluorescent probes have revolutionized optical imaging and biosensing by enabling real-time visualization, quantification, and tracking of biological processes at molecular and cellular levels. These probes, ranging from organic dyes to genetically encoded proteins and nanomaterials, provide unparalleled specificity, sensitivity, and multiplexing capabilities. However, challenges such as brightness, photobleaching, biocompatibility, and emission range continue to drive innovation in probe design and application. This special issue, comprising four review papers and seven original research studies, highlights cutting-edge advancements in fluorescent probe technologies and their transformative roles in super-resolution imaging, in vivo diagnostics, and cancer therapeutics.
基金supported in part by National Natural Science Foundation of China(Nos.22225505,22174097).
文摘DNA nanomaterials hold great promise in biomedical fields due to its excellent sequence programmability,molecular recognition ability and biocompatibility.Hybridization chain reaction(HCR)is a simple and efficient isothermal enzyme-free amplification strategy of DNA,generating nicked double helices with repeated units.Through the design of HCR hairpins,multiple nanomaterials with desired functions are assembled by DNA,exhibiting great potential in biomedical applications.Herein,the recent progress of HCR-based DNA nanomaterials for biosensing,bioimaging and therapeutics are summarized.Representative works are exemplified to demonstrate how HCR-based DNA nanomaterials are designed and constructed.The challenges and prospects of the development of HCR-based DNA nanomaterials are discussed.We envision that rationally designing HCR-based DNA nanomaterials will facilitate the development of biomedical applications.
基金financially supported by the China Postdoctoral Science Foundation(No.2023M742736)。
文摘Harnessing the unique attributes of metal-based nanowires(MNWs),such as their adaptability,high aspect ratio and conductivity,this review elucidates their burgeoning role as a distinct class of nanomaterials poised to revolutionize sensor technologies.We provide an in-depth examination of MNW assembly methods,highlighting procedural details,foundational principles and performance metrics.Manufacturing ele ctrochemical biosensors and field-effect transistor(FET)biosensors by MNWs offers advantages such as enhanced sensitivity,improved signal-to-noise ratios and increased surface area for efficient biomolecule immobilization.MNWs contribute to precise and reliable biosensing platforms,optimizing the performance of these devices for various applications,such as diagnostics and environmental monitoring.Electrochemical biosensors are noted for their speed,costeffectiveness,ease of use and compatibility with compact instrumentation,offering potential for precise biomarker quantification.Meanwhile,FET biosensors demonstrate the potential for early-stage biomarker identification and pharmaceutical applications with nanoscale materials like MNWs,thereby enhancing their detection capabilities.Additionally,we explore the prospects of integrating machine learning and digital health with MNWs in electrical biosensing,charting an innovative path for future advancements in this field.This advancement is facilitated by their electronic properties,compact design and compatibility with existing technologies.We expect this review to highlight future trends and challenges in the use of MNWs for biosensors.
基金This research was supported by Westlake University,China(Startup funds)the Research Center for Industries of the Future of Westlake University,China(Grant No.:WU2022C040)the National Natural Science Foundation of China(Grant No.:82104122).
文摘The efficient immobilization of capture antibodies is crucial for timely pathogen detection during global pandemic outbreaks.Therefore,we proposed a silica-binding protein featuring core functional domains(cSP).It comprises a peptide with a silica-binding tag designed to adhere to silica surfaces and tandem protein G fragments(2C2)for effective antibody capture.This innovation facilitates precise site-directed immobilization of antibodies onto silica surfaces.We applied cSP to silica-coated optical fibers,creating a fiber-optic biolayer interferometer(FO-BLI)biosensor capable of monitoring the monkeypox virus(MPXV)protein A29L in spiked clinical samples to rapidly detect the MPXV.The cSP-based FO-BLI biosensor for MPXV demonstrated a limit of detection(LOD)of 0.62 ng/mL in buffer,comparable to the 0.52 ng/mL LOD achieved using a conventional streptavidin(SA)-based FO-BLI biosensor.Furthermore,it achieved LODs of 0.77 ng/mL in spiked serum and 0.80 ng/mL in spiked saliva,exhibiting no cross-reactivity with other viral antigens.The MPXV detection process was completed within 14 min.We further proposed a cSP-based multi-virus biosensor strategy capable of detecting various pandemic strains,such as MPXV,the latest coronavirus disease(COVID)variants,and influenza A protein,to extend its versatility.The proposed cSP-modified FO-BLI biosensor has a high potential for rapidly and accurately detecting MPXV antigens,making valuable contributions to epidemiological studies.
