期刊文献+
共找到50篇文章
< 1 2 3 >
每页显示 20 50 100
基于BERT-CNN-SIFRank的智能预问诊模型研究与设计
1
作者 崔晓笛 吴冠朋 刘文强 《中国数字医学》 2025年第8期65-71,共7页
目的:研究并设计智能预问诊模型,模拟医生实际问诊过程,准确了解患者就诊意图,自动解答患者提出的问题,减少患者问诊等待时间,提升患者就医体验,提高医生接诊效率。方法:基于深度学习技术构建智能预问诊模型,设计基于BERT-CNN的医疗文... 目的:研究并设计智能预问诊模型,模拟医生实际问诊过程,准确了解患者就诊意图,自动解答患者提出的问题,减少患者问诊等待时间,提升患者就医体验,提高医生接诊效率。方法:基于深度学习技术构建智能预问诊模型,设计基于BERT-CNN的医疗文本分类模型实现患者问题分类,利用基于SIFRank的医疗文本关键词抽取模型提取患者问题关键词,进而获取患者医疗问题意图。结果:基于BERT-CNN的医疗文本分类模型在公开数据集上的F1值达到82.84%,有效提高了医疗文本分类准确率。结论:基于BERT-CNNSIFRank的智能预问诊模型丰富了预问诊研究技术路线,为构建高效、智能、个性化的预问诊系统提供了理论模型基础,有利于促进互联网医院高质量发展。 展开更多
关键词 预问诊模型 医疗文本分类 医疗关键词抽取 BERT CNN
在线阅读 下载PDF
基于BERT-CNN的电影原声智能问答系统 被引量:8
2
作者 黄东晋 秦汉 郭昊 《计算机技术与发展》 2020年第11期158-162,共5页
智能问答是自然语言处理领域一个非常重要的研究热点,传统的智能问答不能准确地理解用户的意图,从而无法返回准确的答案。因此,提出了基于BERT-CNN算法的智能问答系统,并应用于电影原声领域,可以快速准确地反馈相关信息。首先,构建电影... 智能问答是自然语言处理领域一个非常重要的研究热点,传统的智能问答不能准确地理解用户的意图,从而无法返回准确的答案。因此,提出了基于BERT-CNN算法的智能问答系统,并应用于电影原声领域,可以快速准确地反馈相关信息。首先,构建电影原声的知识图谱,建立节点实体以及实体之间的关系,利用Neo4j图数据库对数据进行存储。然后,通过基于规则和词典的方法进行实体识别,利用BERT-CNN分类算法对用户意图进行分类。最后,根据用户意图和实体,将问句转化成知识图谱的查询语句,在数据库中查询后返回结果。实验结果表明,构建的面向电影原声智能问答系统是可行的,采用BERT-CNN分类算法,分类准确率高达91.24%,能够实时得到问题答案的准确反馈,准确率达到95%以上。 展开更多
关键词 智能问答 知识图谱 电影原声 bert-cnn分类 图数据库
在线阅读 下载PDF
BERT-CNN: A Deep Learning Model for Detecting Emotions from Text 被引量:6
3
作者 Ahmed R.Abas Ibrahim Elhenawy +1 位作者 Mahinda Zidan Mahmoud Othman 《Computers, Materials & Continua》 SCIE EI 2022年第5期2943-2961,共19页
Due to the widespread usage of social media in our recent daily lifestyles,sentiment analysis becomes an important field in pattern recognition and Natural Language Processing(NLP).In this field,users’feedback data o... Due to the widespread usage of social media in our recent daily lifestyles,sentiment analysis becomes an important field in pattern recognition and Natural Language Processing(NLP).In this field,users’feedback data on a specific issue are evaluated and analyzed.Detecting emotions within the text is therefore considered one of the important challenges of the current NLP research.Emotions have been widely studied in psychology and behavioral science as they are an integral part of the human nature.Emotions describe a state of mind of distinct