The gradient porous Ti3Zr2Sn3Mo25Nb(TLM)alloy rods were fabricated through sintering the alloyed powder to a solid core.The porous sample was then modified by a Micro Arc Oxidation(MAO)treatment in an electrolyte cont...The gradient porous Ti3Zr2Sn3Mo25Nb(TLM)alloy rods were fabricated through sintering the alloyed powder to a solid core.The porous sample was then modified by a Micro Arc Oxidation(MAO)treatment in an electrolyte containing calcium and phosphate,a hydrothermal treatment enabled secondary microporous hydroxyapatite(HA)coating,and a further bone morphogenetic protein-2(BMP-2)loading treatment through immersion and freeze-drying.The treatment led to an orderly secondary microporous coating containing HA nano-particles and evenly distributed BMP-2 in the porous coatings.As a result,osteoblasts could adhere and grow well on the coatings with a high cell adhesion rate and cell functional activity.The in-situ shear testing indicated that the interfacial strength had been enhanced significantly.Improvement of the bond formation and osseointegration with the titanium implant is attributed to increased surface area for the cell to attach,creating voids for the cell to grow in,and activating titanium surface by introducing bioactive ingredients such as HA and BMP-2.展开更多
Trichoplusia ni caterpillars are polyphagous foliage-feeders and rarely likely to encounter aflatoxin B1 (AFB1), a mycotoxin produced by Aspergillus flavus and A. parasiticus, in their host plants. To determine how ...Trichoplusia ni caterpillars are polyphagous foliage-feeders and rarely likely to encounter aflatoxin B1 (AFB1), a mycotoxin produced by Aspergillus flavus and A. parasiticus, in their host plants. To determine how T. ni copes with AFB 1, we evaluated the toxicity ofAFB 1 to T. ni caterpillars at different developmental stages and found that AFB 1 tolerance significantly increases with larval development. Diet incorporation of AFB 1 at 1μg/g completely inhibited larval growth and pupation of newly hatched larvae, but 3μg/g AFB 1 did not have apparent toxic effects on larval growth and pupation of caterpillars that first consume this compound 10 days after hatching. Piperonyl butoxide, a general inhibitor of cytochrome P450 monooxygenases (P450s), reduced the toxicity of AFB 1, suggesting that AFB1 is bioactivated in T. ni and this bioactivation is mediated by P450s. Some plant allelochemicals, including flavonoids such as fiavones, furanocoumarins such as xanthotoxin and imperatorin, and furanochromones such as visnagin, that induce P450s in other lepidopteran larvae ameliorated AFBI toxicity, suggesting that P450s are also involved in AFB 1 detoxification in T. ni.展开更多
Bioactive molecules have shown great promise for effectively regulating various bone formation processes,rendering them attractive therapeutics for bone regeneration.However,the widespread application of bioactive mol...Bioactive molecules have shown great promise for effectively regulating various bone formation processes,rendering them attractive therapeutics for bone regeneration.However,the widespread application of bioactive molecules is limited by their low accumulation and short half-lives in vivo.Hydrogels have emerged as ideal carriers to address these challenges,offering the potential to prolong retention times at lesion sites,extend half-lives in vivo and mitigate side effects,avoid burst release,and promote adsorption under physiological conditions.This review systematically summarizes the recent advances in the development of bioactive molecule-loaded hydrogels for bone regeneration,encompassing applications in cranial defect repair,femoral defect repair,periodontal bone regeneration,and bone regeneration with underlying diseases.Additionally,this review discusses the current strategies aimed at improving the release profiles of bioactive molecules through stimuli-responsive delivery,carrier-assisted delivery,and sequential delivery.Finally,this review elucidates the existing challenges and future directions of hydrogel encapsulated bioactive molecules in the field of bone regeneration.展开更多
Recent research has demonstrated the impact of physical activity on the prognosis of glioma patients,with evidence suggesting exercise may reduce mortality risks and aid neural regeneration.The role of the small ubiqu...Recent research has demonstrated the impact of physical activity on the prognosis of glioma patients,with evidence suggesting exercise may reduce mortality risks and aid neural regeneration.The role of the small ubiquitin-like modifier(SUMO)protein,especially post-exercise,in cancer progression,is gaining attention,as are the potential anti-cancer effects of SUMOylation.We used machine learning to create the exercise and SUMO-related gene signature(ESLRS).This signature shows how physical activity might help improve the outlook for low-grade glioma and other cancers.We demonstrated the prognostic and immunotherapeutic significance of ESLRS markers,specifically highlighting how murine double minute 2(MDM2),a component of the ESLRS,can be targeted by nutlin-3.This underscores the intricate relationship between natural compounds such as nutlin-3 and immune regulation.Using comprehensive CRISPR screening,we validated the effects of specific ESLRS genes on low-grade glioma progression.We also revealed insights into the effectiveness of Nutlin-3a as a potent MDM2 inhibitor through molecular docking and dynamic simulation.Nutlin-3a inhibited glioma cell proliferation and activated the p53 pathway.Its efficacy decreased with MDM2 overexpression,and this was reversed by Nutlin-3a or exercise.Experiments using a low-grade glioma mouse model highlighted the effect of physical activity on oxidative stress and molecular pathway regulation.Notably,both physical exercise and Nutlin-3a administration improved physical function in mice bearing tumors derived from MDM2-overexpressing cells.These results suggest the potential for Nutlin-3a,an MDM2 inhibitor,with physical exercise as a therapeutic approach for glioma management.Our research also supports the use of natural products for therapy and sheds light on the interaction of exercise,natural products,and immune regulation in cancer treatment.展开更多
Pulpitis is a common infective oral disease in clinical situations.The regulatory mechanisms of immune defense in pulpitis are still being investigated.Osteomodulin(OMD)is a small leucine-rich proteoglycan family memb...Pulpitis is a common infective oral disease in clinical situations.The regulatory mechanisms of immune defense in pulpitis are still being investigated.Osteomodulin(OMD)is a small leucine-rich proteoglycan family member distributed in bones and teeth.It is a bioactive protein that promotes osteogenesis and suppresses the apoptosis of human dental pulp stem cells(hDPSCs).In this study,the role of OMD in pulpitis and the OMD-induced regulatory mechanism were investigated.The OMD expression in normal and inflamed human pulp tissues was detected via immunofluorescence staining.Intriguingly,the OMD expression decreased in the inflammatory infiltration area of pulpitis specimens.The cellular experiments demonstrated that recombined human OMD could resist the detrimental effects of lipopolysaccharide(LPS)-induced inflammation.A conditional Omd knockout mouse model with pulpal inflammation was established.LPS-induced inflammatory impairment significantly increased in conditional Omd knockout mice,whereas OMD administration exhibited a protective effect against pulpitis.Mechanistically,the transcriptome alterations of OMD overexpression showed significant enrichment in the nuclear factor-κB(NF-κB)signaling pathway.Interleukin-1 receptor 1(IL1R1),a vital membrane receptor activating the NF-κB pathway,was significantly downregulated in OMD-overexpressing hDPSCs.Additionally,the interaction between OMD and IL1R1 was verified using co-immunoprecipitation and molecular docking.In vivo,excessive pulpal inflammation in Omd-deficient mice was rescued using an IL1R antagonist.Overall,OMD played a protective role in the inflammatory response via the IL1R1/NF-κB signaling pathway.OMD may optimize the immunomodulatory functions of hDPSCs and can be used for regenerative endodontics.展开更多
