The whole-process project cost management based on building information modeling(BIM)is a new management method,aiming to realize the comprehensive optimization and improvement of project cost management through the a...The whole-process project cost management based on building information modeling(BIM)is a new management method,aiming to realize the comprehensive optimization and improvement of project cost management through the application of BIM technology.This paper summarizes and analyzes the whole-process project cost management based on BIM,aiming to explore its application and development prospects in the construction industry.Firstly,this paper introduces the role and advantages of BIM technology in engineering cost management,including information integration,data sharing,and collaborative work.Secondly,the paper analyzes the key technologies and methods of the whole-process project cost management based on BIM,including model construction,data management,and cost control.In addition,the paper also discusses the challenges and limitations of the whole-process BIM project cost management,such as the inconsistency of technical standards,personnel training,and consciousness change.Finally,the paper summarizes the advantages and development prospects of the whole-process project cost management based on BIM and puts forward the direction and suggestions for future research.Through the research of this paper,it can provide a reference for construction cost management and promote innovation and development in the construction industry.展开更多
As-built building information model (BIM) is an urgent need of the architecture, engineering, construction and facilities management (AEC/FM) community. However, its creation procedure is still labor-intensive and...As-built building information model (BIM) is an urgent need of the architecture, engineering, construction and facilities management (AEC/FM) community. However, its creation procedure is still labor-intensive and far from maturity. Taking advantage of prevalence of digital cameras and the development of advanced computer vision technology, the paper proposes to reconstruct a building facade and recognize its surface materials from images taken from various points of view. These can serve as initial steps towards automatic generation of as-built BIM. Specifically, 3D point clouds are generated from multiple images using structure from motion method and then segmented into planar components, which are further recognized as different structural components through knowledge based reasoning. Windows are detected through a multilayered complementary strategy by combining detection results from every semantic layer. A novel machine learning based 3D material recognition strategy is presented. Binary classifiers are trained through support vector machines. Material type at a given 3D location is predicted by all its corresponding 2D feature points. Experimental results from three existing buildings validate the proposed system.展开更多
In view of the limitations of traditional measurement methods in the field of building information,such as complex operation,low timeliness and poor accuracy,a new way of combining three-dimensional scanning technolog...In view of the limitations of traditional measurement methods in the field of building information,such as complex operation,low timeliness and poor accuracy,a new way of combining three-dimensional scanning technology and BIM(Building Information Modeling)model was discussed.Focused on the efficient acquisition of building geometric information using the fast-developing 3D point cloud technology,an improved deep learning-based 3D point cloud recognition method was proposed.The method optimised the network structure based on RandLA-Net to adapt to the large-scale point cloud processing requirements,while the semantic and instance features of the point cloud were integrated to significantly improve the recognition accuracy and provide a precise basis for BIM model remodeling.In addition,a visual BIM model generation system was developed,which systematically transformed the point cloud recognition results into BIM component parameters,automatically constructed BIM models,and promoted the open sharing and secondary development of models.The research results not only effectively promote the automation process of converting 3D point cloud data to refined BIM models,but also provide important technical support for promoting building informatisation and accelerating the construction of smart cities,showing a wide range of application potential and practical value.展开更多
