Background:Inflammation,caused by prolonged hyperglycemia,plays a substantially more important part in the progression of diabetic peripheral neuropathy(DPN).Notably,the MAPK pathway that mediates the Nuclear Factor-k...Background:Inflammation,caused by prolonged hyperglycemia,plays a substantially more important part in the progression of diabetic peripheral neuropathy(DPN).Notably,the MAPK pathway that mediates the Nuclear Factor-kappa B(NF-κB)pathway contributes to inflammation-induced peripheral nerve damage,affecting cell survival.Juan Bi Tong Luo(JBTL),a traditional Chinese medicine(TCM),has demonstrated favorable results in alleviating pain and numbness in patients with DPN;however,whether JBTL exerts its effect through the MAPK mediating NF-κB pathway remains unclear.Methods:This study investigated whether JBTL modulates apoptosis in DPN models and Schwann cells cultured in 100 mM of glucose by MAPK/NF-κB.Results:The JBTL altered inflammation,reduced peripheral nerve tissue damage,and improved cell survival rates by down-regulating MAPK/NF-κB.Conclusion:Our findings demonstrate that the effect of JBTL on DPN is likely mediated by suppressing inflammation induced by the MAPK/NF-κB pathway,thus providing evidence for the clinical efficacy of JBTL in treating DPN.展开更多
By measuring scanning tunneling spectroscopy on some large Bi islands deposited on FeTe_(0.55)Se_(0.45)superconductors,we observe clear in-gap edge states with double peaks at about±1.0 me V on the spectra measur...By measuring scanning tunneling spectroscopy on some large Bi islands deposited on FeTe_(0.55)Se_(0.45)superconductors,we observe clear in-gap edge states with double peaks at about±1.0 me V on the spectra measured near the perimeter of the islands.This feature is very different from the single zero-energy peak observed on some other small Bi islands.The edge states spread towards the inner side of the islands over a width of 2-3 nm.The two edge-state peaks at positive and negative energies move to higher values with the increase of the magnetic field,and they disappear near the transition temperature of FeTe_(0.55)Se_(0.45).Meanwhile,enhanced superconducting gaps are observed in the central regions of these Bi islands,which may be induced by the enhanced pair potential of the topological surface state.Our observations provide a valuable message for the edge state and the proximity-induced superconductivity on specific Bi islands grown on FeTe_(0.55)Se_(0.45)substrate.展开更多
短期预测在智能电网建设中扮演着重要角色,深刻影响电网发输变配用各个环节的智能化改造。短期预测一般基于系统实测数据,而传感器故障,数据传输错误等原因会导致数据质量下降,严重影响短期预测的精确性。为建立数据质量受损情况下的精...短期预测在智能电网建设中扮演着重要角色,深刻影响电网发输变配用各个环节的智能化改造。短期预测一般基于系统实测数据,而传感器故障,数据传输错误等原因会导致数据质量下降,严重影响短期预测的精确性。为建立数据质量受损情况下的精确短期预测模型,提出了结合数据预处理和双向长短期记忆(bi-directional long short-term memory,Bi-LSTM)的短期预测框架Bi-LSTM-DP(bi-directional long short-term memory data preprocessing)。在Bi-LSTM-DP中,采集的数据首先通过均值填补缺失值,进而基于Savitzky-Golay滤波器对数据降噪,最后采用Bi-LSTM提取时间序列的信息,实现短期预测。为了评估所提方法的性能,文中使用实测的公开数据集分别预测风电发电量和负荷需求,与其他参考方法对比表明了所述方法的有效性和鲁棒性。展开更多
Reaction of 4,4’-(1,4-phenylene)bis(5-acetyl-6-methyl-2-thioxo-1,2-dihydropyridine-3-carbonitrile) (1) with methyl iodide afforded the 4,4’-(1,4-phenylene)bis(5-acetyl-6-methyl-2-(methylthio)nicotinonitrile) (2). Th...Reaction of 4,4’-(1,4-phenylene)bis(5-acetyl-6-methyl-2-thioxo-1,2-dihydropyridine-3-carbonitrile) (1) with methyl iodide afforded the 4,4’-(1,4-phenylene)bis(5-acetyl-6-methyl-2-(methylthio)nicotinonitrile) (2). The reaction of 2 with hydrazine hydrate followed by diazotization reaction af-forded the 1,1’-(1,4-phenylenebis(3-amino-6-methyl-1H-pyrazolo[3,4-b]pyridine-4,5-diyl))bis(e-than-1-one) (3) and 