Introduction It is necessary for an ideal bioceramic scaffold to have a suitable structure.The structure can affect the mechanical properties of the scaffold(i.e.,elastic modulus and compressive strength)and the biolo...Introduction It is necessary for an ideal bioceramic scaffold to have a suitable structure.The structure can affect the mechanical properties of the scaffold(i.e.,elastic modulus and compressive strength)and the biological properties of the scaffold(i.e.,degradability and cell growth rate).Lattice structure is a kind of periodic porous structure,which has some advantages of light weight and high strength,and is widely used in the preparation of bioceramic scaffolders.For the structure of the scaffold,high porosity and large pore size are important for bone growth,bone integration and promoting good mechanical interlocking between neighboring bones and the scaffold.However,scaffolds with a high porosity often lack mechanical strength.In addition,different parts of the bone have different structural requirements.In this paper,scaffolds with a non-uniform structure or a hierarchical structure were designed,with loose and porous exterior to facilitate cell adhesion,osteogenic differentiation and vascularization as well as relatively dense interior to provide sufficient mechanical support for bone repair.Methods In this work,composite ceramics scaffolds with 10%akermanite content were prepared by DLP technology.The scaffold had a high porosity outside to promote the growth of bone tissue,and a low porosity inside to withstand external forces.The compressive strength,fracture form,in-vitro degradation performance and bioactivity of graded bioceramic scaffolds were investigated.The models of scaffolds were imported into the DLP printer with a 405 nm light.The samples were printed with the intensity of 8 mJ/cm^(2)and a layer thickness of 50μm.Finally,the ceramic samples were sintered at 1100℃.The degradability of the hierarchical gyroid bioceramic scaffolds was evaluated through immersion in Tris-HCl solution and SBF solution at a ratio of 200 mL/g.The bioactivity of bioceramic was obtained via immersing them in SBF solution for two weeks.The concentrations of calcium,phosphate,silicon,and magnesium ions in the soaking solution were determined by an inductively coupled plasma optical emission spectrometer.Results and discussion In this work,a hierarchical Gyroid structure HA-AK10 scaffold(sintered at 1100℃)with a radial internal porosity of 50%and an external porosity of 70%is prepared,and the influence of structural form on the compressive strength and degradation performance of the scaffold is investigated.The biological activity of the bioceramics in vitro is also verified.The mechanical simulation results show that the stress distribution corresponds to the porosity distribution of the structure,and the low porosity is larger and the overall stress concentration phenomenon does not appear.After soaking in SBF solution,Si—OH is firstly formed on the surface of bioceramics,and then silicon gel layer is produced due to the presence of calcium and silicon ions.The silicon gel layer is dissociated into negatively charged groups under alkaline environment secondary adsorption of calcium ions and phosphate ions,forming amorphous calcium phosphate,and finally amorphous calcium phosphate crystals and adsorption of carbonate ions,forming carbonate hydroxyapatite.This indicates that the composite bioceramics have a good biological activity in-vitro and can provide a good environment for the growth of bone cells.A hierarchical Gyroid ceramic scaffold with a bone geometry is prepared via applying the hierarchical structure to the bone contour scaffold.The maximum load capacity of the hierarchical Gyroid ceramic scaffold is 8 times that of the uniform structure.Conclusions The hierarchical structure scaffold designed had good overall compressive performance,good degradation performance,and still maintained a good mechanical stability during degradation.In addition,in-vitro biological experimental results showed that the surface graded composite scaffold could have a good in-vitro biological activity and provide a good environment for bone cells.Compared to the heterosexual structure,the graded scaffold had greater mechanical properties.展开更多
Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research fi ndings in the fi eld of animal-origin foods,involving food mat...Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research fi ndings in the fi eld of animal-origin foods,involving food materials such as meat,aquatic products,milk,eggs,animal offals and edible insects.The research scope includes the quality and processing characteristics of food raw materials,the relationships of nutritional components and bioactive substances with human health,product fl avor and sensory characteristics,the control of harmful substances during processing or cooking,product preservation,storage and packaging;microorganisms and fermentation,illegal drug residues and food safety detection;authenticity identifi cation;cell-cultured meat,regulations and standards.展开更多
Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research fi ndings in the fi eld of animal-origin foods,involving food mat...Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research fi ndings in the fi eld of animal-origin foods,involving food materials such as meat,aquatic products,milk,eggs,animal offals and edible insects.The research scope includes the quality and processing characteristics of food raw materials,the relationships of nutritional components and bioactive substances with human health,product fl avor and sensory characteristics,the control of harmful substances during processing or cooking,product preservation,storage and packaging;microorganisms and fermentation,illegal drug residues and food safety detection;authenticity identifi cation;cell-cultured meat,regulations and standards.展开更多
Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research findings in the fi eld of animal-origin foods,involving food mate...Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research findings in the fi eld of animal-origin foods,involving food materials such as meat,aquatic products,milk,eggs,animal offals and edible insects.The research scope includes the quality and processing characteristics of food raw materials,the relationships of nutritional components and bioactive substances with human health,product flavor and sensory characteristics,the control of harmful substances during processing or cooking,product preservation,storage and packaging;microorganisms and fermentation,illegal drug residues and food safety detection;authenticity identifi cation;cell-cultured meat,regulations and standards.展开更多
Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research fi ndings in the field of animal-origin foods,involving food mate...Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research fi ndings in the field of animal-origin foods,involving food materials such as meat,aquatic products,milk,eggs,animal offals and edible insects.The research scope includes the quality and processing characteristics of food raw materials,the relationships of nutritional components and bioactive substances with human health,product flavor and sensory characteristics,the control of harmful substances during processing or cooking,product preservation,storage and packaging;microorganisms and fermentation,illegal drug residues and food safety detection;authenticity identifi cation;cell-cultured meat,regulations and standards.展开更多
Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research findings in the field of animal-origin foods,involving food mater...Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research findings in the field of animal-origin foods,involving food materials such as meat,aquatic products,milk,eggs,animal offals and edible insects.The research scope includes the quality and processing characteristics of food raw materials,the relationships of nutritional components and bioactive substances with human health,product flavor and sensory characteristics,the control of harmful substances during processing or cooking,product preservation,storage and packaging;microorganisms and fermentation,illegal drug residues and food safety detection;authenticity identification;cell-cultured meat,regulations and standards.展开更多
Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research findings in the field of animal-origin foods,involving food mater...Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research findings in the field of animal-origin foods,involving food materials such as meat,aquatic products,milk,eggs,animal offals and edible insects.The research scope includes the quality and processing characteristics of food raw materials,the relationships of nutritional components and bioactive substances with human health,product flavor and sensory characteristics,the control of harmful substances during processing or cooking,product preservation,storage and packaging;microorganisms and fermentation,illegal drug residues and food safety detection;authenticity identifi cation;cell-cultured meat,regulations and standards.展开更多
Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research findings in the field of animal-origin foods,involving food mater...Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research findings in the field of animal-origin foods,involving food materials such as meat,aquatic products,milk,eggs,animal offals and edible insects.The research scope includes the quality and processing characteristics of food raw materials,the relationships of nutritional components and bioactive substances with human health,product flavor and sensory characteristics,the control of harmful substances during processing or cooking,product preservation,storage and packaging;microorganisms and fermentation,illegal drug residues and food safety detection;authenticity identification;cell-cultured meat,regulations and standards.展开更多
This work uses GC-MS to analyze the bioactive compounds of Salvia rosmarinus essential oils(SREO)and evaluates their antibacterial,antifungal,and insecticidal effects,as well as the major component,1,8-cineole.Chemica...This work uses GC-MS to analyze the bioactive compounds of Salvia rosmarinus essential oils(SREO)and evaluates their antibacterial,antifungal,and insecticidal effects,as well as the major component,1,8-cineole.Chemical analysis identified 16 compounds accounting for 99.19%of the oil’s total content,with 1,8-cineole(33.17%),camphor(16.53%),α-pinene(14.46%),and camphene(8.14%)as the major constituents.Antimicrobial activities were assessed against pathogenic strains using minimal inhibit concentration(MIC)and minimum bactericidal concentration(MBC)assays.SREO exhibited a minimum MIC of 0.128%against P.aeruginosa,while 1,8-cineole showed a minimum MIC of 2.06%against the same strain,highlighting the higher efficacy of the complete oil compared to the isolated compound.Conversely,for antifungal activity,1,8-cineole displayed a lower MIC(2.06%)against A.niger and P.digitatum compared to SREO(4.125%against A.niger).Regarding aphicidal activity,results demonstrated the lethal effects of SREO on M.persicae,with an even more pronounced impact observed for 1,8-cineole.At one dose of 40μL/L air,SREO and 1,8-cineole resulted in 100%insect mortality within 24 h of exposure.After 12 h of exposure to SREO at concentrations of 5,10,20,and 40μL/L air,the mortality rates were 20%,36.67%,70%,and 93.33%.1,8-cineole showed maximum efficacy,achieving complete(100%)mortality within 12 h at 40μL/L air.展开更多
Cyclocarya paliurus(Batalin)Iljinskaja,as a unique and rare monocotyledonous plant in Southern China,is a promising and economical Chinese herbal medicine and functional food.People have conducted a number of research...Cyclocarya paliurus(Batalin)Iljinskaja,as a unique and rare monocotyledonous plant in Southern China,is a promising and economical Chinese herbal medicine and functional food.People have conducted a number of research on C.paliurus because of its rich triterpenoids.However,no comprehensive review has illustrated the composition and pharmacological activity of triterpenoids from C.paliurus.This review summarizes 177 triterpenoids from different parts of C.paliurus.The structures of compounds were elucidated,and their biosynthesis was inferred.The biological activities of compounds and triterpenoid-rich extracts,including anti-diabetes,antihyperlipidemia,anti-inflammatory,anticancer or cytotoxicity,antioxidation,etc.,were discussed.C.paliurus can be an important and valuable supplement to the food market.This review provides a reference for the further research and application of C.paliurus triterpenoids in the fields of foods and pharmaceuticals.展开更多
Polysaccharides,a class of complex macromolecules,are distinguished by their diverse biological functions and essential role in functional foods.The distinctive biological activities of polysaccharides from medicine a...Polysaccharides,a class of complex macromolecules,are distinguished by their diverse biological functions and essential role in functional foods.The distinctive biological activities of polysaccharides from medicine and food homology materials(MFPs),including immunomodulation,carbohydrate metabolism regulation,and lipid metabolism regulation properties,have attracted considerable scientific attention.The relationship between polysaccharides and gut microbiota is fundamental to human health,as polysaccharides demonstrate efficacy in ameliorating various conditions—from inflammatory bowel disease(IBD)to obesity and diabetes—through their influence on intestinal flora composition and diversity.Although polysaccharide research and applications show promise,significant challenges persist,particularly regarding extraction and purification methodologies,and the complete understanding of their biological mechanisms.Future investigations should prioritize understanding the correlation between polysaccharide structure and function,advancing large-scale production and application technologies,and establishing productive interdisciplinary collaborations.MFPs demonstrate significant potential for advancing sustainable development and human health,building upon current research findings.This paper presents a comprehensive review of global developments in the extraction,purification,structural characterization,biological activities,and applications of MFPs,emphasizing opportunities for scientific and technological innovations in specialized dietary food development.展开更多
