Chemoselective amine bioco njugation has long been a challenge for native protein modification.Inspired by Thiele’s seminal discovery,Li and co-workers recently developed an orto-phthalaldehyde(OPA)based reagent for ...Chemoselective amine bioco njugation has long been a challenge for native protein modification.Inspired by Thiele’s seminal discovery,Li and co-workers recently developed an orto-phthalaldehyde(OPA)based reagent for labeling the amino group of a protein.Here we report an expeditious and scalable synthesis of a Li-Thiele reagent featuring an arene construction strategy.The reagent contains an alkyne side chain as a handle for secondary modification.展开更多
Amino acid bioconjugation technology has emerged as a pivotal tool for linking small-molecule fragments with proteins,antibodies,and even cells.The study in Nature by Chang and Toste introduces a redox-based strategy ...Amino acid bioconjugation technology has emerged as a pivotal tool for linking small-molecule fragments with proteins,antibodies,and even cells.The study in Nature by Chang and Toste introduces a redox-based strategy for tryptophan bioconjugation,employing N-sulfonyloxaziridines as oxidative cyclization reagents,demonstrating high efficiency comparable to traditional click reactions.Meanwhile,this tool provides feasible methods for investigating the mechanisms underlying functional tryptophan-related biochemical processes,paving the way for protein function exploration,activity-based proteomics for functional amino acid identification and characterization,and even the design of covalent inhibitors.展开更多
Since the emergence of cancer nanomedicine, researchers have had intense interest in developing nanoparticles (NPs) that can specifically target diseased sites while avoiding healthy tissue to mitigate the off-targe...Since the emergence of cancer nanomedicine, researchers have had intense interest in developing nanoparticles (NPs) that can specifically target diseased sites while avoiding healthy tissue to mitigate the off-target effects seen with conventional treatments like chemotherapy. Initial endeavors focused on the bioconjugation of targeting agents to NPs, and more recently, researchers have begun to develop biomimetic NP platforms that can avoid immune recognition to maximally accumulate in tumors. In this review, we describe the advantages and limitations of each of these targeting strategies. First, we review developments in bioconjugation strategies, where NPs are coated with biomolecules such as antibodies, aptamers, peptides, and small molecules to enable cell-specific binding. While bioconjugated NPs offer many exciting features and have improved pharmacokinetics and biodistribution relative to unmodified NPs, they are still recognized by the body as "foreign", resulting in their clearance by the mononuclear phagocytic system (MPS). To overcome this limitation, researchers have recently begun to investigate biomimetic approaches that can hide NPs from immune recognition and reduce clearance by the MPS. These biomimetic NPs fall into two distinct categories: synthetic NPs that present naturally occurring structures, and NPs that are completely disguised by natural structures. Overall bioconjugated and biomimetic NPs have substantial potential to improve upon conventional treatments by reducing off-target effects through site-specific delivery. and they show great promise for future standards of care. Here, we provide a summary of each strategy, discuss considerations for their design moving forward, and highlight their potential clinical impact on cancer therapy.展开更多
The ACE inhibitory peptides have been characterized from the enzymatic digestion product of bighead carp protein and bioconjugated with graphene oxide(GO)to enhance its activity.The results showed that aspartic acid a...The ACE inhibitory peptides have been characterized from the enzymatic digestion product of bighead carp protein and bioconjugated with graphene oxide(GO)to enhance its activity.The results showed that aspartic acid and glutamic acid had the highest levels in ultrafiltration fractions(<5 kDa),where eight potential ACE inhibitory peptides were also identified(ADSNHKAF,KLWHHTF,LLRLHF,PPSEPTKL,VEKFPLF,YLRLHF,YYKLKPLL,YYKLKPML).Among the eight peptides,YLRLHF showed the best ACE inhibitory activity(IC50=121.90μM)and was a competitive inhibitor.Molecular docking experiments showed that YLRLHF formed four hydrogen bond interactions in the ACE protein pocket,coordination bonding with Zn^(2+),and π-πconjugation interactions to His421.GO elevated the ACE inhibitory activity of YLRLHF(at 0.1 mg/mL)from 43.36%to 51.72%.The structural characterization results obtained from FI-IR,XPS,SEM,and TEM demonstrated the successful combination of GO and YLRLHF.Additionally,biocouples of ACE inhibitory peptides from bighead carp proteins with GO might be potential candidates for future functional foods and antihypertensive drugs.展开更多
Degradable polyesters have long been regarded as eco-friendly materials,useful for various applicationswhile meeting the growing needs of sustainability.However,it is still challenging to synthesize functional aliphat...Degradable polyesters have long been regarded as eco-friendly materials,useful for various applicationswhile meeting the growing needs of sustainability.However,it is still challenging to synthesize functional aliphatic polyesters from abundant and cheap renewable sources.Our present study reports a readily available and versatile platform for producing functional and stereoregular aliphatic polyesters from 4-hydroxy-L-proline(4-HYP).We synthesized a bicyclic bridged lactone monomer,namely,NR-PL,by a simple and scalable two-step process allowing facile side-chain functionalization and derivatization.The ring-opening homopolymerization and copolymerization for the generation of N^(R)-PL were controlled fully by using organobases such as 1,8-diazabicyclo[5.4.0]-undec-7-ene(DBU)without any detectable epimerization.This process afforded stereoregular polyesters PNRPE with molar mass(M_(n))up to 90 kg/mol and a narrow dispersity(Ð)generally below 1.10.The uniqueness of the backbone,which contains two chiral centers on a rigid propyl ring,together with the versatility of the side chain,offer tunable properties complementary to existing aliphatic polyesters.The utility of the polymers was showcased by the facile site-specific bioconjugation of PN^(EG3)PE,a water-soluble polyester,to a protein.This work might open numerous opportunities in creating functional and sustainable polyesters for a wide range of applications,including degradable plastics,drug delivery,and protein therapeutics.展开更多