Building envelope is a fence that controls heat exchange between interior and exterior and plays an essential role in providing thermal comfort conditions of residents. In recent years, due to the necessity of conserv...Building envelope is a fence that controls heat exchange between interior and exterior and plays an essential role in providing thermal comfort conditions of residents. In recent years, due to the necessity of conserving energy and also preventing increased environmental pollution, the importance of sustainable construction has been doubled. Checking the problems of thermal behavior of the building envelope materials, and what influences in the heating and cooling loads exerted and energy consumption of buildings, are the questions that this research seeks to answer. In this regard, building information modelling analysis (BIM) has worthy contribution in the completion process of sustainable design;thus using software Design Builder, it is paid attention to simulation of the thermal behavior of two types of defined materials for the building envelope that was designed as a Research Institute of Renewable Energy of Yazd University. For Type 1 materials, two layers of brick have been selected, and for Type 2 a thermal insulation layer also added it. Results of the analysis showed that the use of materials Type 2 in the cooling load %4.8 and in the thermal load %62.5 reduction can be achieved which means reducing the load on active system and thus reducing the initial cost of building. Also reduction in annual energy consumption by almost %2.4 for cooling and %62.9 for heating buildings have been achieved, which makes saving non-renewable energy consumption, and consequently reducing environmental pollution as well as reducing current costs will be established.展开更多
Building information modeling(BIM)object classification takes a lot of time and energy.Misclassification or omission of any object may lead to the emergence of abnormal results,which have a great impact on the project...Building information modeling(BIM)object classification takes a lot of time and energy.Misclassification or omission of any object may lead to the emergence of abnormal results,which have a great impact on the project workflow and results.Roundly understanding BIM object classification,by improving Swin Transformer classifier algorithm parameters,using the model primitives extracted from IFC format BIM model file,deep learning of 7 types of BIM object categories is taken.Through the performance and evaluation indicators obtained in training,the results improve the classification accuracy.展开更多
The multi-level modeling technology of Building Information Modeling(BIM),combined with Three-dimensional Geographic Information System(3DGIS)macro-scene visualization technology and location information,can realize t...The multi-level modeling technology of Building Information Modeling(BIM),combined with Three-dimensional Geographic Information System(3DGIS)macro-scene visualization technology and location information,can realize the transmission of decentralized information from various disciplines to multi-disciplinary collaborative information sharing services.It can be applied independently for the whole life cycle,which plays a positive role in reducing the cost and improving the efficiency of engineering planning,design,construction,operation,and maintenance.In this paper,the data integration and function integration methods of 3DGIS and BIM are designed.In order to avoid the breaking problems caused by attribute information loss and excessive simplification in the process of BIM data integration,the attribute mapping between 3DGIS and BIM based on Industry Foundation Classes(IFC)and City Geography Markup Language(CityGML)and the data simplification method considering the geometric characteristics of BIM are designed.By setting the relevant preconditions and thresholds of patch merging,on the premise of maintaining the structural characteristics of BIM data surface,reduce the amount of model data to improve the efficiency of BIM data loading,rendering and display effect in 3D geospatial scene.Through the data and function integration of 3DGIS and BIM,we can effectively manage the data of large-scale model,and calculate and obtain the geospatial location and direction of key parts of buildings through the coordinate transformation of BIM,which can effectively assist the rapid and accurate positioning of BIM in virtual 3D scene and expand the visualization ability of 3DGIS.By effectively integrating 3DGIS and BIM,this paper gives full play to the spatial management advantages of 3DGIS and the component management advantages of BIM.The rationality and operability of the method are verified by its application in the operation and maintenance management project of concealed facilities in actual buildings.展开更多
As the number of high-density buildings has increased,the management of property with complex condominium ownership has become an ongoing challenge in property registration and management.The three-dimensional(3D)mode...As the number of high-density buildings has increased,the management of property with complex condominium ownership has become an ongoing challenge in property registration and management.The three-dimensional(3D)modeling of condominium ownership has emerged as an effective means of meeting this challenge and has attracted great attention from fields such as geographical information science,urban planning and management,and property administration.Much progress has been made in building 3D models of condominium ownership;however,existing studies are all on a case-by-case basis and have left some critical issues unsolved,such as vague ownership boundaries,spatial rights without physical counterparts,and the unfixed spatial extent.The purpose of this study is to construct a 3D building ownership model with multiple levels of detail in the context of Chinese law to overcome the defects of 3D models above.This 3D model is presented in a case study of China by subdividing ownership boundaries based on clarifying the internal structure of condominium ownership,embedding