The cosmetic sector is a multibillion-dollar industry that requires constant attention being paid to innovative product development and engagement.Notably,its market value is projected to exceed 750 billion U.S.dollar...The cosmetic sector is a multibillion-dollar industry that requires constant attention being paid to innovative product development and engagement.Notably,its market value is projected to exceed 750 billion U.S.dollars by 2025,and it is expanding as novel,climate-friendly,green,and sustainable components from natural sources are incorporated.This review is written based on the numerous reports on the potential applications of food-derived peptides while focusing on their possible uses in the formulation of cosmeceutical and skincare products.First,the production methods of bioactive peptides linked to cosmeceutical uses are described.Then,we discuss the obtainment and characterization of different anti-inflammatory,antimicrobial,antioxidant,anti-aging,and other pleiotropic peptides with their specific mechanisms,from various food sources.The review concludes with salient considerations of the cost of production and pilot scale operation,stability,compatibility,user safety,site-specificity,and delivery methods,when designing or developing biopeptide-based cosmeceutical products.展开更多
This study introduces a nanostructured MgO coating fabricated via anodization in a non-aqueous electrolyte,offering a novel approach to addressing the challenges of corrosion resistance and biofunctionality.The surfac...This study introduces a nanostructured MgO coating fabricated via anodization in a non-aqueous electrolyte,offering a novel approach to addressing the challenges of corrosion resistance and biofunctionality.The surface was characterized before and after immersion testing using field emission scanning electron microscopy(FESEM),energy-dispersive X-ray spectroscopy(EDX),and X-ray diffraction(XRD).Electrochemical impedance spectroscopy(EIS)and potentiodynamic polarization tests demonstrated a 2-fold reduction in the corrosion resistance compared to untreated magnesium.Biomineralization studies demonstrated the uniform formation of apatite with a Ca/P ratio of 1.35 on the nanostructured surface after 14 days in simulated body fluid(SBF),surpassing that of microstructured MgO.Hydrogen evolution decreased from 912±38μL cm^(-2)for untreated Mg to 615±32μL cm^(-2)for the Mg/MgO nanostructure and 545±29μL cm^(-2)for the Mg/Mg O/HA sample.These findings highlight the potential of nanostructured MgO coatings to advance Mg-based implants by providing enhanced corrosion protection,improved biomineralization,reduced hemolysis and increased cell viability,and reduced H_(2)generation.展开更多
Elaeagnaceae Juss. belongs to the family Elaeagnus L. and Shepherdia Nutt. This study aims at the significance and vegetative reproduction of species of the family (Elaeagnus macrophylla Thunb. and Shepherdia canadens...Elaeagnaceae Juss. belongs to the family Elaeagnus L. and Shepherdia Nutt. This study aims at the significance and vegetative reproduction of species of the family (Elaeagnus macrophylla Thunb. and Shepherdia canadensis (L.) Nutt.) in the national economy. The trials were carried out in the experimental site of SamSU’s Botanic Garden, which is named after Sharof Rashidov. The study’s findings are based on the results obtained by planting cuttings of S. canadensis and E. macrophylla species of varying sizes and durations, as well as the cuttings’ roots and the impacts of growth chemicals.展开更多
Sea buckthorn(Hippophae rhamnoides L.)is a natural homologous substance of medicine and food.Polysaccharide,as one of its primary active components,has very superior biological activity and can be used as a dietary su...Sea buckthorn(Hippophae rhamnoides L.)is a natural homologous substance of medicine and food.Polysaccharide,as one of its primary active components,has very superior biological activity and can be used as a dietary supplement for functional foods,with good commercial prospects.Although initial progress has been made in the study of sea buckthorn polysaccharides,related studies have been fragmented and lacked systematic and generalization.This manuscript presents a critical analysis and systematic summary of the extraction and purification methods,structural characterization and physicochemical properties,biological activity and potential mechanisms,and structure-activity relationships of sea buckthorn polysaccharides.Accumulating evidence has indicated that sea buckthorn polysaccharides,which were widely prepared by water extraction and column chromatography purifications,exhibited exhibit superior biological activities in vitro and in vivo,including antioxidant,immunomodulatory,anti-inflammatory,hepatorenal protective,antibacterial,antiviral,and prebiotic activities.After analysis,it was concluded that there is a correlation between the relevant activities of sea buckthorn polysaccharides and that the structure of sea buckthorn polysaccharides has a great influence on their biological activity.We reviewed the challenges and limitations of sea buckthorn polysaccharides,summarized the critical aspects,and provided suggestions for potential breakthroughs in the research and application of sea buckthorn polysaccharide.展开更多
基金financial support of the National Natural Science Foundation of China(32071327)National Key Research and Development Program of China(2016YFC1102003)+2 种基金International Science and Technology Cooperation Base of Shaanxi Province(2017GHJD-014)Science and Technology Program of Shaanxi Province(2019GY-200)Key Research and Development Program of Shaanxi Province(2019ZDLSF03-06)。
文摘The gradient porous Ti3Zr2Sn3Mo25Nb(TLM)alloy rods were fabricated through sintering the alloyed powder to a solid core.The porous sample was then modified by a Micro Arc Oxidation(MAO)treatment in an electrolyte containing calcium and phosphate,a hydrothermal treatment enabled secondary microporous hydroxyapatite(HA)coating,and a further bone morphogenetic protein-2(BMP-2)loading treatment through immersion and freeze-drying.The treatment led to an orderly secondary microporous coating containing HA nano-particles and evenly distributed BMP-2 in the porous coatings.As a result,osteoblasts could adhere and grow well on the coatings with a high cell adhesion rate and cell functional activity.The in-situ shear testing indicated that the interfacial strength had been enhanced significantly.Improvement of the bond formation and osseointegration with the titanium implant is attributed to increased surface area for the cell to attach,creating voids for the cell to grow in,and activating titanium surface by introducing bioactive ingredients such as HA and BMP-2.