基金Funding:S.K.thanks the Department of Biotechnology(DBT),Government of India,for research grant(award BT/PR18868/BCE/8/1370/2016 dated 2018 January 31)M.N.is grateful to CSIR for the SRA fellowship(no.B-12857,dated 2021 October 21).
文摘Mercury(Hg^(2+))has been recognized as a global pollutant with a toxic,mobile,and persistent nature.It adversely affects the ecosystem and human health.Already developed biosensors for Hg^(2+)detection majorly suffer from poor sensitivity and specificity.Herein,a colorimetric/fluorimetric dual-mode sensing approach is designed for the quantitative detection of Hg^(2+).This novel sensing approach utilizes nanofluorophores,i.e.,fluorescent copper nanoclusters-doped zirconia metal-organic framework(CuNCs@Zr-MOF)nanoconjugate(blue color)and N-methyl mesoporphyrin IX(NMM)(red color)in combination with peroxidase-mimicking G-quadruplex DNAzyme(PMDNAzyme).In the presence of Hg^(2+),dabcyl conjugated complementary DNA with T-T mismatches form the stable duplex with the CuNCs@Zr-MOF@G-quadruplex structure through T-Hg^(2+)-T base pairing.It causes the quenching of fluorescence of CuNCs@Zr-MOF(463 nm)due to the Förster resonance energy transfer(FRET)system.Moreover,the G-quadruplex(G4)structure of the aptamer enhances the fluorescence emission of NMM(610 nm).Besides this,the peroxidase-like activity of G4/hemin DNAzyme offers the colorimetric detection of Hg^(2+).The formation of duplex with PMDNAzyme increases the catalytic activity.This novel biosensing probe quantitatively detected Hg^(2+)using both fluorimetry and colorimetry approaches with a low detection limit of 0.59 and 36.3 nM,respectively.It was also observed that the presence of interfering metal ions in case of real aqueous samples does not affect the performance of this novel biosensing probe.These findings confirm the considerable potential of the proposed biosensing probe to screen the concentration of Hg^(2+)in aquatic products.
基金R.A.S.(CVU 703153)acknowledges the DGAPA-UNAM postdoctoral grant.S.E.M.T.(CVU 703157)acknowledges the DGAPA-UNAM postdoctoral grantP.G.Z.-B.(CVU 787342)acknowledges the CONAHCyT postdoctoral grant received.A.D.+2 种基金G.S.thank the projects PAPIIT-DGAPA-UNAM IA100123 and IG100123The authors also acknowledge the UIC-UNAM joint collaborative project for the supportThis work was supported by DGAPA PAPIIT funding IA100123.
文摘Objective:We conducted a comprehensive physicochemical analysis of one-dimensional ZnO nanowires(1DZnO),incorporating anti-CYFRA 21-1 immobilization to promote fast optical biomarker detection up to 10 ng ml−1.Impact Statement:This study highlights the effectiveness of proof-of-concept 1DZnO nanoplatforms for rapid cancer biomarker detection by examining the nanoscale integration of 1DZnO with these bioreceptors to deliver reliable photoluminescent output signals.Introduction:The urgent need for swift and accurate prognoses in healthcare settings drives the rise of sensitive biosensing nanoplatforms for cancer detection,which has benefited from biomarker identification.CYFRA 21-1 is a reliable target for the early prediction of cancer formation that can be perceptible in blood,saliva,and serum.However,1DZnO nanostructures have been barely applied for CYFRA 21-1 detection.Methods:We assessed the nanoscale interaction between 1DZnO and anti-CYFRA 21-1 antibodies to develop rapid CYFRA 21-1 detection in two distinct matrices:PhosphateBuffered Saline(PBS)buffer and artificial saliva.The chemical modifications were tracked utilizing Fourier transform infrared spectroscopy,while transmission electron microscopy and energy dispersive spectroscopy confirmed antigen-antibody interplay over nanostructures.Results:Our results show high antibody immobilization efficiencies,affirming the effectiveness of 1DZnO nanoplatforms for rapid CYFRA 21-1 testing within a 5-min detection window in both PBS and artificial saliva.Photoluminescence measurements also revealed distinct optical responses across biomarker concentrations ranging from 10 to 1,000 ng ml^(−1).Conclusion:Discernible PL signal responses obtained after 5 min affirm the potential of 1DZnO nanoplatforms for further advancement in optical biomarker detection for application in early cancer prognosis.