the apportionment mechanism,and integrating the semantics,attributes,and geometry associated with the physical and legal entity of the condominium.The proposed 3D model is implemented by extending Building Information Modeling(BIM)based on the Industry Foundation Classes(IFC)and inheriting legal information from Land Administration Domain Model(LADM).In this study,examples of condominium ownership from three real legal dispute cases in China are analyzed and tested.The study clearly demonstrates that the proposed model can provide a better cognitive understanding of the legal space of property by rendering unambiguous ownership boundaries and presenting the spatial internal structure of ownership,which offers solid technical support for dealing with property registration and many legal dispute cases about condominium ownership.展开更多
This study unfolds an innovative approach aiming to address the critical role of building design in global energy consumption, focusing on optimizing the Window-to-Wall Ratio (WWR), since buildings account for approxi...This study unfolds an innovative approach aiming to address the critical role of building design in global energy consumption, focusing on optimizing the Window-to-Wall Ratio (WWR), since buildings account for approximately 30% of total energy consumed worldwide. The greatest contributors to energy expenditure in buildings are internal artificial lighting and heating and cooling systems. The WWR, determined by the proportion of the building’s glazed area to its wall area, is a significant factor influencing energy efficiency and minimizing energy load. This study introduces the development of a semi-automated computer model designed to offer a real-time, interactive simulation environment, fostering improving communication and engagement between designers and owners. The said model serves to optimize both the WWR and building orientation to align with occupants’ needs and expectations, subsequently reducing annual energy consumption and enhancing the overall building energy performance. The integrated model incorporates Building Information Modeling (BIM), Virtual Reality (VR), and Energy Analysis tools deployed at the conceptual design stage, allowing for the amalgamation of owners’ inputs in the design process and facilitating the creation of more realistic and effective design strategies.展开更多
Life Cycle Cost Analysis (LCCA) provides a systematic approach to assess the total cost associated with owning, operating, and maintaining assets throughout their entire life. BIM empowers architects and designers to ...Life Cycle Cost Analysis (LCCA) provides a systematic approach to assess the total cost associated with owning, operating, and maintaining assets throughout their entire life. BIM empowers architects and designers to perform real-time evaluations to explore various design options. However, when integrated with LCCA, BIM provides a comprehensive economic perspective that helps stakeholders understand the long-term financial implications of design decisions. This study presents a methodology for developing a model that seamlessly integrates BIM and LCCA during the conceptual design stage of buildings. This integration allows for a comprehensive evaluation and analysis of the design process, ensuring that the development aligns with the principles of low carbon emissions by employing modular construction, 3D concrete printing methods, and different building design alternatives. The model considers the initial construction costs in addition to all the long-term operational, maintenance, and salvage values. It combines various tools and data through different modules, including energy analysis, Life Cycle Assessment (LCA), and Life Cycle Cost Analysis (LCCA) to execute a comprehensive assessment of the financial implications of a specific design option throughout the lifecycle of building projects. The development of the said model and its implementation involves the creation of a new plug-in for the BIM tool (i.e., Autodesk Revit) to enhance its functionalities and capabilities in forecasting the life-cycle costs of buildings in addition to generating associated cash flows, creating scenarios, and sensitivity analyses in an automatic manner. This model empowers designers to evaluate and justify their initial investments while designing and selecting potential construction methods for buildings, and enabling stakeholders to make informed decisions by assessing different design alternatives based on long-term financial considerations during the early stages of design.展开更多
超高层建筑结构复杂,施工周期长,在进行超高层建筑结构监测的过程中,如何准确、及时地完成监测内容是监测的重点和难点.针对以上问题,结合某超高层结构,研究了多源信息融合方法、建筑信息模型(building information modelling,BIM)技术...超高层建筑结构复杂,施工周期长,在进行超高层建筑结构监测的过程中,如何准确、及时地完成监测内容是监测的重点和难点.针对以上问题,结合某超高层结构,研究了多源信息融合方法、建筑信息模型(building information modelling,BIM)技术在结构监测方案制定、三维可视化施工模拟指导传感器安装及可视化智能监测系统搭建等方面的具体应用.解决了超高层建筑结构监测过程中,由于施工过程复杂并且传感器种类、数量过多导致的未能及时完成监测内容的问题,搭建基于BIM技术的智能监测平台,可以更直观地读取监测数据,为类似的超高层建筑施工过程监测项目提供参考.展开更多