Cysteine(Cys)-specific bioconjugation has widespread applications in the synthesis of protein conjugates,particularly for the functionalization of antibodies.Here,we report the discovery of transstyryl sulfonyl fluori...Cysteine(Cys)-specific bioconjugation has widespread applications in the synthesis of protein conjugates,particularly for the functionalization of antibodies.Here,we report the discovery of transstyryl sulfonyl fluoride(SSF)as a near-perfect Michael acceptor for Cys-specific protein bioconjugation.Compared to maleimides,which are predominantly used,SSF exhibited better chemoselectivity,selfstability,and conjugate stability while maintaining comparable reactivity.Using SSF-derived probes,proteins can be readily modified on the Cys residue(s)to install functionalities,for example,fluorescent dyes,toxins,and oligonucleotides,without influencing the activity.Further applications of SSF-derived serum-stable antibody-drug conjugates and PD-L1 nanobody-oligo conjugates demonstrate the great translational value of SSF-based bioconjugation in drug development and single-cell sequencing.展开更多
Cyclic peptides have found applications in fields ranging from drug discovery to nanomaterials.Peptide stapling reagents crosslink two or more residues in peptides to generate macrocycles of diverse topology and intro...Cyclic peptides have found applications in fields ranging from drug discovery to nanomaterials.Peptide stapling reagents crosslink two or more residues in peptides to generate macrocycles of diverse topology and introduce linker units that might directly impact the properties and biological functions of cyclic peptides.Herein,we demonstrate that chlorooxime derivatives are cysteine-specific peptide bioconjugation and stapling reagents that generate stable thiohydroximate linkages.展开更多
For a significant duration,enhancing the efficacy of cancer therapy has remained a critical concern.Magnetotactic bacteria(MTB),often likened to micro-robots,hold substantial promise as a drug delivery system.MTB,clas...For a significant duration,enhancing the efficacy of cancer therapy has remained a critical concern.Magnetotactic bacteria(MTB),often likened to micro-robots,hold substantial promise as a drug delivery system.MTB,classified as anaerobic,aquatic,and gram-negative microorganisms,exhibit remarkable motility and precise control over their internal biomineralization processes.This unique ability results in the formation of magnetic nanoparticles arranged along filamentous structures in a catenary fashion,enclosed within a membrane.These bacteria possess distinctive biochemical properties that facilitate their precise positioning within complex environments.By harnessing these biochemical attributes,MTB could potentially offer substantial advantages in the realm of cancer therapy.This article reviews the drug delivery capabilities of MTB in tumor treatment and explores various applications based on their inherent properties.The objective is to provide a comprehensive understanding of MTB-driven drug delivery and stimulate innovative insights in this field.展开更多
Objective:This study aimed to describe,optimize and evaluate a method for preparing multivalent conjugate vaccines by simultaneous conjugation of two different bacterial capsular polysaccharides(CPs)with tetanus toxoi...Objective:This study aimed to describe,optimize and evaluate a method for preparing multivalent conjugate vaccines by simultaneous conjugation of two different bacterial capsular polysaccharides(CPs)with tetanus toxoid(TT)as bivalent conjugates.Methods:Different molecular weights(MWs)of polysaccharides,activating agents and capsular polysaccharide/protein(CP/Pro)ratio that may influence conjugation and immunogenicity were investigated and optimized to prepare the bivalent conjugate bulk.Using the described method and optimized parameters,a 20-valent pneumococcal conjugate vaccine and a bivalent meningococcal vaccine were developed and their effectiveness was compared to that of corresponding licensed vaccines in rabbit or mouse models.Results:The immunogenicity test revealed that polysaccharides with lower MWs were better for Pn1-TT-Pn3 and MenA-TT-MenC,while higher MWs were superior for Pn4-TT-Pn14,Pn6A-TT-Pn6B,Pn7F-TT-Pn23F and Pn8-TT-Pn11A.For activating polysaccharides,1-cyano-4-dimethylaminopyridinium tetrafluoroborate(CDAP)was superior to cyanogen bromide(CNBr),but for Pn1,Pn3 and MenC,N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride(EDAC)was the most suitable option.For Pn6A-TT-Pn6B and Pn8-TT-Pn11A,rabbits immunized with bivalent conjugates with lower CP/Pro ratios showed significantly stronger CP-specific antibody responses,while for Pn4-TT-Pn14,higher CP/Pro ratio was better.Instead of interfering with the respective immunological activity,our bivalent conjugates usually induced higher IgG titers than their monovalent counterparts.Conclusion:The result indicated that the described conjugation technique was feasible and efficacious to prepare glycoconjugate vaccines,laying a solid foundation for developing extended-valent multivalent or combined conjugate vaccines without potentially decreased immune function.展开更多
A generic method was described to change surface biocompatibihty by introducing reactive functional groups onto surfaces of polymeric substrates and covalently binding them with biomolecules.A block copolymer with pro...A generic method was described to change surface biocompatibihty by introducing reactive functional groups onto surfaces of polymeric substrates and covalently binding them with biomolecules.A block copolymer with protected carboxylic acid functionality,poly(styrene-b-tert-butyl acrylate)(PS-PtBA),was spin coated from solutions in toluene on a bioinert polystyrene(PS) substrate to form a bilayer structure:a surface layer of the poly(tert-butyl acrylate)(PtBA) blocks that order at the air-polymer interface and a bottom layer of the PS blocks that entangle with the PS substrate.The thickness of the PtBA layer and the area density of tert-butyl ester groups of PtBA increased linearly with the concentration of the spin coating solution until a 2 nm saturated monolayer coverage of PtBA was achieved at the concentration of 0.4%W/W.The protected carboxylic acid groups were generated by exposing the tert-butyl ester groups of PtBA to trifluoroacetic acid (TFA) for bioconjugation with FMRF peptides via amide bonds.The yield of the bioconjugation reaction for the saturated surface was calculated to be 37.1%based on X-ray photoelectron spectroscopy(XPS) measurements.The success of each functionalization step was demonstrated and characterized by XPS and contact angle measurements.This polymer functionalization/modification concept can be virtually applied to any polymeric substrate by choosing appropriate functional block copolymers and biomolecules to attain novel biocompatibility.展开更多