behaviors,feelings,thoughts and experiences.The main objective of this paper is to propose a new model named BERT-CNN to detect emotions from text.This model is formed by a combination of the Bidirectional Encoder Representations from Transformer(BERT)and the Convolutional Neural networks(CNN)for textual classification.This model embraces the BERT to train the word semantic representation language model.According to the word context,the semantic vector is dynamically generated and then placed into the CNN to predict the output.Results of a comparative study proved that the BERT-CNN model overcomes the state-of-art baseline performance produced by different models in the literature using the semeval 2019 task3 dataset and ISEAR datasets.The BERTCNN model achieves an accuracy of 94.7%and an F1-score of 94%for semeval2019 task3 dataset and an accuracy of 75.8%and an F1-score of 76%for ISEAR dataset. 展开更多
关键词 bert-cnn deep learning emotion detection semeval2019 text classification
在线阅读 下载PDF
Data Mining and Spatial Analysis of Social Media Text Based on the BERT-CNN Model to Achieve Situational Awareness: a Case Study of COVID-19 被引量:5
4
作者 Jiawei ZHANG Hua QI 《Journal of Geodesy and Geoinformation Science》 2022年第2期38-48,共11页
In response to the COVID-19,social media big data has played an important role in epidemic warning,tracking the source of infection,and public opinion monitoring,providing strong technical support for China’s epidemi... In response to the COVID-19,social media big data has played an important role in epidemic warning,tracking the source of infection,and public opinion monitoring,providing strong technical support for China’s epidemic prevention and control work.The paper used Sina Weibo posts related to COVID-19 hashtags as the data source,and built a BERT-CNN deep learning model to perform fine-grained and high-precision topic classificationon massive social media posts.Taking Shenzhen as a region of interest,we mined the“epidemic data bulletin”and“daily life impact”posts during the epidemic for spatial analysis.The results show that the confirmed communities and designated hospitals in Shenzhen as a whole