1,1’-(1,4-phenylenebis(3-(chlorodiazenyl)-6-methyl-1H-pyrazolo[3,4-b]-pyridine-4,5-diyl))bis(ethan-1-one) (4) respectively. On the other hand, reaction of 4 with malononitrile, 2-cyanoethanethioamide, ethyl acetoacetate, acetyl acetone, ethyl benzoylacetate, diethylmalonate, ethyl cyanoacetate and phenacylbromide aiming to build up pyrazolotriazine or pyrazole ring on the ring system of 4. Structures of all newly synthesized heterocyclic compounds in the present study were confirmed by considering the data of IR, 1H NMR, mass spectra as well as that of elemental analyses.展开更多
The low-melting glass of Bi2O_(3)-B2O_(3)-SiO_(2)(BiBSi)system was used for the first time for laser sealing of vacuum glazing.Under the condition of constant boron content,how the structure and properties vary with B...The low-melting glass of Bi2O_(3)-B2O_(3)-SiO_(2)(BiBSi)system was used for the first time for laser sealing of vacuum glazing.Under the condition of constant boron content,how the structure and properties vary with Bi/Si ratio in low-melting glass was investigated.In addition,the relationships between laser power,low-melting glass solder with different Bi/Si ratios and laser sealing shear strength were revealed.The results show that a decrease in the Bi/Si ratio can cause a contraction of the glass network of the low-melting glass,leading to an increase of its characteristic temperature and a decrease of its coefficient of thermal expansion.During laser sealing,the copper ions in the low-melting glass play an endothermic role.A change in the Bi/Si ratio will affect the valence state transition of the copper ions in the low-melting glass.The absorbance of the low-melting glass does not follow the expected correlation with the Bi/Si ratio,but shows a linear correlation with the content of divalent copper ions.The greater the concentration of divalent copper ions,the greater the absorbance of the low-melting glass,and the lower the laser power required for laser sealing.The shear strength of the low melting glass solder after laser sealing was tested,and it was found that the maximum shear strength of Z1 glass sample was the highest up to 2.67 MPa.展开更多
The study of the effects of supercritical CO_(2)(ScCO_(2))under high temperature and high pressure on the mechanical properties and fracturing potential of shale holds significant implications for advancing our unders...The study of the effects of supercritical CO_(2)(ScCO_(2))under high temperature and high pressure on the mechanical properties and fracturing potential of shale holds significant implications for advancing our understanding of enhanced shale gas extraction and reservoir exploration and development.This study examines the influence of three fluids,i.e.ScCO_(2),deionized water(DW),and ScCO_(2)tDW,on the mechanical properties and fracturability of shale at immersion pressures of 15 MPa and 45 MPa,with a constant temperature of 100C.The key findings are as follows:(1)Uniaxial compressive strength(UCS)of shale decreased by 10.72%,11.95%,and 23.67%at 15 MPa,and by 42.40%,46.84%,and 51.65%at 45 MPa after immersion in ScCO_(2),DW,and ScCO_(2)tDW,respectively,with the most pronounced effect observed in ScCO_(2)tDW;(2)Microstructural analysis revealed that while ScCO_(2)and DW do not significantly alter the microstructure,immersion in ScCO_(2)tDW results in a more complex surface morphology;(3)Acoustic emission(AE)analysis indicates a reduction in stress for crack damage,with a decreased fractal dimension of AE signals in different fluids.AE energy is primarily generated during the unstable crack propagation stage;(4)A quantitative method employing a multi-factor approach combined with the brittleness index(BI)effectively characterizes shale fracturability.Evaluation results show that ScCO_(2)tDW has a more significant effect on shale fracturability,with fracturability indices of 0.833%and 1.180%following soaking at 15 MPa and 45 MPa,respectively.Higher immersion pressure correlates positively with increased shale fracturability.展开更多