Surface-enhanced Raman scattering(SERS)spectroscopy is presented as a sensitive and spe-cific molecular tool for clinical diagnosis and prognosis monitoring of various diseases including cancer.In order for clinical a...Surface-enhanced Raman scattering(SERS)spectroscopy is presented as a sensitive and spe-cific molecular tool for clinical diagnosis and prognosis monitoring of various diseases including cancer.In order for clinical application of SERS technique,an ideal method of bulk synthesis of SERS nanoparticles is necessary to obtain sensitive,stable and highly reproducible Raman signals.In this contribution,we determined the ideal conditions for bulk synthesis of Raman reporter(Ra)molecules embedded silver-gold core-shell nanoparticles(Au@Ra@AgNPs)using hydroquinone as reducing agent of silver nitrate.By using UV-Vis spectroscopy,Raman spectroscopy and transmission electron microscopy(TEM),we found that a 2∶1 ratio of silver nitrate to hydroquinone is ideal for a uniform silver coating with a strong and stable Raman signal.Through stability testing of the optimized Au@Ra@AgNPs over a two-week period,these SERS nanotags were found to be stable with minimal signal change occurred.The sta-bility of antibody linked SERS nanotags is also crucial for cancer and disease diagnosis,thus,we further conjugated the as-prepared SERS nanotags with anti-EpCAM antibody,in which the stability of bioconjugated SERS nanotags was tested over eight days.Both UV-Vis and SERS spectroscopy showed stable absorption and Raman signals on the anti-EpCAM conju-gated SERS nanotags,indicating the great potential of the synthesized SERS nanotags for future applications which require large,reproducible and uniform quantities in order for cancer biomarker diagnosis and monitoring.展开更多
Monodispersed microspheres with polystyrene as the core and poly(acrylamide-co-N-acryloxysuccinirnide) as the shell were synthesized by a two-step surfactant-free emulsion copolymerization.The core-shell morphology ...Monodispersed microspheres with polystyrene as the core and poly(acrylamide-co-N-acryloxysuccinirnide) as the shell were synthesized by a two-step surfactant-free emulsion copolymerization.The core-shell morphology of the microspheres was shown by scanning electron microscopy and transmission electron microscopy.Rabbit immunoglobulin G (as antigen) was covalently coupled onto the microspheres by the reaction between succinimide-activated ester groups on the shell of the microspheres and amino groups of the antigen molecules.The size of particles was characterized by dynamic light scattering technique and was found to vary upon bioconjugation and interaction with proteins.The binding process was shown to be specific to goat anti-rabbit immunoglobulin G(as antibody) and reversible upon the addition of free antigen into the system.展开更多
A facile and efficient strategy has been developed to fabricate a multifunctional,theranostic anticancer drug delivery platform featuring active targeting,controlled drug release and fluorescence imaging for real-time...A facile and efficient strategy has been developed to fabricate a multifunctional,theranostic anticancer drug delivery platform featuring active targeting,controlled drug release and fluorescence imaging for real-time control of delivery.To this end,thermo sensitive poly(N-isopropyl acrylamide)(PNIPAM)nanospheres are decorated with peptide-Au cluster conjugates as a smart nanomedicine platform.A sophisticated trifunctional peptide is designed to release the anticancer drug doxorubicin(DOX),target cells and reduce Au^3+ions to form luminescent Au cluste rs.Importantly,the peptide-Au cluster moieties are attached to the PNIPAM nanospheres via amide bonds rather than noncovalent interactions,significantly improving their stability in biological medium and drug release efficiency.The in vitro experiments showed that DOX was released in an efficient and controlled manner under physiological conditions.展开更多
Folate receptor(FR)overexpression occurs in a variety of cancers,including pancreatic cancer.In addition,enhanced macropinocytosis exists in K-Ras mutant pancreatic cancer.Furthermore,the occurrence of intensive desmo...Folate receptor(FR)overexpression occurs in a variety of cancers,including pancreatic cancer.In addition,enhanced macropinocytosis exists in K-Ras mutant pancreatic cancer.Furthermore,the occurrence of intensive desmoplasia causes a hypoxic microenvironment in pancreatic cancer.In this study,a novel FR-directed,macropinocytosis-enhanced,and highly cytotoxic bioconjugate folate(F)-human serum albumin(HSA)-apoprotein of lidamycin(LDP)-active enediyne(AE)derived from lidamycin was designed and prepared.F-HSA-LDP-AE consisted of four moieties:F,HSA,LDP,and AE.F-HSA-LDP presented high binding efficiency with the FR and pancreatic cancer cells.Its uptake in wild-type cells was more extensive than in K-Ras mutant-type cells.By in vivo optical imaging,F-HSA-LDP displayed prominent tumor-specific biodistribution in pancreatic cancer xenograft-bearing mice,showing clear and lasting tumor localization for 360 h.In the MTT assay,F-HSA-LDP-AE demonstrated potent cytotoxicity in three types of pancreatic cancer cell lines.It also induced apoptosis and caused G2/M cell cycle arrest.F-HSALDP-AE markedly suppressed the tumor growth of AsPc-1 pancreatic cancer xenografts in athymic mice.At well-tolerated doses of 0.5 and 1 mg/kg,(i.v.,twice),the inhibition rates were 91.2%and 94.8%,respectively(P<0.01).The results of this study indicate that the F-HSA-LDP multi-functional bioconjugate might be effective for treating K-Ras mutant pancreatic cancer.展开更多
Herein,we report the facile conjugation between proteins and water-soluble [60]fullerene derivatives(DC_(60)) under native conditions using SpyTag as a reactive handle.Water-soluble [60] fullerene derivatives were fir...Herein,we report the facile conjugation between proteins and water-soluble [60]fullerene derivatives(DC_(60)) under native conditions using SpyTag as a reactive handle.Water-soluble [60] fullerene derivatives were first prepared via sequential Bingel-Hirsch reaction and "clicked" with SpyTag to give DC_(60)-SpyTag for native conjugation with proteins by the highly efficient SpyTag-SpyCatcher chemistry.The bioconjugation was confirmed by MALDI-TOF MS spectra and SDS-PAGE analysis.The TEM and UVvis spectroscopic study further revealed that the DC_(60) could alter the optical performance and induce aggregation of the target proteins.It thus provides a general and robust method for modifying proteins with C_(60) derivatives and could potentially be adapted for native conjugation between proteins and other nonbiological motifs as well.展开更多