present the characteristics of“sparse east and dense west”,and there is a strong positive spatial correlation between the number of confirmed cases and social media response.Specifically,Nanshan District,Futian District and Luohu District have more confirmed cases due to large population movements and dense transportation networks,and social media has responded more violently,and people’s lives have been greatly affected.However,Yantian District,Pingshan District and Dapeng New District showed opposite characteristics.The case study results further show that using deep learning methods to mine text information in social media is scientifically feasible for improving situational awareness and decision support during the COVID-19. 展开更多
关键词 COVID-19 Sina Weibo bert-cnn topic classification situational awareness
在线阅读 下载PDF
基于BERT-CNN的城轨列控车载设备故障分类 被引量:3
5
作者 徐倩 张雷 +1 位作者 欧冬秀 贺云鹏 《深圳大学学报(理工版)》 CAS CSCD 北大核心 2023年第5期529-538,共10页
针对基于通信的城市轨道交通列车控制系统车载设备故障排查困难,故障维修日志由于信息零散、语义模糊及归类混乱等导致的传统文本分布式表示与浅层机器学习算法分类精度低等问题,提出一种基于焦点损失函数BERT-CNN(bidirectional encode... 针对基于通信的城市轨道交通列车控制系统车载设备故障排查困难,故障维修日志由于信息零散、语义模糊及归类混乱等导致的传统文本分布式表示与浅层机器学习算法分类精度低等问题,提出一种基于焦点损失函数BERT-CNN(bidirectional encoder representations from transformers-convolutional neural network)的故障分类方法,建立故障处理及结论、故障现象的关系模型.利用预训练好的BERT模型微调获取故障现象的词向量,充分捕捉融合了上下文的双向语义并关注重点词汇;利用卷积神经网络(convolutional neural network,CNN)进行训练,改进损失函数以缓解数据类别不平衡引起的性能下降问题.通过对某车载信号工区数据进行实验,对比基于交叉熵损失函数的BERT-CNN、单一BERT模型与word2vec-CNN(word to vector-CNN)方法,基于焦点损失函数BERT-CNN方法在分类指标上最优,对某些样本数量少的类别能够更精准分类.研究结果有助于建立更完善的智能运维故障案例库. 展开更多
关键词 交通运输工程 城轨列控车载设备 BERT语言模型 卷积神经网络 故障分类 类别不平衡
在线阅读 下载PDF
基于BERT-CNN编码特征融合的实体关系联合抽取方法 被引量:3
6
作者 丁建立 苏伟 《中国民航大学学报》 CAS 2023年第2期47-53,共7页
针对现有实体关系抽取模型结构复杂且抽取效果欠佳的问题,提出基于预训练的BERT(bidirectional encoder representation from transformers)与CNN(convolutional neural network)编码特征融合的实体关系联合抽取方法。首先,基于BERT-CN... 针对现有实体关系抽取模型结构复杂且抽取效果欠佳的问题,提出基于预训练的BERT(bidirectional encoder representation from transformers)与CNN(convolutional neural network)编码特征融合的实体关系联合抽取方法。首先,基于BERT-CNN编码的句子向量预测主语的首尾位置;其次,将预测的首尾位置索引句子中的特征向量作为预测主语的首尾向量,再将预测的主语首尾向量采用乘积方式进行特征融合得到主语向量;然后,将主语向量与句子向量以乘积方式融合得到新的句子编码向量,进而指导不同关系下宾语首尾位置的预测,得到实体关系三元组。为了验证模型效果,将本模型与其他类似算法模型在NYT与WebNLG公开数据集上进行对比实验,其准确率、召回率均优于对比模型且F1值分别达到92.75%与93.19%。 展开更多