文摘Trichoplusia ni caterpillars are polyphagous foliage-feeders and rarely likely to encounter aflatoxin B1 (AFB1), a mycotoxin produced by Aspergillus flavus and A. parasiticus, in their host plants. To determine how T. ni copes with AFB 1, we evaluated the toxicity ofAFB 1 to T. ni caterpillars at different developmental stages and found that AFB 1 tolerance significantly increases with larval development. Diet incorporation of AFB 1 at 1μg/g completely inhibited larval growth and pupation of newly hatched larvae, but 3μg/g AFB 1 did not have apparent toxic effects on larval growth and pupation of caterpillars that first consume this compound 10 days after hatching. Piperonyl butoxide, a general inhibitor of cytochrome P450 monooxygenases (P450s), reduced the toxicity of AFB 1, suggesting that AFB1 is bioactivated in T. ni and this bioactivation is mediated by P450s. Some plant allelochemicals, including flavonoids such as fiavones, furanocoumarins such as xanthotoxin and imperatorin, and furanochromones such as visnagin, that induce P450s in other lepidopteran larvae ameliorated AFBI toxicity, suggesting that P450s are also involved in AFB 1 detoxification in T. ni.
基金supported by the National Natural Science Foundation of China(51925304)Natural Science Foundation of Sichuan Province(2024NSFSC1023)Medical Research Program of Sichuan Province(Q23015).
文摘Bioactive molecules have shown great promise for effectively regulating various bone formation processes,rendering them attractive therapeutics for bone regeneration.However,the widespread application of bioactive molecules is limited by their low accumulation and short half-lives in vivo.Hydrogels have emerged as ideal carriers to address these challenges,offering the potential to prolong retention times at lesion sites,extend half-lives in vivo and mitigate side effects,avoid burst release,and promote adsorption under physiological conditions.This review systematically summarizes the recent advances in the development of bioactive molecule-loaded hydrogels for bone regeneration,encompassing applications in cranial defect repair,femoral defect repair,periodontal bone regeneration,and bone regeneration with underlying diseases.Additionally,this review discusses the current strategies aimed at improving the release profiles of bioactive molecules through stimuli-responsive delivery,carrier-assisted delivery,and sequential delivery.Finally,this review elucidates the existing challenges and future directions of hydrogel encapsulated bioactive molecules in the field of bone regeneration.
基金supported by Project of the Health Shanghai Initiative Special Fund(Medical-Sports Integration,Creating a New Model of Exercise for Health),No.JKSHZX-2022-02(to SC).
文摘Recent research has demonstrated the impact of physical activity on the prognosis of glioma patients,with evidence suggesting exercise may reduce mortality risks and aid neural regeneration.The role of the small ubiquitin-like modifier(SUMO)protein,especially post-exercise,in cancer progression,is gaining attention,as are the potential anti-cancer effects of SUMOylation.We used machine learning to create the exercise and SUMO-related gene signature(ESLRS).This signature shows how physical activity might help improve the outlook for low-grade glioma and other cancers.We demonstrated the prognostic and immunotherapeutic significance of ESLRS markers,specifically highlighting how murine double minute 2(MDM2),a component of the ESLRS,can be targeted by nutlin-3.This underscores the intricate relationship between natural compounds such as nutlin-3 and immune regulation.Using comprehensive CRISPR screening,we validated the effects of specific ESLRS genes on low-grade glioma progression.We also revealed insights into the effectiveness of Nutlin-3a as a potent MDM2 inhibitor through molecular docking and dynamic simulation.Nutlin-3a inhibited glioma cell proliferation and activated the p53 pathway.Its efficacy decreased with MDM2 overexpression,and this was reversed by Nutlin-3a or exercise.Experiments using a low-grade glioma mouse model highlighted the effect of physical activity on oxidative stress and molecular pathway regulation.Notably,both physical exercise and Nutlin-3a administration improved physical function in mice bearing tumors derived from MDM2-overexpressing cells.These results suggest the potential for Nutlin-3a,an MDM2 inhibitor,with physical exercise as a therapeutic approach for glioma management.Our research also supports the use of natural products for therapy and sheds light on the interaction of exercise,natural products,and immune regulation in cancer treatment.