Nucleases play an important role in molecular biology, for example, in DNA sequencing. Synthetic polyamide conjugates can be considered as a novel tool for the selective inhibition of gene expressions and also as pote...Nucleases play an important role in molecular biology, for example, in DNA sequencing. Synthetic polyamide conjugates can be considered as a novel tool for the selective inhibition of gene expressions and also as potential drugs in anticancer or antiviral chemotherapy. In this article, the synthesis of a novel minor-groove targeting artificial nuclease, an oligopyrrol-containing compound, has been reported. It was found that this novel compound can bind DNA in AT-rich minor groove with high affinity and site specificity. DNA binding behavior was determined by using UV-Vis and CD. It is indicated that compound 6 can enhance the Tm, of DNA from 80.4 ℃ to 84. 4 ℃ and that it possesses a high binding constant value(Kb =3.05 × 10^4 L/mol).展开更多
Comprehensive Summary Interfacing DNA oligonucleotides and DNA aptamers with gold nanoparticles has generated numerous functional hybrid materials for sensing,self-assembly and drug delivery applications.Our lab has b...Comprehensive Summary Interfacing DNA oligonucleotides and DNA aptamers with gold nanoparticles has generated numerous functional hybrid materials for sensing,self-assembly and drug delivery applications.Our lab has been working in this area for 15 years.In this article,the current understanding of the adsorption of DNA to gold nanoparticles is summarized,and related applications in bioconjugation of DNA to gold surface is described.In addition,problems of using gold nanoparticles to signaling aptamer binding are discussed.Finally,re-selection of aptamers for previously reported targets using the library-immobilization method is reviewed.展开更多
The limitations of native collagen,such as thermal stability and solubility in physiological environments,can be improved by applying bioconjugation and synthetic chemistry techniques.However,the exquisite control of ...The limitations of native collagen,such as thermal stability and solubility in physiological environments,can be improved by applying bioconjugation and synthetic chemistry techniques.However,the exquisite control of the modification site of collagen remains a challenge.In this work,pH-responsive poly(acrylic acid)(PAA)with dif-ferent chain lengths was attached to the N-terminal α-amino groups of succinylated collagen using a site-specific modification strategy.Additionally,the structure,thermal stability,and pH sensitivity of succinylated collagen were explored.The modification rate of amino groups in the succinylated collagen-PAA bioconjugate(SPSC-PAA)was eval-uated by the 2,4,6-trinitrobenzene sulfonic acid assay.The impact of N-terminal modification of PAA and its chain length on the thermal stability of collagen was explored by CD and DSC.These techniques revealed that the ther-mal stability of SPSC-Col is pH-responsive and closely related to the chain length of grafted PAA.The pH sensitivity of SPSC-PAA was further explored by rheology and turbidity.Subsquently,the critical pH and isoelectric point of SPSC-PAAs were also examined by turbidity and isoelectric point titration,respectively.This work provides a new insight into the N-terminal modification of collagen on its properties.展开更多
Supramolecular proteins are generated using a limited set of twenty amino acids,but have distinctive functionalities which arise from the sequential arrangement of amino acids configured to exquisite three-dimensional...Supramolecular proteins are generated using a limited set of twenty amino acids,but have distinctive functionalities which arise from the sequential arrangement of amino acids configured to exquisite three-dimensional structures.Viruses,virus-like particles,ferritins,enzyme complexes,cellular micro-compartments,and other supramolecular protein assemblies exemplify these systems,with their precise arrangements of tens to hundreds of molecules into highly organized scaffolds for nucleic acid packaging,metal storage,catalysis or sequestering reactions at the nanometer scale.These versatile protein systems,dubbed as bionanoparticles(BNPs),have attracted materials scientists to seek new opportunities with these pre-fabricated templates in a wide range of nanotechnology-related applications.Here,we focus on some of the key modification strategies that have been utilized,ranging from basic protein conjugation techniques to more novel strategies,to expand the functionalities of these multimeric protein assemblies.Ultimately,in combination with molecular cloning and sophisticated chemistries,these BNPs are being incorporated into many applications ranging from functional materials to novel biomedical drug designs.展开更多
Using biological templates to build one-dimensional functional materials holds great promise in developing nanosized electrical devices,sensors,catalysts,and energy storage units.In this communication,we report a vers...Using biological templates to build one-dimensional functional materials holds great promise in developing nanosized electrical devices,sensors,catalysts,and energy storage units.In this communication,we report a versatile assembly process for the preparation of water-soluble conductive polyaniline(PANi)/M13 composite nanowires by employing the bacteriophage M13 as a template.The surface lysine residues of M13 can be derivatized with carboxylic groups to improve its binding ability to the aniline;the resulting modifi ed M13 is denoted as m-M13.Highly negatively-charged poly(sulfonated styrene)was used both as a dopant acid and a stabilizing agent to enhance the stability of the composite fi bers in aqueous solution.A transparent solution of the conductive PANi/m-M13 composite fi bers can be readily obtained without any further purifi cation step.The fi bers can be easily fabricated into thin conductive fi lms due to their high aspect ratio and good solubility in aqueous solution.This synthesis discloses a unique and versatile way of using bionanorods to produce composite fi brillar materials with narrow dispersity,high aspect ratio,and high processibility,which may have many potential applications in electronics,optics,sensing,and biomedical engineering.展开更多
基金supported by Ministry of Science and Technology (National Key Research and Development Program of China,No.2018YFA0901900)the National Natural Science Foundation of China (Nos.21931014,21525209, 21621002,21772225,and 21761142003)+4 种基金Chinese Academy of Sciences (Strategic Priority Research Program,No.XDB20000000International Partner Program,No.121731KYSB20190039Key Research Program of Frontier Sciences,No.QYZDB-SSW-SLH040)Science and Technology Commission of Shanghai Municipality (No.17XD1404600)K.C.Wong Education Foundation。
文摘Chemoselective amine bioco njugation has long been a challenge for native protein modification.Inspired by Thiele’s seminal discovery,Li and co-workers recently developed an orto-phthalaldehyde(OPA)based reagent for labeling the amino group of a protein.Here we report an expeditious and scalable synthesis of a Li-Thiele reagent featuring an arene construction strategy.The reagent contains an alkyne side chain as a handle for secondary modification.