Purpose-The rapid development of China’s railway construction has led to an increase in data generated by the high-speed rail(HSR)catenary system.Traditional management methods struggle with challenges such as poor i...Purpose-The rapid development of China’s railway construction has led to an increase in data generated by the high-speed rail(HSR)catenary system.Traditional management methods struggle with challenges such as poor information sharing,disconnected business applications and insufficient intelligence throughout the lifecycle.This study aims to address these issues by applying building information modeling(BIM)technology to improve lifecycle management efficiency for HSR catenary systems.Design/methodology/approach-Based on the lifecycle management needs of catenary engineering,incorporating the intelligent HSR“Model-Data Driven,Axis-Plane Coordination”philosophy,this paper constructs a BIM-based lifecycle management framework for HSR catenary engineering.Findings-This study investigates the full-process lifecycle management of the catenary system across various stages of design,manufacture,construction and operation,exploring integrated BIM models and data transmission methods,along with key technologies for BIM model transmission,transformation and lightweighting.Originality/value-This study establishes a lossless information circulation and transmission system for HSR catenary lifecycle management.Multi-stage applications are verified through the construction of the Chongqing-Kunming High-Speed Railway,comprehensive advancing the intelligent promotion and highquality development of catenary engineering.展开更多
To explore the influence of emergency evacuation signs on passenger behavior during subway fires and improve evacuation efficiency in emergencies,this paper proposes a dynamic emergency evacuation sign system.A simula...To explore the influence of emergency evacuation signs on passenger behavior during subway fires and improve evacuation efficiency in emergencies,this paper proposes a dynamic emergency evacuation sign system.A simulation platform integrating building information modeling(BIM)and virtual reality(VR)technologies was em-ployed to create subway fire evacuation scenarios using both the current and proposed dynamic emergency evacuation signage systems.Through simulation experiments,fine-grained microscopic data on passenger behavior was collected.Seven indicators were selected to assess evacuation efficiency and wayfinding difficulty.The analysis explored the influence of evacuation signs on passenger behavior in both overall and decision-making areas,thereby validating the effectiveness of the new emergency evacuation signage system.The results show that the dynamic evacuation signage system significantly improves overall passenger evacuation efficiency and reduces decision-making errors.It also improves wayfinding efficiency in critical decision areas by reducing the need for direction identification,minimizing stopping times,and lowering the frequency of decision errors.The method for evaluating the effects of emergency evacuation signs on passenger evacuation behavior proposed in this study provides a robust theoretical basis for the design and optimization of emergency-oriented signs.展开更多
针对实景三维与建筑信息模型(building information model,BIM)集成中面临的数据格式多样、坐标体系不一、数据体量巨大和空间组织繁杂等诸多问题,结合深圳市实践,提出了BIM标准、坐标转换、模型轻量化和模型组织调度等关键技术,并在工...针对实景三维与建筑信息模型(building information model,BIM)集成中面临的数据格式多样、坐标体系不一、数据体量巨大和空间组织繁杂等诸多问题,结合深圳市实践,提出了BIM标准、坐标转换、模型轻量化和模型组织调度等关键技术,并在工程实践中验证了可行性。展开更多
To promote the visualisation and informatisation of the construction process of precast foamed lightweight concrete wallboards(PFLCWs),from the analysis of the construction requirements of PFLCWs,three key constructio...To promote the visualisation and informatisation of the construction process of precast foamed lightweight concrete wallboards(PFLCWs),from the analysis of the construction requirements of PFLCWs,three key construction technologies based on building information modelling(BIM),namely,parameterised modelling for the PFLCW layout design,drawing generation to draw the PFLCW layout and quantity statistics for extracting PFLCW quantities,are proposed.Then,a reinforced concrete(RC)frame infilled with PFLCW is considered the test model to verify the feasibility of the aforementioned technologies.The results show that PFLCW layout design can be accomplished rapidly and visually using parameterised modelling technology.The PFLCW layout diagram can be generated directly using drawing generation technology.The proposed quantity statistics technology enables the automatic export of PFLCW bills of quantities.The built parameterised model helps construction workers rapidly and intuitively understand the specific layout details of PFLCWs.Moreover,the generated layout drawing and the bills of quantities based on the parameterised model can guide the production and on-site installation of PFLCWs.The research conclusions can serve as a practical guide and technical support for PFLCW engineering applications.展开更多
The high-speed railway construction involves multiple professional fields,such as railway design,construction,and supervision.This paper architects the"BIM+"project refined management platform,designs the pl...The high-speed railway construction involves multiple professional fields,such as railway design,construction,and supervision.This paper architects the"BIM+"project refined management platform,designs the platform's logical architecture,physical architecture,and solves several key technology difficulties.This"BIM+"platform has been applied on the Jingxiong Bridge Project and achieved all-round,whole-process and multi-management of high-speed railway engineering construction.It significantly improves the level of construction management,and plays a role in promoting the development of high-speed railway construction informatization.展开更多