基金supported by grants from the National Natural Science Foundation of China (82071104)Science and Technology Commission of Shanghai Municipality (23XD1434200/22Y21901000)+9 种基金Shanghai Hospital Development Center(SHDC12022120)National Clinical Research Center for Oral Diseases (NCRCO2021-omics-07)Shanghai Clinical Research Center for Oral Diseases (19MC1910600)Major and Key Cultivation Projects of Ninth People’s Hospital affiliated to Shanghai Jiao Tong University School of Medicine (JYZP006)Shanghai’s Top Priority Research Center (2022ZZ01017)CAMS Innovation Fund for Medical Sciences (2019-I2M-5-037)Fundamental research program funding of Ninth People’s Hospital affiliated to Shanghai Jiao Tong University School of Medicine(JYZZ237)Eastern Talent Plan Leading Project (BJZH2024001)partly supported by the Shanghai Ninth People’s Hospital affiliated with Shanghai Jiao Tong University,School of Medicine(JYJC202223)Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases (14DZ2260300)
文摘Pulpitis is a common infective oral disease in clinical situations.The regulatory mechanisms of immune defense in pulpitis are still being investigated.Osteomodulin(OMD)is a small leucine-rich proteoglycan family member distributed in bones and teeth.It is a bioactive protein that promotes osteogenesis and suppresses the apoptosis of human dental pulp stem cells(hDPSCs).In this study,the role of OMD in pulpitis and the OMD-induced regulatory mechanism were investigated.The OMD expression in normal and inflamed human pulp tissues was detected via immunofluorescence staining.Intriguingly,the OMD expression decreased in the inflammatory infiltration area of pulpitis specimens.The cellular experiments demonstrated that recombined human OMD could resist the detrimental effects of lipopolysaccharide(LPS)-induced inflammation.A conditional Omd knockout mouse model with pulpal inflammation was established.LPS-induced inflammatory impairment significantly increased in conditional Omd knockout mice,whereas OMD administration exhibited a protective effect against pulpitis.Mechanistically,the transcriptome alterations of OMD overexpression showed significant enrichment in the nuclear factor-κB(NF-κB)signaling pathway.Interleukin-1 receptor 1(IL1R1),a vital membrane receptor activating the NF-κB pathway,was significantly downregulated in OMD-overexpressing hDPSCs.Additionally,the interaction between OMD and IL1R1 was verified using co-immunoprecipitation and molecular docking.In vivo,excessive pulpal inflammation in Omd-deficient mice was rescued using an IL1R antagonist.Overall,OMD played a protective role in the inflammatory response via the IL1R1/NF-κB signaling pathway.OMD may optimize the immunomodulatory functions of hDPSCs and can be used for regenerative endodontics.
文摘Introduction It is necessary for an ideal bioceramic scaffold to have a suitable structure.The structure can affect the mechanical properties of the scaffold(i.e.,elastic modulus and compressive strength)and the biological properties of the scaffold(i.e.,degradability and cell growth rate).Lattice structure is a kind of periodic porous structure,which has some advantages of light weight and high strength,and is widely used in the preparation of bioceramic scaffolders.For the structure of the scaffold,high porosity and large pore size are important for bone growth,bone integration and promoting good mechanical interlocking between neighboring bones and the scaffold.However,scaffolds with a high porosity often lack mechanical strength.In addition,different parts of the bone have different structural requirements.In this paper,scaffolds with a non-uniform structure or a hierarchical structure were designed,with loose and porous exterior to facilitate cell adhesion,osteogenic differentiation and vascularization as well as relatively dense interior to provide sufficient mechanical support for bone repair.Methods In this work,composite ceramics scaffolds with 10%akermanite content were prepared by DLP technology.The scaffold had a high porosity outside to promote the growth of bone tissue,and a low porosity inside to withstand external forces.The compressive strength,fracture form,in-vitro degradation performance and bioactivity of graded bioceramic scaffolds were investigated.The models of scaffolds were imported into the DLP printer with a 405 nm light.The samples were printed with the intensity of 8 mJ/cm^(2)and a layer thickness of 50μm.Finally,the ceramic samples were sintered at 1100℃.The degradability of the hierarchical gyroid bioceramic scaffolds was evaluated through immersion in Tris-HCl solution and SBF solution at a ratio of 200 mL/g.The bioactivity of bioceramic was obtained via immersing them in SBF solution for two weeks.The concentrations of calcium,phosphate,silicon,and magnesium ions in the soaking solution were determined by an inductively coupled plasma optical emission spectrometer.Results and discussion In this work,a hierarchical Gyroid structure HA-AK10 scaffold(sintered at 1100℃)with a radial internal porosity of 50%and an external porosity of 70%is prepared,and the influence of structural form on the compressive strength and degradation performance of the scaffold is investigated.The biological activity of the bioceramics in vitro is also verified.The mechanical simulation results show that the stress distribution corresponds to the porosity distribution of the structure,and the low porosity is larger and the overall stress concentration phenomenon does not appear.After soaking in SBF solution,Si—OH is firstly formed on the surface of bioceramics,and then silicon gel layer is produced due to the presence of calcium and silicon ions.The silicon gel layer is dissociated into negatively charged groups under alkaline environment secondary adsorption of calcium ions and phosphate ions,forming amorphous calcium phosphate,and finally amorphous calcium phosphate crystals and adsorption of carbonate ions,forming carbonate hydroxyapatite.This indicates that the composite bioceramics have a good biological activity in-vitro and can provide a good environment for the growth of bone cells.A hierarchical Gyroid ceramic scaffold with a bone geometry is prepared via applying the hierarchical structure to the bone contour scaffold.The maximum load capacity of the hierarchical Gyroid ceramic scaffold is 8 times that of the uniform structure.Conclusions The hierarchical structure scaffold designed had good overall compressive performance,good degradation performance,and still maintained a good mechanical stability during degradation.In addition,in-vitro biological experimental results showed that the surface graded composite scaffold could have a good in-vitro biological activity and provide a good environment for bone cells.Compared to the heterosexual structure,the graded scaffold had greater mechanical properties.