关键词 BERT CNN 特征融合 二分类 实体关系联合抽取 实体关系三元组
在线阅读 下载PDF
基于BERT-CNN的中文评论文本情感分析
7
作者 邵辉 《科技创新导报》 2021年第31期179-183,共5页
对中文酒店评论文本,CNN、BIGRU等模型无法充分获得文本上下文之间的关系,因此在情感分析上没有很好的效果。BERT模型提出后,它在文本上下文之间的关系的提取上有着很大的优势。以此为基础,本文提出一种基于预训练的(BERT)网络与卷积神... 对中文酒店评论文本,CNN、BIGRU等模型无法充分获得文本上下文之间的关系,因此在情感分析上没有很好的效果。BERT模型提出后,它在文本上下文之间的关系的提取上有着很大的优势。以此为基础,本文提出一种基于预训练的(BERT)网络与卷积神经网络(CNN)相结合的BERT-CNN模型得到酒店评论中更多的情感信息。首先利用BERT模型对评论文本信息编码,再通过CNN模型提取局部特征,最终提取语义。最后通过实验来将该模型与现有模型进行比较,在酒店评论数据集上所做的实验充分表明该方法能更准确地进行中文文本情感分析。 展开更多
关键词 BERT 卷积神经网络 情感分析 自注意力机制 双向编码转换器
在线阅读 下载PDF
基于BERT-CNN的新闻文本分类的知识蒸馏方法研究 被引量:10
8
作者 叶榕 邵剑飞 +1 位作者 张小为 邵建龙 《电子技术应用》 2023年第1期8-13,共6页
近年来,随着大数据时代进入人类的生活之后,人们的生活中出现很多无法识别的文本、语义等其他数据,这些数据的量十分庞大,语义也错综复杂,这使得分类任务更加困难。如何让计算机对这些信息进行准确的分类,已成为当前研究的重要任务。在... 近年来,随着大数据时代进入人类的生活之后,人们的生活中出现很多无法识别的文本、语义等其他数据,这些数据的量十分庞大,语义也错综复杂,这使得分类任务更加困难。如何让计算机对这些信息进行准确的分类,已成为当前研究的重要任务。在此过程中,中文新闻文本分类成为这个领域的一个分支,这对国家舆论的控制、用户日常行为了解、用户未来言行的预判都有着至关重要的作用。针对新闻文本分类模型参数量多和训练时间过长的不足,在最大限度保留模型性能的情况下压缩训练时间,力求二者折中,故提出基于BERT-CNN的知识蒸馏。根据模型压缩的技术特点,将BERT作为教师模型,CNN作为学生模型,先将BERT进行预训练后再让学生模型泛化教师模型的能力。实验结果表明,在模型性能损失约2.09%的情况下,模型参数量压缩约为原来的1/82,且时间缩短约为原来的1/670。 展开更多
关键词 新闻文本 BERT CNN 知识蒸馏
在线阅读 下载PDF
基于BERT-CNN的电商评论情感分析 被引量:17
9
作者 史振杰 董兆伟 +2 位作者 庞超逸 张百灵 孙立辉 《智能计算机与应用》 2020年第2期7-11,共5页
在对电商评论进行情感分析中,为了使提取的情感特征能够更多地捕获句子中的情感信息,提出了一种基于预训练的Bidirectional Encoder Representations from Transformers(BERT)网络与卷积神经网络(CNN)相结合的BERT-CNN网络模型。首先利... 在对电商评论进行情感分析中,为了使提取的情感特征能够更多地捕获句子中的情感信息,提出了一种基于预训练的Bidirectional Encoder Representations from Transformers(BERT)网络与卷积神经网络(CNN)相结合的BERT-CNN网络模型。首先利用BERT结构表达句子语义作为文本向量,然后通过卷积神经网络抽取句子的局部特征,通过在有标签的京东某手机评论数据集上的实验,表明该方法在该领域具有良好的性能。 展开更多
关键词 BERT 卷积神经网络 情感分析
在线阅读 下载PDF
基于BERT-CNN的Webshell流量检测系统设计与实现 被引量:8
10
作者 江魁 余志航 +1 位作者 陈小雷 李宇豪 《计算机应用》 CSCD 北大核心 2023年第S01期126-132,共7页
Webshell是一种网站后门程序,常被黑客用于入侵服务器后对服务器进行控制,给网站带来严重的安全隐患。针对以往基于流量的机器学习检测Webshell方法存在特征选择不全、向量化不准确、模型设计不合理导致的检测效果不佳问题,设计并实现... Webshell是一种网站后门程序,常被黑客用于入侵服务器后对服务器进行控制,给网站带来严重的安全隐患。针对以往基于流量的机器学习检测Webshell方法存在特征选择不全、向量化不准确、模型设计不合理导致的检测效果不佳问题,设计并实现了一种将基于变换器的双向编码器表示技术(BERT)与卷积神经网络(CNN)相结合的Webshell流量检测系统,通过分析超文本传输协议(HTTP)报文中各个字段信息,提取其中具有Webshell信息的特征字段,使用BERT模型对特征进行向量化编码,并结合一维CNN模型从不同空间维度检测特征建立分类模型,最后使用模型对流量数据进行检测调优。实验结果表明,与以往基于流量检测方法相比,该检测系统在准确率、召回率和F1值等性能指标上表现更好,分别达到99.84%、99.83%、99.84%。 展开更多