As the world pays more attention to low-earbon and sustainable development,there's a growing trend in architecture,engineering and construction fields to construct greener,more energy efficient and more sustainabl...As the world pays more attention to low-earbon and sustainable development,there's a growing trend in architecture,engineering and construction fields to construct greener,more energy efficient and more sustainable buildings with the help of building information modeling(BIM).As BIM application becomes popular in industry,more and more scholars and engineers point out that an integrated construction environment is better for BIM's fully functional capability.This paper illustrates the relationship between BIM application and an integrated construction environment based on case survey data.It is found that even though an integration construction environment is not necessary in BIM application,the statistical results showed that DBB(design-bid-build)and CM(construction management)modes have great differences in BIM's application implementation scope and implementation deepness,while DB and CM modes do not.展开更多
文摘The whole-process project cost management based on building information modeling(BIM)is a new management method,aiming to realize the comprehensive optimization and improvement of project cost management through the application of BIM technology.This paper summarizes and analyzes the whole-process project cost management based on BIM,aiming to explore its application and development prospects in the construction industry.Firstly,this paper introduces the role and advantages of BIM technology in engineering cost management,including information integration,data sharing,and collaborative work.Secondly,the paper analyzes the key technologies and methods of the whole-process project cost management based on BIM,including model construction,data management,and cost control.In addition,the paper also discusses the challenges and limitations of the whole-process BIM project cost management,such as the inconsistency of technical standards,personnel training,and consciousness change.Finally,the paper summarizes the advantages and development prospects of the whole-process project cost management based on BIM and puts forward the direction and suggestions for future research.Through the research of this paper,it can provide a reference for construction cost management and promote innovation and development in the construction industry.
基金supported by National Natural Science Foundation of China(No.51208425)Research Foundation of Northwestern Polytechnical University(No.JCY20130127)
文摘As-built building information model (BIM) is an urgent need of the architecture, engineering, construction and facilities management (AEC/FM) community. However, its creation procedure is still labor-intensive and far from maturity. Taking advantage of prevalence of digital cameras and the development of advanced computer vision technology, the paper proposes to reconstruct a building facade and recognize its surface materials from images taken from various points of view. These can serve as initial steps towards automatic generation of as-built BIM. Specifically, 3D point clouds are generated from multiple images using structure from motion method and then segmented into planar components, which are further recognized as different structural components through knowledge based reasoning. Windows are detected through a multilayered complementary strategy by combining detection results from every semantic layer. A novel machine learning based 3D material recognition strategy is presented. Binary classifiers are trained through support vector machines. Material type at a given 3D location is predicted by all its corresponding 2D feature points. Experimental results from three existing buildings validate the proposed system.
文摘In view of the limitations of traditional measurement methods in the field of building information,such as complex operation,low timeliness and poor accuracy,a new way of combining three-dimensional scanning technology and BIM(Building Information Modeling)model was discussed.Focused on the efficient acquisition of building geometric information using the fast-developing 3D point cloud technology,an improved deep learning-based 3D point cloud recognition method was proposed.The method optimised the network structure based on RandLA-Net to adapt to the large-scale point cloud processing requirements,while the semantic and instance features of the point cloud were integrated to significantly improve the recognition accuracy and provide a precise basis for BIM model remodeling.In addition,a visual BIM model generation system was developed,which systematically transformed the point cloud recognition results into BIM component parameters,automatically constructed BIM models,and promoted the open sharing and secondary development of models.The research results not only effectively promote the automation process of converting 3D point cloud data to refined BIM models,but also provide important technical support for promoting building informatisation and accelerating the construction of smart cities,showing a wide range of application potential and practical value.