A novel Fe-doping three-dimensional fiower-like Bi_(7)O_(9)I_(3) microspheres with plasmonic Bi and rich surface oxygen vacancies(Fe-Bi/Bi_(7)O_(9)I_(3)/OVs)was prepared as catalysts,and further coupled with natural a...A novel Fe-doping three-dimensional fiower-like Bi_(7)O_(9)I_(3) microspheres with plasmonic Bi and rich surface oxygen vacancies(Fe-Bi/Bi_(7)O_(9)I_(3)/OVs)was prepared as catalysts,and further coupled with natural air diffusion electrode(NADE)to construct the heterogeneous visible-light-driven photoelectro-Fenton(HEVL-PEF)process to enhance the degradation and mineralization of tetracycline(TC).Interfacial≡Fe sites,OVs and Bi metal were simultaneously constructed via Fe doping,which effectively improved visible light absorption and the separation efficiency of photogenerated carriers to further accelerate the transformation of Fe(Ⅲ)to Fe(Ⅱ),achieving Fenton reaction recycling.HE-VL-PEF process could achieve enhanced treatment of pollutants,thanks to the synergistic effect of electro-Fenton(EF)and photo-Fenton(PF).NADE exhibited excellent H_(2)O_(2) electrosynthesis without external oxygen-pumping equipment.Under the irradiation of visible light,Fe-Bi/Bi_(7)O_(9)I_(3)/OVs could achieve more photoelectrons to accelerate the transformation of Fe(Ⅲ)to Fe(Ⅱ)or directly activate H2O2.DFT calculations also clearly demonstrated that except for the fast charge separation and transfer,Fe-Bi/Bi_(7)O_(9)I_(3)/OVs could achieve a faster electron transport between Fe-O,facilitating Fe site acquire more electron.Consequently,the Fe-Bi/Bi_(7)O_(9)I_(3)/OVs in HE-VL-PEF process presented performance superiorities including excellent pollutant removal(91.91%),low electric energy consumption of 66.34 k Wh/kg total organic carbon(TOC),excellent reusability and wide p H adaptability(3–9).展开更多
基金funded by grants from the Suzhou Gusu Health Talents Project(grant No.GSWS2024050 to Liu W)Natural Science Foundation Project of Nanjing University of Chinese Medicine(grant No.XZR2021043 to Liu W and grant No.XZR2023021 to Huang F)+1 种基金Suzhou Science Education Health Youth Project(grant No.KJXW2021046 to Liu W)Suzhou Major Disease Multi-center Clinical Research Project(grant No.DZXYJ202410 to Huang F).
文摘Background:Inflammation,caused by prolonged hyperglycemia,plays a substantially more important part in the progression of diabetic peripheral neuropathy(DPN).Notably,the MAPK pathway that mediates the Nuclear Factor-kappa B(NF-κB)pathway contributes to inflammation-induced peripheral nerve damage,affecting cell survival.Juan Bi Tong Luo(JBTL),a traditional Chinese medicine(TCM),has demonstrated favorable results in alleviating pain and numbness in patients with DPN;however,whether JBTL exerts its effect through the MAPK mediating NF-κB pathway remains unclear.Methods:This study investigated whether JBTL modulates apoptosis in DPN models and Schwann cells cultured in 100 mM of glucose by MAPK/NF-κB.Results:The JBTL altered inflammation,reduced peripheral nerve tissue damage,and improved cell survival rates by down-regulating MAPK/NF-κB.Conclusion:Our findings demonstrate that the effect of JBTL on DPN is likely mediated by suppressing inflammation induced by the MAPK/NF-κB pathway,thus providing evidence for the clinical efficacy of JBTL in treating DPN.