关键词 Webshell检测 深度学习 流量检测 基于变换器的双向编码器表示 卷积神经网络
在线阅读 下载PDF
基于BERT-CNN模型的微博文本情感分类研究 被引量:5
11
作者 桂婷 马子璇 梁泽 《网络安全技术与应用》 2023年第11期34-35,共2页
近年来,随着人类进入大数据时代,整个社交媒体平台产生的文本数量呈爆炸式增长。由于海量的中文文本本身存在稀疏性和高维性特点,其语义解释也具有多样性和较强的语境依赖性,这无疑增加了对中文文本准确分类任务的难度。如何利用计算机... 近年来,随着人类进入大数据时代,整个社交媒体平台产生的文本数量呈爆炸式增长。由于海量的中文文本本身存在稀疏性和高维性特点,其语义解释也具有多样性和较强的语境依赖性,这无疑增加了对中文文本准确分类任务的难度。如何利用计算机对海量文本信息进行准确的分类,已成为当前研究的热门。本文通过实验对比BERT模型、BERT-LSTM模型和BERT-CNN模型在微博文本情感分类中的表现,实验结果表明,BERT-CNN模型分类效果最佳,其准确率比单一的BERT模型提高0.26%。 展开更多
关键词 bert-cnn 微博文本 情感分类
原文传递
数智时代高等教育混合式教学资源多模态分析
12
作者 祁凯 高铭徽 +1 位作者 张肖亚 许冰 《科教文汇》 2025年第23期95-99,共5页
在数智时代的高等教育中,混合式教学模式作为促进教育数字化转型的重要手段,为学生提供了更加灵活多样的学习体验。但在实际应用中,教学资源数量庞大、种类繁多、结构复杂的问题逐渐凸显,导致学生难以充分利用教学资源提升学习效果。如... 在数智时代的高等教育中,混合式教学模式作为促进教育数字化转型的重要手段,为学生提供了更加灵活多样的学习体验。但在实际应用中,教学资源数量庞大、种类繁多、结构复杂的问题逐渐凸显,导致学生难以充分利用教学资源提升学习效果。如何根据教学目标对教学资源进行高效整合与科学分类,成为亟待解决的关键问题。因此,文章运用BERTCNN模型对教育资源进行多模态分析,实现对教育资源的自动收集、精准分类以及优质资源的筛选,从而促进高等教育混合式教学资源的有效利用,提高学习者的学习效率,推动教育数字化转型的深入发展。 展开更多
关键词 高等教育 混合式教学 多模态教学资源 bert-cnn
在线阅读 下载PDF
引入注意力机制的恶意URL检测算法研究 被引量:1
13
作者 刘拥民 翟佳慧 +2 位作者 徐卓农 邓伟豪 麻海志 《河北工业科技》 2025年第3期221-230,共10页
为解决传统模型在处理长统一资源定位系统(uniform resource locator,URL)时难以捕捉全局和局部特征的问题,提出了一种基于分层注意力机制的BERT-CNN模型。该模型通过来自变换器的双向编码器表征量(bidirectional encoder representatio... 为解决传统模型在处理长统一资源定位系统(uniform resource locator,URL)时难以捕捉全局和局部特征的问题,提出了一种基于分层注意力机制的BERT-CNN模型。该模型通过来自变换器的双向编码器表征量(bidirectional encoder representations from transformers,BERT)模块捕捉URL的全局语义信息,并利用卷积神经网络(convolutional neural network,CNN)提取URL的局部特征,在BERT和CNN之间引入分层注意力机制,在不同层次上动态分配注意力权重,加强捕捉URL中的关键信息;引入稀疏注意力机制,减少模型的计算复杂度和内存开销,同时保留BERT的全局语义理解能力;在公开的恶意URL检测数据集上进行对比实验、消融实验以及可视化实验,验证所提模型的性能。结果表明:基于分层注意力机制的BERT-CNN模型在检测恶意URL时的准确率达到了96.8%,相比基线BERT-CNN模型提高了2.5个百分点;F 1分数达到了95.3%,相比基线BERT-CNN模型提高了2.1个百分点。引入注意力机制的恶意URL检测模型在捕捉URL全局和局部特征方面具有显著优势,可为异常流量检测提供新的技术路径和解决方案。 展开更多
关键词 自然语言处理 卷积神经网络 恶意URL BERT模型 分层注意力机制
在线阅读 下载PDF
中文文本蕴含气象灾害事件信息多模型融合抽取方法 被引量:8
14
作者 胡段牧 袁武 +2 位作者 牛方曲 袁文 韩嫒嫒 《地球信息科学学报》 CSCD 北大核心 2022年第12期2342-2355,共14页