文摘Building envelope is a fence that controls heat exchange between interior and exterior and plays an essential role in providing thermal comfort conditions of residents. In recent years, due to the necessity of conserving energy and also preventing increased environmental pollution, the importance of sustainable construction has been doubled. Checking the problems of thermal behavior of the building envelope materials, and what influences in the heating and cooling loads exerted and energy consumption of buildings, are the questions that this research seeks to answer. In this regard, building information modelling analysis (BIM) has worthy contribution in the completion process of sustainable design;thus using software Design Builder, it is paid attention to simulation of the thermal behavior of two types of defined materials for the building envelope that was designed as a Research Institute of Renewable Energy of Yazd University. For Type 1 materials, two layers of brick have been selected, and for Type 2 a thermal insulation layer also added it. Results of the analysis showed that the use of materials Type 2 in the cooling load %4.8 and in the thermal load %62.5 reduction can be achieved which means reducing the load on active system and thus reducing the initial cost of building. Also reduction in annual energy consumption by almost %2.4 for cooling and %62.9 for heating buildings have been achieved, which makes saving non-renewable energy consumption, and consequently reducing environmental pollution as well as reducing current costs will be established.
文摘Building information modeling(BIM)object classification takes a lot of time and energy.Misclassification or omission of any object may lead to the emergence of abnormal results,which have a great impact on the project workflow and results.Roundly understanding BIM object classification,by improving Swin Transformer classifier algorithm parameters,using the model primitives extracted from IFC format BIM model file,deep learning of 7 types of BIM object categories is taken.Through the performance and evaluation indicators obtained in training,the results improve the classification accuracy.
基金supported by the Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation,Ministry of Land and Resources[grant number KF-2018-03-050]China Postdoctoral Science Foundation[grant number 2018M642800].
文摘The multi-level modeling technology of Building Information Modeling(BIM),combined with Three-dimensional Geographic Information System(3DGIS)macro-scene visualization technology and location information,can realize the transmission of decentralized information from various disciplines to multi-disciplinary collaborative information sharing services.It can be applied independently for the whole life cycle,which plays a positive role in reducing the cost and improving the efficiency of engineering planning,design,construction,operation,and maintenance.In this paper,the data integration and function integration methods of 3DGIS and BIM are designed.In order to avoid the breaking problems caused by attribute information loss and excessive simplification in the process of BIM data integration,the attribute mapping between 3DGIS and BIM based on Industry Foundation Classes(IFC)and City Geography Markup Language(CityGML)and the data simplification method considering the geometric characteristics of BIM are designed.By setting the relevant preconditions and thresholds of patch merging,on the premise of maintaining the structural characteristics of BIM data surface,reduce the amount of model data to improve the efficiency of BIM data loading,rendering and display effect in 3D geospatial scene.Through the data and function integration of 3DGIS and BIM,we can effectively manage the data of large-scale model,and calculate and obtain the geospatial location and direction of key parts of buildings through the coordinate transformation of BIM,which can effectively assist the rapid and accurate positioning of BIM in virtual 3D scene and expand the visualization ability of 3DGIS.By effectively integrating 3DGIS and BIM,this paper gives full play to the spatial management advantages of 3DGIS and the component management advantages of BIM.The rationality and operability of the method are verified by its application in the operation and maintenance management project of concealed facilities in actual buildings.
基金supported by the National Natural Science Foundation of China[grant number 41871298].
文摘As the number of high-density buildings has increased,the management of property with complex condominium ownership has become an ongoing challenge in property registration and management.The three-dimensional(3D)modeling of condominium ownership has emerged as an effective means of meeting this challenge and has attracted great attention from fields such as geographical information science,urban planning and management,and property administration.Much progress has been made in building 3D models of condominium ownership;however,existing studies are all on a case-by-case basis and have left some critical issues unsolved,such as vague ownership boundaries,spatial rights without physical counterparts,and the unfixed spatial extent.The purpose of this study is to construct a 3D building ownership model with multiple levels of detail in the context of Chinese law to overcome the defects of 3D models above.This 3D model is presented in a case study of China by subdividing ownership boundaries based on clarifying the internal structure of condominium ownership,embedding the apportionment mechanism,and integrating the semantics,attributes,and geometry associated with the physical and legal entity of the condominium.The proposed 3D model is implemented by extending Building Information Modeling(BIM)based on the Industry Foundation Classes(IFC)and inheriting legal information from Land Administration Domain Model(LADM).In this study,examples of condominium ownership from three real legal dispute cases in China are analyzed and tested.The study clearly demonstrates that the proposed model can provide a better cognitive understanding of the legal space of property by rendering unambiguous ownership boundaries and presenting the spatial internal structure of ownership,which offers solid technical support for dealing with property registration and many legal dispute cases about condominium ownership.