基金financial support from the National Natural Science Foundation of China(82374020 and 82374155)Science and Technology Department of Sichuan Province(2023ZYD0054 and 2024NSFTD0023)the Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine(ZYYCXTD-D-202209).
文摘Amino acid bioconjugation technology has emerged as a pivotal tool for linking small-molecule fragments with proteins,antibodies,and even cells.The study in Nature by Chang and Toste introduces a redox-based strategy for tryptophan bioconjugation,employing N-sulfonyloxaziridines as oxidative cyclization reagents,demonstrating high efficiency comparable to traditional click reactions.Meanwhile,this tool provides feasible methods for investigating the mechanisms underlying functional tryptophan-related biochemical processes,paving the way for protein function exploration,activity-based proteomics for functional amino acid identification and characterization,and even the design of covalent inhibitors.
文摘Since the emergence of cancer nanomedicine, researchers have had intense interest in developing nanoparticles (NPs) that can specifically target diseased sites while avoiding healthy tissue to mitigate the off-target effects seen with conventional treatments like chemotherapy. Initial endeavors focused on the bioconjugation of targeting agents to NPs, and more recently, researchers have begun to develop biomimetic NP platforms that can avoid immune recognition to maximally accumulate in tumors. In this review, we describe the advantages and limitations of each of these targeting strategies. First, we review developments in bioconjugation strategies, where NPs are coated with biomolecules such as antibodies, aptamers, peptides, and small molecules to enable cell-specific binding. While bioconjugated NPs offer many exciting features and have improved pharmacokinetics and biodistribution relative to unmodified NPs, they are still recognized by the body as "foreign", resulting in their clearance by the mononuclear phagocytic system (MPS). To overcome this limitation, researchers have recently begun to investigate biomimetic approaches that can hide NPs from immune recognition and reduce clearance by the MPS. These biomimetic NPs fall into two distinct categories: synthetic NPs that present naturally occurring structures, and NPs that are completely disguised by natural structures. Overall bioconjugated and biomimetic NPs have substantial potential to improve upon conventional treatments by reducing off-target effects through site-specific delivery. and they show great promise for future standards of care. Here, we provide a summary of each strategy, discuss considerations for their design moving forward, and highlight their potential clinical impact on cancer therapy.
基金The research was funded by the National Key R&D Program of China(2019YFD0901805).
文摘The ACE inhibitory peptides have been characterized from the enzymatic digestion product of bighead carp protein and bioconjugated with graphene oxide(GO)to enhance its activity.The results showed that aspartic acid and glutamic acid had the highest levels in ultrafiltration fractions(<5 kDa),where eight potential ACE inhibitory peptides were also identified(ADSNHKAF,KLWHHTF,LLRLHF,PPSEPTKL,VEKFPLF,YLRLHF,YYKLKPLL,YYKLKPML).Among the eight peptides,YLRLHF showed the best ACE inhibitory activity(IC50=121.90μM)and was a competitive inhibitor.Molecular docking experiments showed that YLRLHF formed four hydrogen bond interactions in the ACE protein pocket,coordination bonding with Zn^(2+),and π-πconjugation interactions to His421.GO elevated the ACE inhibitory activity of YLRLHF(at 0.1 mg/mL)from 43.36%to 51.72%.The structural characterization results obtained from FI-IR,XPS,SEM,and TEM demonstrated the successful combination of GO and YLRLHF.Additionally,biocouples of ACE inhibitory peptides from bighead carp proteins with GO might be potential candidates for future functional foods and antihypertensive drugs.
基金National Natural Science Foundation of China(21722401 for H.Lu and 21634001 for E.Q.Chen).
文摘Degradable polyesters have long been regarded as eco-friendly materials,useful for various applicationswhile meeting the growing needs of sustainability.However,it is still challenging to synthesize functional aliphatic polyesters from abundant and cheap renewable sources.Our present study reports a readily available and versatile platform for producing functional and stereoregular aliphatic polyesters from 4-hydroxy-L-proline(4-HYP).We synthesized a bicyclic bridged lactone monomer,namely,NR-PL,by a simple and scalable two-step process allowing facile side-chain functionalization and derivatization.The ring-opening homopolymerization and copolymerization for the generation of N^(R)-PL were controlled fully by using organobases such as 1,8-diazabicyclo[5.4.0]-undec-7-ene(DBU)without any detectable epimerization.This process afforded stereoregular polyesters PNRPE with molar mass(M_(n))up to 90 kg/mol and a narrow dispersity(Ð)generally below 1.10.The uniqueness of the backbone,which contains two chiral centers on a rigid propyl ring,together with the versatility of the side chain,offer tunable properties complementary to existing aliphatic polyesters.The utility of the polymers was showcased by the facile site-specific bioconjugation of PN^(EG3)PE,a water-soluble polyester,to a protein.This work might open numerous opportunities in creating functional and sustainable polyesters for a wide range of applications,including degradable plastics,drug delivery,and protein therapeutics.
基金Financial support from the National Key R&D Program of China(grant no.2019YFA09006600)the National Natural Science Foundation of China(grant nos.21977048 and 92053111)+2 种基金the Natural Science Foundation of Jiangsu Province(grant no.BK20202004)the Beijing National Laboratory for Molecular Sciences(grant no.BNLMS20200)the Jiangsu Specially-Appointed Professor Plan,and the Program for Innovative Talents and Entrepreneur in Jiangsu is gratefully acknowledged.Q.Z.is the Connie and Bob Lurie Fellow of the Damon Runyon Cancer Research Foundation(DRG-2434-21).