随着气候变暖加剧,全球极端天气事件频发,重大气象灾害的发生频率与日俱增。研究气候变化与气象灾害发生频率的关系,对于气候变化背景下的防灾减灾具有重要意义。文献资料及泛在网络数据中蕴含了海量的气象灾害时空事件,为此,本文基于... 随着气候变暖加剧,全球极端天气事件频发,重大气象灾害的发生频率与日俱增。研究气候变化与气象灾害发生频率的关系,对于气候变化背景下的防灾减灾具有重要意义。文献资料及泛在网络数据中蕴含了海量的气象灾害时空事件,为此,本文基于自然语言处理技术研发了文本气象灾害时空事件自动抽取方法。(1)提出了基于专业文献的由粗到精的气象灾害标注语料训练库构建方法。首先针对不同文献资料存在的歧义和不兼容等问题,构建了面向文本事件统一的气象灾害知识体系。然后构建了基于章节结构的粗标注方法,分别针对长文本(现代文)和短文本(文言文)研发了基于Labeled LDA模型及基于TF-IDF和N-gram模型的精细标注语料筛选方法,解决了语料库的快速构建问题;(2)基于BERT-CNN模型研发了融合上下文语义特征和多粒度的局部语义特征的、面向长短文本一体化处理的气象灾害时空事件自动分类方法;(3)利用该方法分别从文言文和泛在网络数据中自动抽取了灾害时空事件,其宏F1值分别达到89.09%和80.06%,主要气象灾害时空事件分布与专业统计数据相关性较高;(4)基于以上结果,重建了我国各历史时期灾害时空演变过程,发现各时期灾害数据量整体呈现出逐步上升趋势,暴雨灾害、洪涝灾害与干旱灾害是影响我国的主要灾种。本方法既可实现网络长文本事件的自动发现,也可实现文言文短文本事件的自动检测,为文本数据便捷应用于气象灾害研究和监测提供了新的技术方法。 展开更多
关键词 气象灾害 时空事件 知识体系 语料库 文本分类 bert-cnn模型 事件抽取
原文传递
基于缺陷文本识别的变压器风险评估及辅助检修决策方法 被引量:10
15
作者 廖才波 黄智勇 +3 位作者 杨金鑫 邵剑 王同磊 林元棣 《高电压技术》 EI CAS CSCD 北大核心 2024年第7期2931-2941,共11页
针对传统变电设备检修业务过度依赖人工经验、设备缺陷处置效率过低等问题,提出了一种基于缺陷文本识别和知识图谱的变压器风险评估及辅助检修决策方法。该方法通过建立基于Bert-CNN的缺陷文本识别模型,完成现场运维人员所填缺陷记录的... 针对传统变电设备检修业务过度依赖人工经验、设备缺陷处置效率过低等问题,提出了一种基于缺陷文本识别和知识图谱的变压器风险评估及辅助检修决策方法。该方法通过建立基于Bert-CNN的缺陷文本识别模型,完成现场运维人员所填缺陷记录的动态词向量提取及文本局部特征分析,自动评估设备缺陷严重程度及其风险等级。随后,基于行业标准、试验规程及专家经验,采用知识图谱构建了变压器运维检修策略库,实现了缺陷文本识别结果与检修策略库的知识融合与映射,完善了设备缺陷记录到运维检修决策的全过程智能化运检辅助功能。最后,结合算法对比及案例验证,该方法对缺陷严重程度、部件和风险等级的识别结果准确率达到91%以上,且可实现基于设备缺陷情况的差异化检修决策推送,有助于提升变压器运维检修业务的智能化和自动化水平。 展开更多
关键词 变压器缺陷 文本分类 bert-cnn 知识图谱 智能辅助决策
原文传递
基于网络信息与BP神经网络的应急物资需求预测研究--以积石山县6.2级地震为例 被引量:3
16
作者 张淞 黄猛 +2 位作者 刘帅 周文涛 游巧 《防灾科技学院学报》 2024年第3期76-85,共10页
为应对震后应急初期难以及时获取灾情信息,灾区内各区域应急物资需求不明等问题,引入实时网络资源信息结合历史地震数据进行物资需求预测。通过爬取2023年12月18日甘肃积石山地震震后72h内112672条多平台网络信息,使用BERT-CNN模型对网... 为应对震后应急初期难以及时获取灾情信息,灾区内各区域应急物资需求不明等问题,引入实时网络资源信息结合历史地震数据进行物资需求预测。通过爬取2023年12月18日甘肃积石山地震震后72h内112672条多平台网络信息,使用BERT-CNN模型对网络信息进行分类。结合历史地震数据,采取TOPSIS方法完成应急需求急迫度评估,将其作为新的样本特征引入BP神经网络,以优化对积石山县内各乡镇死亡人数预测效果。最后基于死亡人数与安全库存理论,完成对震后72h灾区各乡镇饮用水、帐篷两类物资的需求预测。通过实验证明,引入网络资源可以及时反映灾区受灾情况,提高应急物资预测的时效性、精细度和准确性。 展开更多
关键词 网络资源 自然语言处理 bert-cnn BP神经网络 应急物资需求预测
在线阅读 下载PDF
基于语义特征的潜在标准必要专利识别研究 被引量:12
17
作者 翟东升 金苑苑 +3 位作者 徐硕 何喜军 胡涵清 甄柳林 《科研管理》 CSSCI CSCD 北大核心 2022年第3期183-191,共9页