文摘Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research fi ndings in the fi eld of animal-origin foods,involving food materials such as meat,aquatic products,milk,eggs,animal offals and edible insects.The research scope includes the quality and processing characteristics of food raw materials,the relationships of nutritional components and bioactive substances with human health,product fl avor and sensory characteristics,the control of harmful substances during processing or cooking,product preservation,storage and packaging;microorganisms and fermentation,illegal drug residues and food safety detection;authenticity identifi cation;cell-cultured meat,regulations and standards.
文摘Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research fi ndings in the fi eld of animal-origin foods,involving food materials such as meat,aquatic products,milk,eggs,animal offals and edible insects.The research scope includes the quality and processing characteristics of food raw materials,the relationships of nutritional components and bioactive substances with human health,product fl avor and sensory characteristics,the control of harmful substances during processing or cooking,product preservation,storage and packaging;microorganisms and fermentation,illegal drug residues and food safety detection;authenticity identifi cation;cell-cultured meat,regulations and standards.
文摘Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research findings in the fi eld of animal-origin foods,involving food materials such as meat,aquatic products,milk,eggs,animal offals and edible insects.The research scope includes the quality and processing characteristics of food raw materials,the relationships of nutritional components and bioactive substances with human health,product flavor and sensory characteristics,the control of harmful substances during processing or cooking,product preservation,storage and packaging;microorganisms and fermentation,illegal drug residues and food safety detection;authenticity identifi cation;cell-cultured meat,regulations and standards.
文摘Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research fi ndings in the field of animal-origin foods,involving food materials such as meat,aquatic products,milk,eggs,animal offals and edible insects.The research scope includes the quality and processing characteristics of food raw materials,the relationships of nutritional components and bioactive substances with human health,product flavor and sensory characteristics,the control of harmful substances during processing or cooking,product preservation,storage and packaging;microorganisms and fermentation,illegal drug residues and food safety detection;authenticity identifi cation;cell-cultured meat,regulations and standards.
文摘Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research findings in the field of animal-origin foods,involving food materials such as meat,aquatic products,milk,eggs,animal offals and edible insects.The research scope includes the quality and processing characteristics of food raw materials,the relationships of nutritional components and bioactive substances with human health,product flavor and sensory characteristics,the control of harmful substances during processing or cooking,product preservation,storage and packaging;microorganisms and fermentation,illegal drug residues and food safety detection;authenticity identification;cell-cultured meat,regulations and standards.
文摘Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research findings in the field of animal-origin foods,involving food materials such as meat,aquatic products,milk,eggs,animal offals and edible insects.The research scope includes the quality and processing characteristics of food raw materials,the relationships of nutritional components and bioactive substances with human health,product flavor and sensory characteristics,the control of harmful substances during processing or cooking,product preservation,storage and packaging;microorganisms and fermentation,illegal drug residues and food safety detection;authenticity identifi cation;cell-cultured meat,regulations and standards.
文摘Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research findings in the field of animal-origin foods,involving food materials such as meat,aquatic products,milk,eggs,animal offals and edible insects.The research scope includes the quality and processing characteristics of food raw materials,the relationships of nutritional components and bioactive substances with human health,product flavor and sensory characteristics,the control of harmful substances during processing or cooking,product preservation,storage and packaging;microorganisms and fermentation,illegal drug residues and food safety detection;authenticity identification;cell-cultured meat,regulations and standards.
基金funded by Researchers Supporting Project number(RSP2025R119),King Saud University,Riyadh,Saudi Arabia.
文摘This work uses GC-MS to analyze the bioactive compounds of Salvia rosmarinus essential oils(SREO)and evaluates their antibacterial,antifungal,and insecticidal effects,as well as the major component,1,8-cineole.Chemical analysis identified 16 compounds accounting for 99.19%of the oil’s total content,with 1,8-cineole(33.17%),camphor(16.53%),α-pinene(14.46%),and camphene(8.14%)as the major constituents.Antimicrobial activities were assessed against pathogenic strains using minimal inhibit concentration(MIC)and minimum bactericidal concentration(MBC)assays.SREO exhibited a minimum MIC of 0.128%against P.aeruginosa,while 1,8-cineole showed a minimum MIC of 2.06%against the same strain,highlighting the higher efficacy of the complete oil compared to the isolated compound.Conversely,for antifungal activity,1,8-cineole displayed a lower MIC(2.06%)against A.niger and P.digitatum compared to SREO(4.125%against A.niger).Regarding aphicidal activity,results demonstrated the lethal effects of SREO on M.persicae,with an even more pronounced impact observed for 1,8-cineole.At one dose of 40μL/L air,SREO and 1,8-cineole resulted in 100%insect mortality within 24 h of exposure.After 12 h of exposure to SREO at concentrations of 5,10,20,and 40μL/L air,the mortality rates were 20%,36.67%,70%,and 93.33%.1,8-cineole showed maximum efficacy,achieving complete(100%)mortality within 12 h at 40μL/L air.
基金financially supported by the National Natural Science Foundation of China(31960090,32160562)the Natural Science Foundation of Jiangxi Province(20224BAB215046)the Project Program of State Key Laboratory of Food Science and Resources,Nanchang University(SKLF-ZZB-202129,SKLF-ZZB-202324,SKLF-KF-202216)。
文摘Cyclocarya paliurus(Batalin)Iljinskaja,as a unique and rare monocotyledonous plant in Southern China,is a promising and economical Chinese herbal medicine and functional food.People have conducted a number of research on C.paliurus because of its rich triterpenoids.However,no comprehensive review has illustrated the composition and pharmacological activity of triterpenoids from C.paliurus.This review summarizes 177 triterpenoids from different parts of C.paliurus.The structures of compounds were elucidated,and their biosynthesis was inferred.The biological activities of compounds and triterpenoid-rich extracts,including anti-diabetes,antihyperlipidemia,anti-inflammatory,anticancer or cytotoxicity,antioxidation,etc.,were discussed.C.paliurus can be an important and valuable supplement to the food market.This review provides a reference for the further research and application of C.paliurus triterpenoids in the fields of foods and pharmaceuticals.