基金supported by the National Natural Science Foundation of China (No. 21675120)the National Key R&D Program of China (Nos. 2017YFA0208000, 2016YFF0100800)+2 种基金the National Postdoctoral Program for Innovative Talents (No. BX20180223)the National Basic Research Program of China (973 Program, No. 2015CB932600)the Ten Thousand Talents Program for Young Talents
文摘Persistent luminescence nanoparticles (PLNPs) are a series of emerging luminescent nanomaterials which can emit persistently after ceasing the external excitation. Due to the long decay time of persistent luminescence, the background autofluorescence in complex sample and tissues can be effectively eliminated, thus significantly improving the sensitivity of bioanalysis. Besides, such a long decay time of luminescence also makes PLNPs valuable for long-term bioimaging. Benefiting from these merits, PLNPs have been widely used for biomedical applications, especially biosensing and bioimaging. In this review,we conclude the progress in the application of PLNPs at biosensing and bioimaging in recent years, and also provide our understanding of the prospects.
基金supported by National Key Basic Research Program (973 Project) (No. 2010CB933901 and 2011CB933100)National 863 Hi-tech Project of China (No. 2012AA022703), National Natural Scientific Fund (No. 81225010, 81101169 and 31100717)Shanghai Nano project (13NM1401500), Specialized Research Fund for the Doctoral Program of Higher Education (No. 20110073120072)
文摘RGD peptides has been used to detect cell surface integrin and direct clinical effective therapeutic drug selection. Herein we report that a quick one step detection of cell surface marker that was realized by a specially designed NiF e-based magnetic biosensing cell chip combined with functionalized magnetic nanoparticles. Magnetic nanoparticles with 20-30 nm in diameter were prepared by coprecipitation and modified with RGD-4C, and the resultant RGD-functionalized magnetic nanoparticles were used for targeting cancer cells cultured on the NiF e-based magnetic biosensing chip and distinguish the amount of cell surface receptor-integrin.Cell lines such as Calu3, Hela, A549, CaF br, HEK293 and HUVEC exhibiting different integrin expression were chosen as test samples. Calu3, Hela, HEK293 and HUVEC cells were successfully identified. This approach has advantages in the qualitative screening test. Compared with traditional method, it is fast, sensitive, low cost,easy-operative, and needs very little human intervention. The novel method has great potential in applications such as fast clinical cell surface marker detection, and diagnosis of early cancer, and can be easily extended to other biomedical applications based on molecular recognition.
基金funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant Agreement No. 720325the support from the Commonwealth Split-site Scholarship (2018-2019)。
文摘Nanomaterial-based artificial enzymes(or nanozymes) have attracted great attention in the past few years owing to their capability not only to mimic functionality but also to overcome the inherent drawbacks of the natural enzymes.Numerous advantages of nanozymes such as diverse enzyme-mimicking activities,low cost,high stability,robustness,unique surface chemistry,and ease of surface tunability and biocompatibility have allowed their integration in a wide range of biosensing applications. Several metal,metal oxide,metal–organic framework-based nanozymes have been exploited for the development of biosensing systems,which present the potential for point-of-care analysis. To highlight recent progress in the field,in this review,more than 260 research articles are discussed systematically with suitable recent examples,elucidating the role of nanozymes to reinforce,miniaturize,and improve the performance of point-of-care diagnostics addressing the ASSURED(a ordable,sensitive,specific,user-friendly,rapid and robust,equipment-free and deliverable to the end user) criteria formulated by World Health Organization. The review reveals that many biosensing strategies such as electrochemical,colorimetric,fluorescent,and immunological sensors required to achieve the ASSURED standards can be implemented by using enzyme-mimicking activities of nanomaterials as signal producing components. However,basic system functionality is still lacking. Since the enzyme-mimicking properties of the nanomaterials are dictated by their size,shape,composition,surface charge,surface chemistry as well as external parameters such as pH or temperature,these factors play a crucial role in the design and function of nanozyme-based point-of-care diagnostics. Therefore,it requires a deliberate exertion to integrate various parameters for truly ASSURED solutions to be realized. This review also discusses possible limitations and research gaps to provide readers a brief scenario of the emerging role of nanozymes in state-of-the-art POC diagnosis system development for futuristic biosensing applications.