基金supported by the National Key R&D Program of China(Grant Nos.2022YFA1403201 and 2024YFA1408104)the National Natural Science Foundation of China(Grant Nos.11927809 and 12434004)the Natural Science Foundation of Jiangsu Province(Grant No.BK20233001)。
文摘By measuring scanning tunneling spectroscopy on some large Bi islands deposited on FeTe_(0.55)Se_(0.45)superconductors,we observe clear in-gap edge states with double peaks at about±1.0 me V on the spectra measured near the perimeter of the islands.This feature is very different from the single zero-energy peak observed on some other small Bi islands.The edge states spread towards the inner side of the islands over a width of 2-3 nm.The two edge-state peaks at positive and negative energies move to higher values with the increase of the magnetic field,and they disappear near the transition temperature of FeTe_(0.55)Se_(0.45).Meanwhile,enhanced superconducting gaps are observed in the central regions of these Bi islands,which may be induced by the enhanced pair potential of the topological surface state.Our observations provide a valuable message for the edge state and the proximity-induced superconductivity on specific Bi islands grown on FeTe_(0.55)Se_(0.45)substrate.
文摘短期预测在智能电网建设中扮演着重要角色,深刻影响电网发输变配用各个环节的智能化改造。短期预测一般基于系统实测数据,而传感器故障,数据传输错误等原因会导致数据质量下降,严重影响短期预测的精确性。为建立数据质量受损情况下的精确短期预测模型,提出了结合数据预处理和双向长短期记忆(bi-directional long short-term memory,Bi-LSTM)的短期预测框架Bi-LSTM-DP(bi-directional long short-term memory data preprocessing)。在Bi-LSTM-DP中,采集的数据首先通过均值填补缺失值,进而基于Savitzky-Golay滤波器对数据降噪,最后采用Bi-LSTM提取时间序列的信息,实现短期预测。为了评估所提方法的性能,文中使用实测的公开数据集分别预测风电发电量和负荷需求,与其他参考方法对比表明了所述方法的有效性和鲁棒性。
文摘Reaction of 4,4’-(1,4-phenylene)bis(5-acetyl-6-methyl-2-thioxo-1,2-dihydropyridine-3-carbonitrile) (1) with methyl iodide afforded the 4,4’-(1,4-phenylene)bis(5-acetyl-6-methyl-2-(methylthio)nicotinonitrile) (2). The reaction of 2 with hydrazine hydrate followed by diazotization reaction af-forded the 1,1’-(1,4-phenylenebis(3-amino-6-methyl-1H-pyrazolo[3,4-b]pyridine-4,5-diyl))bis(e-than-1-one) (3) and 1,1’-(1,4-phenylenebis(3-(chlorodiazenyl)-6-methyl-1H-pyrazolo[3,4-b]-pyridine-4,5-diyl))bis(ethan-1-one) (4) respectively. On the other hand, reaction of 4 with malononitrile, 2-cyanoethanethioamide, ethyl acetoacetate, acetyl acetone, ethyl benzoylacetate, diethylmalonate, ethyl cyanoacetate and phenacylbromide aiming to build up pyrazolotriazine or pyrazole ring on the ring system of 4. Structures of all newly synthesized heterocyclic compounds in the present study were confirmed by considering the data of IR, 1H NMR, mass spectra as well as that of elemental analyses.
基金Funded by the National Natural Science Foundation of China(No.52472012)Opening Project of State Silica-Based Materials Laboratory of Anhui Province(No.2022KF11)the Research and Development of Glass Powder for Laser Sealing and Its Sealing Technology(No.K24556)。
文摘The low-melting glass of Bi2O_(3)-B2O_(3)-SiO_(2)(BiBSi)system was used for the first time for laser sealing of vacuum glazing.Under the condition of constant boron content,how the structure and properties vary with Bi/Si ratio in low-melting glass was investigated.In addition,the relationships between laser power,low-melting glass solder with different Bi/Si ratios and laser sealing shear strength were revealed.The results show that a decrease in the Bi/Si ratio can cause a contraction of the glass network of the low-melting glass,leading to an increase of its characteristic temperature and a decrease of its coefficient of thermal expansion.During laser sealing,the copper ions in the low-melting glass play an endothermic role.A change in the Bi/Si ratio will affect the valence state transition of the copper ions in the low-melting glass.The absorbance of the low-melting glass does not follow the expected correlation with the Bi/Si ratio,but shows a linear correlation with the content of divalent copper ions.The greater the concentration of divalent copper ions,the greater the absorbance of the low-melting glass,and the lower the laser power required for laser sealing.The shear strength of the low melting glass solder after laser sealing was tested,and it was found that the maximum shear strength of Z1 glass sample was the highest up to 2.67 MPa.