文摘This study unfolds an innovative approach aiming to address the critical role of building design in global energy consumption, focusing on optimizing the Window-to-Wall Ratio (WWR), since buildings account for approximately 30% of total energy consumed worldwide. The greatest contributors to energy expenditure in buildings are internal artificial lighting and heating and cooling systems. The WWR, determined by the proportion of the building’s glazed area to its wall area, is a significant factor influencing energy efficiency and minimizing energy load. This study introduces the development of a semi-automated computer model designed to offer a real-time, interactive simulation environment, fostering improving communication and engagement between designers and owners. The said model serves to optimize both the WWR and building orientation to align with occupants’ needs and expectations, subsequently reducing annual energy consumption and enhancing the overall building energy performance. The integrated model incorporates Building Information Modeling (BIM), Virtual Reality (VR), and Energy Analysis tools deployed at the conceptual design stage, allowing for the amalgamation of owners’ inputs in the design process and facilitating the creation of more realistic and effective design strategies.
文摘Life Cycle Cost Analysis (LCCA) provides a systematic approach to assess the total cost associated with owning, operating, and maintaining assets throughout their entire life. BIM empowers architects and designers to perform real-time evaluations to explore various design options. However, when integrated with LCCA, BIM provides a comprehensive economic perspective that helps stakeholders understand the long-term financial implications of design decisions. This study presents a methodology for developing a model that seamlessly integrates BIM and LCCA during the conceptual design stage of buildings. This integration allows for a comprehensive evaluation and analysis of the design process, ensuring that the development aligns with the principles of low carbon emissions by employing modular construction, 3D concrete printing methods, and different building design alternatives. The model considers the initial construction costs in addition to all the long-term operational, maintenance, and salvage values. It combines various tools and data through different modules, including energy analysis, Life Cycle Assessment (LCA), and Life Cycle Cost Analysis (LCCA) to execute a comprehensive assessment of the financial implications of a specific design option throughout the lifecycle of building projects. The development of the said model and its implementation involves the creation of a new plug-in for the BIM tool (i.e., Autodesk Revit) to enhance its functionalities and capabilities in forecasting the life-cycle costs of buildings in addition to generating associated cash flows, creating scenarios, and sensitivity analyses in an automatic manner. This model empowers designers to evaluate and justify their initial investments while designing and selecting potential construction methods for buildings, and enabling stakeholders to make informed decisions by assessing different design alternatives based on long-term financial considerations during the early stages of design.
文摘超高层建筑结构复杂,施工周期长,在进行超高层建筑结构监测的过程中,如何准确、及时地完成监测内容是监测的重点和难点.针对以上问题,结合某超高层结构,研究了多源信息融合方法、建筑信息模型(building information modelling,BIM)技术在结构监测方案制定、三维可视化施工模拟指导传感器安装及可视化智能监测系统搭建等方面的具体应用.解决了超高层建筑结构监测过程中,由于施工过程复杂并且传感器种类、数量过多导致的未能及时完成监测内容的问题,搭建基于BIM技术的智能监测平台,可以更直观地读取监测数据,为类似的超高层建筑施工过程监测项目提供参考.
基金supported by China Academy of Railway Sciences Foundation(Research on Multi Agent Collaborative Mechanism of Intelligent High Speed Rail System Based on Complex Adaptive System Theory,Grant 2023YJ392).
文摘Purpose-The rapid development of China’s railway construction has led to an increase in data generated by the high-speed rail(HSR)catenary system.Traditional management methods struggle with challenges such as poor information sharing,disconnected business applications and insufficient intelligence throughout the lifecycle.This study aims to address these issues by applying building information modeling(BIM)technology to improve lifecycle management efficiency for HSR catenary systems.Design/methodology/approach-Based on the lifecycle management needs of catenary engineering,incorporating the intelligent HSR“Model-Data Driven,Axis-Plane Coordination”philosophy,this paper constructs a BIM-based lifecycle management framework for HSR catenary engineering.Findings-This study investigates the full-process lifecycle management of the catenary system across various stages of design,manufacture,construction and operation,exploring integrated BIM models and data transmission methods,along with key technologies for BIM model transmission,transformation and lightweighting.Originality/value-This study establishes a lossless information circulation and transmission system for HSR catenary lifecycle management.Multi-stage applications are verified through the construction of the Chongqing-Kunming High-Speed Railway,comprehensive advancing the intelligent promotion and highquality development of catenary engineering.