基金the financial support from the National Natural Science Foundation of China(No.21475013)the Sichuan Science and Technology Project(No.2018JY0466)
文摘Graphitic carbon nitride(g-C3 N4),as a visible-light-active organic semiconductor,has attracted growing attentions in photocatalysis and photoluminescence-based biosensing.Here,we demonstrated the intrinsic photooxidase activity of g-C3 N4 and then surface molecular imprinting on g-C3 N4 nanozymes was achieved for improved biosensing.Upon blue LED irradiation,the g-C3 N4 exhibited superior enzymatic activity for oxidation of chromogenic substrate like 3,3’,5,5’-tetramethylbenzidine(TMB)without destructive H2 O2.The oxidation was mainly ascribed to ·O2^-that was generated during light irradiation.The surface molecular imprinting on g-C3 N4 can lead to an over 1000-fold alleviation in matrix-interference from serum samples,4-fold improved enzymatic activity as well as enhanced substrate specificity comparing with bare g-C3 N4 during colorimetric sensing.Also,the MIP-g-C3 N4 possesses a high affinity to TMB with a Km value of only 22 μmol/L,much lower than other comment nanozymes like AuNPs,Fe3 O4 NPs,etc.It was successfully applied for detection of cysteine in serum sample with satisfactory recoveries.
文摘Current cell-based biosensors have progressed substantially from mere alternatives to molecular bioreceptors into enabling tools for interfacing molecular machineries and gene circuits with microelectronics and for developing groundbreaking sensing and theragnostic platforms.The recent literature concerning whole-cell biosensors is reviewed with an emphasis on mammalian cells,and the challenges and breakthroughs brought along in biomedical analyses through novel biosensing concepts and the synthetic biology toolbox.These recent innovations allow development of cell-based biosensing platforms having tailored performances and capable to reach the levels of sensitivity,dynamic range,and stability suitable for high analytic/medical relevance.They also pave the way for the construction of flexible biosensing platforms with utility across biological research and clinical applications.The work is intended to stimulate interest in generation of cell-based biosensors and improve their acceptance and exploitation.
基金supported by the National Natural Science Foundation of China(Nos.21722505 and 21705086)the Special Funds of the Taishan Scholar Program of Shandong Province(No.tsqn20161028)+4 种基金the Youth Innovation Technology Program of Shandong Province(No.2019KJC029)the Natural Science Foundation of Shandong Province(No.ZR2017JL009)the Collaborative Innovation Program of Jinan(No.2018GXRC033)the Open Project of Shandong Key Laboratory of Tumor Marker Detection Technology(Nos.KLDTTM2019-4,KLDTTM2019-5)the Open Project of Chemistry Department of Qingdao University of Science and Technology(No.QUSTHX201928)。
文摘A multifunctional nanocomposite of AgNPs@GQDs is prepared by synergistic in-situ growth of silver nanoparticles(AgNPs)on the complex of tannic acid(TA)and graphene quantum dots(GQDs)for the construction of dual-mode biosensing platform and cancer theranostics.The nanocomposite exhibits a hydrogen peroxide(H_(2)O_(2))-responsive degradation,in which Ag^(0)is oxidized to Ag^(+)along with the release of oxidized TA and GQDs.The degradation induces the decreased absorbance and enhanced fluorescence(FL)intensity due to the suppression of Forster resonance ene rgy transfer(FRET)in AgNPs@GQDs,which is employed for colorimetric/fluorescence dual-mode sensing of H_(2)O_(2).The intrinsic peroxidase-like activity of GQDs nanozyme can effectively catalyze the oxidation reaction,enhancing the detection sensitivity significantly.Based on the generation of H_(2)O_(2)from the oxidation of glucose with the catalysis of glucose oxidase(GOx),this nanoprobe is versatilely used for the determination of glucose in human serum.Further,through combining the H_(2)O_(2)-responsive degradation of AgNPs@GQDs with high H_(2)O_(2)level in cancer cells,the nanocomposites exhibit good performance in cancer cell recognition and therapy,in which the synergistic anticancer effect of Ag^(+)and oxidized TA contribute to effective cell death,and the liberated GQDs are used to monitor the therapeutic effect by cell imaging.
基金financially supported by the National Natural Science Foundation of China(Nos.61764003 and 51462008)the Major Science and Technology Planning Project of Hainan Province(No.ZDKJ201810)。
文摘Controlling the charge transfer and thus enhancing the excitons’lifetime are the key to the realization of efficient photoelectrochemical(PEC)devices.Moreover,fabrication of flexible and collapsible sensors can greatly facilitate the implementation of smart PEC sensing devices into practical applications.Herein,we sagely designed and successfully fabricated three-dimensional flexible Au nanoparticles-decorated TiO_(2) nanotube arrays(Au@TiO2)for the efficient PEC biosensing of glucose.The Schottky barrier derived from the Au@TiO2 heterostructure efficiently separates the charge carriers at the junction interfaces,thus greatly increasing the concentration and lifetime of holes left in the valence band of TiO2.The separated holes further evidently generate the active hydroxyl radicals,which can specifically recognize and oxidize glucose.As a result,Au@TiO_(2) exhibits excellent photoelectric activity and selectivity,far superior to TiO_(2) without decorated Au nanoparticles.In addition,such asymmetric Au@TiO_(2) system has been proved to feature the intrinsic flexibility nature,since its PEC biosensing performance is almost unaffected under indirect light irradiation and serious tensile strain.