基金financial support from the Science and Technology Innovation Program of Hunan Province(Grant No.2023RC1021)the National Natural Science Foundation of China(Grant No.52231012)+1 种基金the Natural Science Foundation of Hainan Province(Grant No.424QN213)the Scientific Research Foundation of Hainan University.
文摘The study of the effects of supercritical CO_(2)(ScCO_(2))under high temperature and high pressure on the mechanical properties and fracturing potential of shale holds significant implications for advancing our understanding of enhanced shale gas extraction and reservoir exploration and development.This study examines the influence of three fluids,i.e.ScCO_(2),deionized water(DW),and ScCO_(2)tDW,on the mechanical properties and fracturability of shale at immersion pressures of 15 MPa and 45 MPa,with a constant temperature of 100C.The key findings are as follows:(1)Uniaxial compressive strength(UCS)of shale decreased by 10.72%,11.95%,and 23.67%at 15 MPa,and by 42.40%,46.84%,and 51.65%at 45 MPa after immersion in ScCO_(2),DW,and ScCO_(2)tDW,respectively,with the most pronounced effect observed in ScCO_(2)tDW;(2)Microstructural analysis revealed that while ScCO_(2)and DW do not significantly alter the microstructure,immersion in ScCO_(2)tDW results in a more complex surface morphology;(3)Acoustic emission(AE)analysis indicates a reduction in stress for crack damage,with a decreased fractal dimension of AE signals in different fluids.AE energy is primarily generated during the unstable crack propagation stage;(4)A quantitative method employing a multi-factor approach combined with the brittleness index(BI)effectively characterizes shale fracturability.Evaluation results show that ScCO_(2)tDW has a more significant effect on shale fracturability,with fracturability indices of 0.833%and 1.180%following soaking at 15 MPa and 45 MPa,respectively.Higher immersion pressure correlates positively with increased shale fracturability.
基金financially supported by Key Project of Natural Science Foundation of Tianjin(No.21JCZDJC00320)National Key R&D Program International Cooperation Project(No.2021YFE0106500)+3 种基金Natural Science Foundation of China(No.52170085)Fundamental Research Funds for the Central UniversitiesNankai UniversityNational Research Foundation IRGChina/South Africa Research Cooperation Programme(No.132793)。
文摘A novel Fe-doping three-dimensional fiower-like Bi_(7)O_(9)I_(3) microspheres with plasmonic Bi and rich surface oxygen vacancies(Fe-Bi/Bi_(7)O_(9)I_(3)/OVs)was prepared as catalysts,and further coupled with natural air diffusion electrode(NADE)to construct the heterogeneous visible-light-driven photoelectro-Fenton(HEVL-PEF)process to enhance the degradation and mineralization of tetracycline(TC).Interfacial≡Fe sites,OVs and Bi metal were simultaneously constructed via Fe doping,which effectively improved visible light absorption and the separation efficiency of photogenerated carriers to further accelerate the transformation of Fe(Ⅲ)to Fe(Ⅱ),achieving Fenton reaction recycling.HE-VL-PEF process could achieve enhanced treatment of pollutants,thanks to the synergistic effect of electro-Fenton(EF)and photo-Fenton(PF).NADE exhibited excellent H_(2)O_(2) electrosynthesis without external oxygen-pumping equipment.Under the irradiation of visible light,Fe-Bi/Bi_(7)O_(9)I_(3)/OVs could achieve more photoelectrons to accelerate the transformation of Fe(Ⅲ)to Fe(Ⅱ)or directly activate H2O2.DFT calculations also clearly demonstrated that except for the fast charge separation and transfer,Fe-Bi/Bi_(7)O_(9)I_(3)/OVs could achieve a faster electron transport between Fe-O,facilitating Fe site acquire more electron.Consequently,the Fe-Bi/Bi_(7)O_(9)I_(3)/OVs in HE-VL-PEF process presented performance superiorities including excellent pollutant removal(91.91%),low electric energy consumption of 66.34 k Wh/kg total organic carbon(TOC),excellent reusability and wide p H adaptability(3–9).