文摘Cysteine(Cys)-specific bioconjugation has widespread applications in the synthesis of protein conjugates,particularly for the functionalization of antibodies.Here,we report the discovery of transstyryl sulfonyl fluoride(SSF)as a near-perfect Michael acceptor for Cys-specific protein bioconjugation.Compared to maleimides,which are predominantly used,SSF exhibited better chemoselectivity,selfstability,and conjugate stability while maintaining comparable reactivity.Using SSF-derived probes,proteins can be readily modified on the Cys residue(s)to install functionalities,for example,fluorescent dyes,toxins,and oligonucleotides,without influencing the activity.Further applications of SSF-derived serum-stable antibody-drug conjugates and PD-L1 nanobody-oligo conjugates demonstrate the great translational value of SSF-based bioconjugation in drug development and single-cell sequencing.
基金supported by the National Natural Science Foundation(NSF)of China(grant nos.21922703 and 91953112)the NSF of Jiangsu Province(grant nos.BK20190004 and BK20202004)+2 种基金the National Key R&D Program of China(grant no.2019YFA0905800)Shenzhen Basic Research Program(grant no.JCYJ20180508-182240106)the Fundamental Research Funds for the Central Universities(grant nos.14380138 and 14380131).
文摘Cyclic peptides have found applications in fields ranging from drug discovery to nanomaterials.Peptide stapling reagents crosslink two or more residues in peptides to generate macrocycles of diverse topology and introduce linker units that might directly impact the properties and biological functions of cyclic peptides.Herein,we demonstrate that chlorooxime derivatives are cysteine-specific peptide bioconjugation and stapling reagents that generate stable thiohydroximate linkages.
基金supported by the National Natural Science Foundation of China(No.3190110313 to K.Ma)Special Foundation of President of the Chinese Academy of Sciences(No.YZJJ2022QN_(4)4)+2 种基金HFIPS Director’s Fund(Nos.E16CWK123X1YZJJQY202201)the Heye Health Technology Chong Ming Project(No.HYCMP-2022012 to Y.Wang)。
文摘For a significant duration,enhancing the efficacy of cancer therapy has remained a critical concern.Magnetotactic bacteria(MTB),often likened to micro-robots,hold substantial promise as a drug delivery system.MTB,classified as anaerobic,aquatic,and gram-negative microorganisms,exhibit remarkable motility and precise control over their internal biomineralization processes.This unique ability results in the formation of magnetic nanoparticles arranged along filamentous structures in a catenary fashion,enclosed within a membrane.These bacteria possess distinctive biochemical properties that facilitate their precise positioning within complex environments.By harnessing these biochemical attributes,MTB could potentially offer substantial advantages in the realm of cancer therapy.This article reviews the drug delivery capabilities of MTB in tumor treatment and explores various applications based on their inherent properties.The objective is to provide a comprehensive understanding of MTB-driven drug delivery and stimulate innovative insights in this field.
文摘Objective:This study aimed to describe,optimize and evaluate a method for preparing multivalent conjugate vaccines by simultaneous conjugation of two different bacterial capsular polysaccharides(CPs)with tetanus toxoid(TT)as bivalent conjugates.Methods:Different molecular weights(MWs)of polysaccharides,activating agents and capsular polysaccharide/protein(CP/Pro)ratio that may influence conjugation and immunogenicity were investigated and optimized to prepare the bivalent conjugate bulk.Using the described method and optimized parameters,a 20-valent pneumococcal conjugate vaccine and a bivalent meningococcal vaccine were developed and their effectiveness was compared to that of corresponding licensed vaccines in rabbit or mouse models.Results:The immunogenicity test revealed that polysaccharides with lower MWs were better for Pn1-TT-Pn3 and MenA-TT-MenC,while higher MWs were superior for Pn4-TT-Pn14,Pn6A-TT-Pn6B,Pn7F-TT-Pn23F and Pn8-TT-Pn11A.For activating polysaccharides,1-cyano-4-dimethylaminopyridinium tetrafluoroborate(CDAP)was superior to cyanogen bromide(CNBr),but for Pn1,Pn3 and MenC,N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride(EDAC)was the most suitable option.For Pn6A-TT-Pn6B and Pn8-TT-Pn11A,rabbits immunized with bivalent conjugates with lower CP/Pro ratios showed significantly stronger CP-specific antibody responses,while for Pn4-TT-Pn14,higher CP/Pro ratio was better.Instead of interfering with the respective immunological activity,our bivalent conjugates usually induced higher IgG titers than their monovalent counterparts.Conclusion:The result indicated that the described conjugation technique was feasible and efficacious to prepare glycoconjugate vaccines,laying a solid foundation for developing extended-valent multivalent or combined conjugate vaccines without potentially decreased immune function.
文摘A generic method was described to change surface biocompatibihty by introducing reactive functional groups onto surfaces of polymeric substrates and covalently binding them with biomolecules.A block copolymer with protected carboxylic acid functionality,poly(styrene-b-tert-butyl acrylate)(PS-PtBA),was spin coated from solutions in toluene on a bioinert polystyrene(PS) substrate to form a bilayer structure:a surface layer of the poly(tert-butyl acrylate)(PtBA) blocks that order at the air-polymer interface and a bottom layer of the PS blocks that entangle with the PS substrate.The thickness of the PtBA layer and the area density of tert-butyl ester groups of PtBA increased linearly with the concentration of the spin coating solution until a 2 nm saturated monolayer coverage of PtBA was achieved at the concentration of 0.4%W/W.The protected carboxylic acid groups were generated by exposing the tert-butyl ester groups of PtBA to trifluoroacetic acid (TFA) for bioconjugation with FMRF peptides via amide bonds.The yield of the bioconjugation reaction for the saturated surface was calculated to be 37.1%based on X-ray photoelectron spectroscopy(XPS) measurements.The success of each functionalization step was demonstrated and characterized by XPS and contact angle measurements.This polymer functionalization/modification concept can be virtually applied to any polymeric substrate by choosing appropriate functional block copolymers and biomolecules to attain novel biocompatibility.