基金supported by the National Natural Science Foun-dation of China(Nos.21871077,21671054,21771052,22071042)the Program for Innovation Teams in Science and Technology in Universities of Henan Province(No.20IRTSTHN004).
文摘An organic-inorganic hybrid Fe^(Ⅲ)–Pr^(Ⅲ)-included 2-germano-20-tungstate[Pr(H_(2)O)_(8)]2 H_(2)[Fe_(4)(H_(2)O)_(4)(pca)_(4) Ge_(2)W_(20)O_(72)]•34H_(2)O(Hpca=2-pyridinecarboxylic acid)(1)was hydrothermally prepared.Its polyoxoanion comprises one tetra-Fe^(Ⅲ)incorporated[Fe_(4)(H_(2)O)_(4)(pca)_(4) Ge_(2)W_(20)O_(72)]^(8-)hybrid entity and two[Pr(H_(2)O)_(8)]^(3+)ornamental cations.The[Fe_(4)(H_(2)O)_(4)(pca)4 Ge_(2)W_(20)O_(72)]^(8-)2-germano-20-tungstate entity can be regarded as an infrequent S-type[Ge_(2)W_(20)O_(72)]^(16-)cluster pocketed by four[Fe(H_(2)O)(pca)]2+cations.The S-type[Ge_(2)W_(20)O_(72)]16-cluster could be imagined as condensation of two divacant Keggin[α-GeW _(10)O_(37)]^(10-)segments by sharing two atoms.It is of interest is that carboxyl O and pyridine N atoms on pca ligands concurrently bind with Fe ^(3+)cations in a five-membered heterocyclic fashion to increase the stability of the whole structure.Furthermore,the electrochemical biosensing properties of 1 as the modified electrode material have been investigated for detecting norepinephrine(NPP),showing a low detection limit of 3.25μmol/L.This work not only enriches structures of heterometallic german-otungstates(GTs),but also expands applications of polyoxometalates(POMs)in the electrochemical biosensing field.
基金supported by the National Natural Science Foundations of China(Nos.21605062,21974055)the Top-notch Academic Programs Project of Jiangsu Higher Education Institution(TAPP)。
文摘The rational design of nanozymes with superior activities is essential for improving bioassay performances.Herein,nitrogen and boron co-doped graphene nanoribbons(NB-GNRs)are prepared by a hydrothermal method using urea as the nitrogen source and boric acid as the boron source,respectively.The introduction of co-doped and edge structures provides high defects and active sites.The resultant NB-GNRs nanozymes show superior peroxidase-like activities to nitrogen-doped and boron-doped counterparts due to the synergistic effects.By taking advantage of their peroxidase-like activities,NB-GNRs are used for the first time to develop enzyme-linked immunosorbent assay for the detection of interleukin-6.The biosensors exhibit a high performance with a linear range from 0.001 ng/mL to 1000 ng/mL and a detection limit of 0.3 pg/mL.Due to their low cost and high stability,the proposed nanomaterials show great promise in biocatalysis,immunoassay development and environmental monitoring.
基金supported by grants from the National Natural Science Foundation of China(Nos.22022412,22274076,21874155)the Primary Research&Development Plan of Jiangsu Province(No.BE2022793)。
文摘Integrating discrete plasmonic nanoparticles into assemblies can induce plasmonic coupling that produces collective plasmonic properties,which are not available for single nanoparticles.Theoretical analysis revealed that plasmonic coupling derived from assemblies could produce stronger electromagnetic field enhancement effects.Thus,plasmonic assemblies enable better performance in plasmon-based applications,such as enhanced fluorescence and Raman effects.This makes them hold great potential for trace analyte detection and nanomedicine.Herein,we focus on the recent advances in various plasmonic nanoassembles such as dimers,tetramers,and core-satellite structures,and discuss their applications in biosensing and cell imaging.The fabrication strategies for self-assembled plasmonic nanostructures are described,including top-down strategies,self-assembly methods linked by DNA,ligand,polymer,amino acid,or proteins,and chemical overgrowth methods.Thereafter,their applications in biosensor and cell imaging based on dark-field imaging,surface-enhanced Raman scattering,plasmonic circular dichroism,and fluorescence imaging are discussed.Finally,the remaining challenges and prospects are elucidated.