潜在标准必要专利在未来市场中具有极高的战略价值和经济价值,企业如何抢先识别这些专利对建设创新型国家、优化企业专利布局、加快技术创新、提升行业地位、规避专利挟持具有重要意义。但目前关于自动化识别潜在标准必要专利的研究尚... 潜在标准必要专利在未来市场中具有极高的战略价值和经济价值,企业如何抢先识别这些专利对建设创新型国家、优化企业专利布局、加快技术创新、提升行业地位、规避专利挟持具有重要意义。但目前关于自动化识别潜在标准必要专利的研究尚少。本文从提取标准必要专利语义特征的视角下,提出利用Bert-CNN网络模型结合上下文对已知标准必要专利的隐性全局语义特征和高维层次语义特征双重提取,依据特征提取结果识别潜在标准必要专利,并通过计算Bert向量相似度预测潜在标准必要专利可能对应的标准。实证部分以ETSI欧洲标准化协会发布的标准必要专利构建数据验证集对模型的性能进行验证,结果显示本模型在大规模专利数据实验中的精准率、召回率、F;值优于已有研究。 展开更多
关键词 潜在标准必要专利识别 Bert CNN 语义特征
原文传递
融合BERT与多尺度CNN的科技政策内容多标签分类研究 被引量:19
18
作者 马雨萌 黄金霞 +1 位作者 王昉 芮啸 《情报杂志》 CSSCI 北大核心 2022年第11期157-163,共7页
[研究目的]为实现科技政策文本内容的自动编码与多主题分类,探索一种融合BERT模型和多尺度CNN模型的多标签分类方法,得到更加丰富的政策语义特征信息。[研究方法]针对科技政策内容句的信息密度大、内涵分布不均衡等特点,通过BERT充分提... [研究目的]为实现科技政策文本内容的自动编码与多主题分类,探索一种融合BERT模型和多尺度CNN模型的多标签分类方法,得到更加丰富的政策语义特征信息。[研究方法]针对科技政策内容句的信息密度大、内涵分布不均衡等特点,通过BERT充分提取政策内容的上下文信息,增强文本的语义特征表示;然后利用多尺度、多通道的CNN-Inception模块提取更多尺度的特征,通过捕获文本的局部特征与组合不同尺度的语句特征,提升模型在多标签分类任务上的性能。[研究结论]对比实验表明,与单一BERT分类模型相比,文中提出的BERT-多尺度CNN模型的召回率与Micro-F1值显著提高,提升了科技政策多标签分类的效果。 展开更多
关键词 科技政策 文本内容分类 多标签分类 BERT模型 多尺度CNN
在线阅读 下载PDF
基于BERT的心血管医疗指南实体关系抽取方法 被引量:19
19
作者 武小平 张强 +1 位作者 赵芳 焦琳 《计算机应用》 CSCD 北大核心 2021年第1期145-149,共5页
实体关系抽取是医疗领域知识问答、知识图谱构建及信息抽取的重要基础环节之一。针对在心血管专病知识图谱构建的过程中尚无公开数据集可用的情况,收集了心血管疾病领域的医疗指南并进行相应的实体和关系类别的专业标注,构建了心血管专... 实体关系抽取是医疗领域知识问答、知识图谱构建及信息抽取的重要基础环节之一。针对在心血管专病知识图谱构建的过程中尚无公开数据集可用的情况,收集了心血管疾病领域的医疗指南并进行相应的实体和关系类别的专业标注,构建了心血管专病知识图谱实体关系抽取的专业数据集。基于该数据集,首先提出双向变形编码器卷积神经网络(BERT-CNN)模型以实现中文语料中的关系抽取,然后根据中文语义中主要以词而不是字为基本单位的特性,提出了改进的基于全词掩模的双向变形编码器卷积神经网络(BERT(wwm)-CNN)模型用于提升在中文语料中关系抽取的性能。实验结果表明,改进的BERT(wwm)-CNN在所构建的关系抽取数据集上准确率达到0.85,召回率达到0.80,F1值达到0.83,优于对比的基于双向变形编码器长短期记忆网络(BERT-LSTM)模型和BERT-CNN模型,验证了改进网络模型的优势。 展开更多
关键词 实体关系抽取 心血管疾病 双向变形编码器网络 卷积神经网络 知识图谱
在线阅读 下载PDF
基于深度学习的疫情情感分析 被引量:3
20
作者 张苑 祝小兰 杨东晓 《智能计算机与应用》 2022年第3期40-45,52,共7页
2019年新型冠状病毒(COVID-19)肺炎疫情对人民生产生活各方面产生严重影响,为协助政府把握社会舆论,更加科学有效地做好预防控制工作的宣传和舆论引导,本文以与新型冠状病毒肺炎疫情相关的微博内容为研究对象,采用深度学习技术对网民情... 2019年新型冠状病毒(COVID-19)肺炎疫情对人民生产生活各方面产生严重影响,为协助政府把握社会舆论,更加科学有效地做好预防控制工作的宣传和舆论引导,本文以与新型冠状病毒肺炎疫情相关的微博内容为研究对象,采用深度学习技术对网民情感进行分析和识别。首先,采用文本分词、正则表达式、词性和停用词表过滤等方法进行预处理操作;其次,构建Bert-CNN模型和Bert-RCNN模型对微博中的网民情感进行识别;最后,验证两种模型的识别效果,并与其他模型进行对比分析。实验结果表明,Bert-RCNN模型的效果最好,其F1-score值为0.702、准确率为73.56%。 展开更多
关键词 深度学习 疫情 情感 bert-cnn模型 Bert-RCNN模型
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部