基金This work was supported by the Australian Research Council(ARC)through its Centre of Excellence for Nanoscale BioPhotonics(CE140100003)ARC Discovery Projects(DP200102004).
文摘Surface-enhanced Raman scattering(SERS)spectroscopy is presented as a sensitive and spe-cific molecular tool for clinical diagnosis and prognosis monitoring of various diseases including cancer.In order for clinical application of SERS technique,an ideal method of bulk synthesis of SERS nanoparticles is necessary to obtain sensitive,stable and highly reproducible Raman signals.In this contribution,we determined the ideal conditions for bulk synthesis of Raman reporter(Ra)molecules embedded silver-gold core-shell nanoparticles(Au@Ra@AgNPs)using hydroquinone as reducing agent of silver nitrate.By using UV-Vis spectroscopy,Raman spectroscopy and transmission electron microscopy(TEM),we found that a 2∶1 ratio of silver nitrate to hydroquinone is ideal for a uniform silver coating with a strong and stable Raman signal.Through stability testing of the optimized Au@Ra@AgNPs over a two-week period,these SERS nanotags were found to be stable with minimal signal change occurred.The sta-bility of antibody linked SERS nanotags is also crucial for cancer and disease diagnosis,thus,we further conjugated the as-prepared SERS nanotags with anti-EpCAM antibody,in which the stability of bioconjugated SERS nanotags was tested over eight days.Both UV-Vis and SERS spectroscopy showed stable absorption and Raman signals on the anti-EpCAM conju-gated SERS nanotags,indicating the great potential of the synthesized SERS nanotags for future applications which require large,reproducible and uniform quantities in order for cancer biomarker diagnosis and monitoring.
基金supported by the National Natural Science Foundation of China(Nos.20328407,50673045) and the Canada Research Chair program
文摘Monodispersed microspheres with polystyrene as the core and poly(acrylamide-co-N-acryloxysuccinirnide) as the shell were synthesized by a two-step surfactant-free emulsion copolymerization.The core-shell morphology of the microspheres was shown by scanning electron microscopy and transmission electron microscopy.Rabbit immunoglobulin G (as antigen) was covalently coupled onto the microspheres by the reaction between succinimide-activated ester groups on the shell of the microspheres and amino groups of the antigen molecules.The size of particles was characterized by dynamic light scattering technique and was found to vary upon bioconjugation and interaction with proteins.The binding process was shown to be specific to goat anti-rabbit immunoglobulin G(as antibody) and reversible upon the addition of free antigen into the system.
基金financial support from the National Natural Science Foundation of China(NSFC,Nos.51573013,51873016)support from the Shaanxi Natural Science Foundation(No.2018JM2004)+1 种基金NSFC(No.21705129)funded by the Helmholtz association,program Science and Technology of Nanosystems(STN)。
文摘A facile and efficient strategy has been developed to fabricate a multifunctional,theranostic anticancer drug delivery platform featuring active targeting,controlled drug release and fluorescence imaging for real-time control of delivery.To this end,thermo sensitive poly(N-isopropyl acrylamide)(PNIPAM)nanospheres are decorated with peptide-Au cluster conjugates as a smart nanomedicine platform.A sophisticated trifunctional peptide is designed to release the anticancer drug doxorubicin(DOX),target cells and reduce Au^3+ions to form luminescent Au cluste rs.Importantly,the peptide-Au cluster moieties are attached to the PNIPAM nanospheres via amide bonds rather than noncovalent interactions,significantly improving their stability in biological medium and drug release efficiency.The in vitro experiments showed that DOX was released in an efficient and controlled manner under physiological conditions.
基金supported by grants from CAMS Innovation Fund for Medical Sciences(Grant No.:2021-I2M-1-026)Scientific Research Project of Tianjin Education Commission(Grant No.:2020KJ140)Tianjin Health Research Project(Grant No.:KJ20017)。
文摘Folate receptor(FR)overexpression occurs in a variety of cancers,including pancreatic cancer.In addition,enhanced macropinocytosis exists in K-Ras mutant pancreatic cancer.Furthermore,the occurrence of intensive desmoplasia causes a hypoxic microenvironment in pancreatic cancer.In this study,a novel FR-directed,macropinocytosis-enhanced,and highly cytotoxic bioconjugate folate(F)-human serum albumin(HSA)-apoprotein of lidamycin(LDP)-active enediyne(AE)derived from lidamycin was designed and prepared.F-HSA-LDP-AE consisted of four moieties:F,HSA,LDP,and AE.F-HSA-LDP presented high binding efficiency with the FR and pancreatic cancer cells.Its uptake in wild-type cells was more extensive than in K-Ras mutant-type cells.By in vivo optical imaging,F-HSA-LDP displayed prominent tumor-specific biodistribution in pancreatic cancer xenograft-bearing mice,showing clear and lasting tumor localization for 360 h.In the MTT assay,F-HSA-LDP-AE demonstrated potent cytotoxicity in three types of pancreatic cancer cell lines.It also induced apoptosis and caused G2/M cell cycle arrest.F-HSALDP-AE markedly suppressed the tumor growth of AsPc-1 pancreatic cancer xenografts in athymic mice.At well-tolerated doses of 0.5 and 1 mg/kg,(i.v.,twice),the inhibition rates were 91.2%and 94.8%,respectively(P<0.01).The results of this study indicate that the F-HSA-LDP multi-functional bioconjugate might be effective for treating K-Ras mutant pancreatic cancer.