基金Beijing Natural Science Foundation-Fengtai Rail Transit Frontier Research Joint Foundation(No.L211024),the National Natural Science Foundation of China(No.52072012).
文摘To explore the influence of emergency evacuation signs on passenger behavior during subway fires and improve evacuation efficiency in emergencies,this paper proposes a dynamic emergency evacuation sign system.A simulation platform integrating building information modeling(BIM)and virtual reality(VR)technologies was em-ployed to create subway fire evacuation scenarios using both the current and proposed dynamic emergency evacuation signage systems.Through simulation experiments,fine-grained microscopic data on passenger behavior was collected.Seven indicators were selected to assess evacuation efficiency and wayfinding difficulty.The analysis explored the influence of evacuation signs on passenger behavior in both overall and decision-making areas,thereby validating the effectiveness of the new emergency evacuation signage system.The results show that the dynamic evacuation signage system significantly improves overall passenger evacuation efficiency and reduces decision-making errors.It also improves wayfinding efficiency in critical decision areas by reducing the need for direction identification,minimizing stopping times,and lowering the frequency of decision errors.The method for evaluating the effects of emergency evacuation signs on passenger evacuation behavior proposed in this study provides a robust theoretical basis for the design and optimization of emergency-oriented signs.
基金The National Key Research and Development Program of China(No.2020YFD1100404-4)the National Natural Science Foundation for Young Scientists of China(No.52108120)the National Natural Science Foundation for Young Scientists of Jiangsu Province(No.BK20210258)。
文摘To promote the visualisation and informatisation of the construction process of precast foamed lightweight concrete wallboards(PFLCWs),from the analysis of the construction requirements of PFLCWs,three key construction technologies based on building information modelling(BIM),namely,parameterised modelling for the PFLCW layout design,drawing generation to draw the PFLCW layout and quantity statistics for extracting PFLCW quantities,are proposed.Then,a reinforced concrete(RC)frame infilled with PFLCW is considered the test model to verify the feasibility of the aforementioned technologies.The results show that PFLCW layout design can be accomplished rapidly and visually using parameterised modelling technology.The PFLCW layout diagram can be generated directly using drawing generation technology.The proposed quantity statistics technology enables the automatic export of PFLCW bills of quantities.The built parameterised model helps construction workers rapidly and intuitively understand the specific layout details of PFLCWs.Moreover,the generated layout drawing and the bills of quantities based on the parameterised model can guide the production and on-site installation of PFLCWs.The research conclusions can serve as a practical guide and technical support for PFLCW engineering applications.
基金supported by China State Railway Group Co.,Ltd.Science and Technology Research and Development Plan(K2021G025).
文摘The high-speed railway construction involves multiple professional fields,such as railway design,construction,and supervision.This paper architects the"BIM+"project refined management platform,designs the platform's logical architecture,physical architecture,and solves several key technology difficulties.This"BIM+"platform has been applied on the Jingxiong Bridge Project and achieved all-round,whole-process and multi-management of high-speed railway engineering construction.It significantly improves the level of construction management,and plays a role in promoting the development of high-speed railway construction informatization.
基金the International S&T Cooperation Program of China project"Research on Informational Project Construction Management based on Open BIM"(Grant No.2011DFG73520)
文摘As the world pays more attention to low-earbon and sustainable development,there's a growing trend in architecture,engineering and construction fields to construct greener,more energy efficient and more sustainable buildings with the help of building information modeling(BIM).As BIM application becomes popular in industry,more and more scholars and engineers point out that an integrated construction environment is better for BIM's fully functional capability.This paper illustrates the relationship between BIM application and an integrated construction environment based on case survey data.It is found that even though an integration construction environment is not necessary in BIM application,the statistical results showed that DBB(design-bid-build)and CM(construction management)modes have great differences in BIM's application implementation scope and implementation deepness,while DB and CM modes do not.