基金supported by the National Key R&D Program of China(No.2023YFF1104305)。
文摘Polysaccharides,a class of complex macromolecules,are distinguished by their diverse biological functions and essential role in functional foods.The distinctive biological activities of polysaccharides from medicine and food homology materials(MFPs),including immunomodulation,carbohydrate metabolism regulation,and lipid metabolism regulation properties,have attracted considerable scientific attention.The relationship between polysaccharides and gut microbiota is fundamental to human health,as polysaccharides demonstrate efficacy in ameliorating various conditions—from inflammatory bowel disease(IBD)to obesity and diabetes—through their influence on intestinal flora composition and diversity.Although polysaccharide research and applications show promise,significant challenges persist,particularly regarding extraction and purification methodologies,and the complete understanding of their biological mechanisms.Future investigations should prioritize understanding the correlation between polysaccharide structure and function,advancing large-scale production and application technologies,and establishing productive interdisciplinary collaborations.MFPs demonstrate significant potential for advancing sustainable development and human health,building upon current research findings.This paper presents a comprehensive review of global developments in the extraction,purification,structural characterization,biological activities,and applications of MFPs,emphasizing opportunities for scientific and technological innovations in specialized dietary food development.
文摘The cosmetic sector is a multibillion-dollar industry that requires constant attention being paid to innovative product development and engagement.Notably,its market value is projected to exceed 750 billion U.S.dollars by 2025,and it is expanding as novel,climate-friendly,green,and sustainable components from natural sources are incorporated.This review is written based on the numerous reports on the potential applications of food-derived peptides while focusing on their possible uses in the formulation of cosmeceutical and skincare products.First,the production methods of bioactive peptides linked to cosmeceutical uses are described.Then,we discuss the obtainment and characterization of different anti-inflammatory,antimicrobial,antioxidant,anti-aging,and other pleiotropic peptides with their specific mechanisms,from various food sources.The review concludes with salient considerations of the cost of production and pilot scale operation,stability,compatibility,user safety,site-specificity,and delivery methods,when designing or developing biopeptide-based cosmeceutical products.
基金The authors thank the DFG(KI 2169/2-1)the European Union(EU-RIA NOMAD,101091669)for funding this work+1 种基金The Micro and Nanoanalytics Facility(MNaF),funded by the DFG(DFG INST 221/131-1)at the University of Siegen,and the Materials Science Faculty of the Isfahan University of Technology(IUT)were utilized for some of the work and analysis,respectively.
文摘This study introduces a nanostructured MgO coating fabricated via anodization in a non-aqueous electrolyte,offering a novel approach to addressing the challenges of corrosion resistance and biofunctionality.The surface was characterized before and after immersion testing using field emission scanning electron microscopy(FESEM),energy-dispersive X-ray spectroscopy(EDX),and X-ray diffraction(XRD).Electrochemical impedance spectroscopy(EIS)and potentiodynamic polarization tests demonstrated a 2-fold reduction in the corrosion resistance compared to untreated magnesium.Biomineralization studies demonstrated the uniform formation of apatite with a Ca/P ratio of 1.35 on the nanostructured surface after 14 days in simulated body fluid(SBF),surpassing that of microstructured MgO.Hydrogen evolution decreased from 912±38μL cm^(-2)for untreated Mg to 615±32μL cm^(-2)for the Mg/MgO nanostructure and 545±29μL cm^(-2)for the Mg/Mg O/HA sample.These findings highlight the potential of nanostructured MgO coatings to advance Mg-based implants by providing enhanced corrosion protection,improved biomineralization,reduced hemolysis and increased cell viability,and reduced H_(2)generation.
文摘Elaeagnaceae Juss. belongs to the family Elaeagnus L. and Shepherdia Nutt. This study aims at the significance and vegetative reproduction of species of the family (Elaeagnus macrophylla Thunb. and Shepherdia canadensis (L.) Nutt.) in the national economy. The trials were carried out in the experimental site of SamSU’s Botanic Garden, which is named after Sharof Rashidov. The study’s findings are based on the results obtained by planting cuttings of S. canadensis and E. macrophylla species of varying sizes and durations, as well as the cuttings’ roots and the impacts of growth chemicals.
基金supported by the National Natural Science Foundation of China(32201994)。
文摘Sea buckthorn(Hippophae rhamnoides L.)is a natural homologous substance of medicine and food.Polysaccharide,as one of its primary active components,has very superior biological activity and can be used as a dietary supplement for functional foods,with good commercial prospects.Although initial progress has been made in the study of sea buckthorn polysaccharides,related studies have been fragmented and lacked systematic and generalization.This manuscript presents a critical analysis and systematic summary of the extraction and purification methods,structural characterization and physicochemical properties,biological activity and potential mechanisms,and structure-activity relationships of sea buckthorn polysaccharides.Accumulating evidence has indicated that sea buckthorn polysaccharides,which were widely prepared by water extraction and column chromatography purifications,exhibited exhibit superior biological activities in vitro and in vivo,including antioxidant,immunomodulatory,anti-inflammatory,hepatorenal protective,antibacterial,antiviral,and prebiotic activities.After analysis,it was concluded that there is a correlation between the relevant activities of sea buckthorn polysaccharides and that the structure of sea buckthorn polysaccharides has a great influence on their biological activity.We reviewed the challenges and limitations of sea buckthorn polysaccharides,summarized the critical aspects,and provided suggestions for potential breakthroughs in the research and application of sea buckthorn polysaccharide.