基金the financial support from the National Natural Science Foundation of China(Nos.21925102,21991132 and 21674003)supported by Beijing National Laboratory for Molecular Sciences(No.BNLMS-CXXM-202006)Clinical Medicine Plus X Project of Peking University,Fundamental Research Funds for the Central Universities。
文摘Herein,we report the facile conjugation between proteins and water-soluble [60]fullerene derivatives(DC_(60)) under native conditions using SpyTag as a reactive handle.Water-soluble [60] fullerene derivatives were first prepared via sequential Bingel-Hirsch reaction and "clicked" with SpyTag to give DC_(60)-SpyTag for native conjugation with proteins by the highly efficient SpyTag-SpyCatcher chemistry.The bioconjugation was confirmed by MALDI-TOF MS spectra and SDS-PAGE analysis.The TEM and UVvis spectroscopic study further revealed that the DC_(60) could alter the optical performance and induce aggregation of the target proteins.It thus provides a general and robust method for modifying proteins with C_(60) derivatives and could potentially be adapted for native conjugation between proteins and other nonbiological motifs as well.
基金Supported by the National Natural Science Foundation of China(Nos 20132020 and 20572061), the National Science andTechnology Committee of China, the National Ministry of Education of China, and Tsinghua University
文摘Nucleases play an important role in molecular biology, for example, in DNA sequencing. Synthetic polyamide conjugates can be considered as a novel tool for the selective inhibition of gene expressions and also as potential drugs in anticancer or antiviral chemotherapy. In this article, the synthesis of a novel minor-groove targeting artificial nuclease, an oligopyrrol-containing compound, has been reported. It was found that this novel compound can bind DNA in AT-rich minor groove with high affinity and site specificity. DNA binding behavior was determined by using UV-Vis and CD. It is indicated that compound 6 can enhance the Tm, of DNA from 80.4 ℃ to 84. 4 ℃ and that it possesses a high binding constant value(Kb =3.05 × 10^4 L/mol).
文摘Comprehensive Summary Interfacing DNA oligonucleotides and DNA aptamers with gold nanoparticles has generated numerous functional hybrid materials for sensing,self-assembly and drug delivery applications.Our lab has been working in this area for 15 years.In this article,the current understanding of the adsorption of DNA to gold nanoparticles is summarized,and related applications in bioconjugation of DNA to gold surface is described.In addition,problems of using gold nanoparticles to signaling aptamer binding are discussed.Finally,re-selection of aptamers for previously reported targets using the library-immobilization method is reviewed.
基金supported by the National Natural Science Foundation of China(Nos.22378320,22178277,21706201)Knowledge Innovation Program of Wuhan-Basi Research,China(No.2023020201010148)Appli cation Foundation Frontier Project of Wuhan Science and Technology Bureau,China(No.2019020701011478).
文摘The limitations of native collagen,such as thermal stability and solubility in physiological environments,can be improved by applying bioconjugation and synthetic chemistry techniques.However,the exquisite control of the modification site of collagen remains a challenge.In this work,pH-responsive poly(acrylic acid)(PAA)with dif-ferent chain lengths was attached to the N-terminal α-amino groups of succinylated collagen using a site-specific modification strategy.Additionally,the structure,thermal stability,and pH sensitivity of succinylated collagen were explored.The modification rate of amino groups in the succinylated collagen-PAA bioconjugate(SPSC-PAA)was eval-uated by the 2,4,6-trinitrobenzene sulfonic acid assay.The impact of N-terminal modification of PAA and its chain length on the thermal stability of collagen was explored by CD and DSC.These techniques revealed that the ther-mal stability of SPSC-Col is pH-responsive and closely related to the chain length of grafted PAA.The pH sensitivity of SPSC-PAA was further explored by rheology and turbidity.Subsquently,the critical pH and isoelectric point of SPSC-PAAs were also examined by turbidity and isoelectric point titration,respectively.This work provides a new insight into the N-terminal modification of collagen on its properties.
文摘Supramolecular proteins are generated using a limited set of twenty amino acids,but have distinctive functionalities which arise from the sequential arrangement of amino acids configured to exquisite three-dimensional structures.Viruses,virus-like particles,ferritins,enzyme complexes,cellular micro-compartments,and other supramolecular protein assemblies exemplify these systems,with their precise arrangements of tens to hundreds of molecules into highly organized scaffolds for nucleic acid packaging,metal storage,catalysis or sequestering reactions at the nanometer scale.These versatile protein systems,dubbed as bionanoparticles(BNPs),have attracted materials scientists to seek new opportunities with these pre-fabricated templates in a wide range of nanotechnology-related applications.Here,we focus on some of the key modification strategies that have been utilized,ranging from basic protein conjugation techniques to more novel strategies,to expand the functionalities of these multimeric protein assemblies.Ultimately,in combination with molecular cloning and sophisticated chemistries,these BNPs are being incorporated into many applications ranging from functional materials to novel biomedical drug designs.
基金We are grateful for financial support from NSF-DMR-0706431,NSF career award,US DoD,and the W.M.Keck Foundation.This manuscript has been approved by the U.S.Army Natick Soldier Research,Development and Engineering Center for unlimited distribution(PAO#08-107).
文摘Using biological templates to build one-dimensional functional materials holds great promise in developing nanosized electrical devices,sensors,catalysts,and energy storage units.In this communication,we report a versatile assembly process for the preparation of water-soluble conductive polyaniline(PANi)/M13 composite nanowires by employing the bacteriophage M13 as a template.The surface lysine residues of M13 can be derivatized with carboxylic groups to improve its binding ability to the aniline;the resulting modifi ed M13 is denoted as m-M13.Highly negatively-charged poly(sulfonated styrene)was used both as a dopant acid and a stabilizing agent to enhance the stability of the composite fi bers in aqueous solution.A transparent solution of the conductive PANi/m-M13 composite fi bers can be readily obtained without any further purifi cation step.The fi bers can be easily fabricated into thin conductive fi lms due to their high aspect ratio and good solubility in aqueous solution.This synthesis discloses a unique and versatile way of using bionanorods to produce composite fi brillar materials with narrow dispersity,high aspect ratio,and high processibility,which may have many potential applications in electronics,optics,sensing,and biomedical engineering.