针对油气领域知识图谱构建过程中命名实体识别使用传统方法存在实体特征信息提取不准确、识别效率低的问题,提出了一种基于BERT-BiLSTM-CRF模型的命名实体识别研究方法。该方法首先利用BERT(bidirectional encoder representations from...针对油气领域知识图谱构建过程中命名实体识别使用传统方法存在实体特征信息提取不准确、识别效率低的问题,提出了一种基于BERT-BiLSTM-CRF模型的命名实体识别研究方法。该方法首先利用BERT(bidirectional encoder representations from transformers)预训练模型得到输入序列语义的词向量;然后将训练后的词向量输入双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)模型进一步获取上下文特征;最后根据条件随机场(conditional random fields,CRF)的标注规则和序列解码能力输出最大概率序列标注结果,构建油气领域命名实体识别模型框架。将BERT-BiLSTM-CRF模型与其他2种命名实体识别模型(BiLSTM-CRF、BiLSTM-Attention-CRF)在包括3万多条文本语料数据、4类实体的自建数据集上进行了对比实验。实验结果表明,BERT-BiLSTM-CRF模型的准确率(P)、召回率(R)和F_(1)值分别达到91.3%、94.5%和92.9%,实体识别效果优于其他2种模型。展开更多
针对现存交通事故文本信息中存在的大量时间、地点、伤亡损失等关键异构数据难以有效提取,以及用静态词向量深度学习模型提取交通事故文本信息精确度较低的问题,本文利用BERT(Bidirectional Encoder Representations from Transformers...针对现存交通事故文本信息中存在的大量时间、地点、伤亡损失等关键异构数据难以有效提取,以及用静态词向量深度学习模型提取交通事故文本信息精确度较低的问题,本文利用BERT(Bidirectional Encoder Representations from Transformers)对文本字符进行动态向量映射,从数据表达源头解决一词多义、上下文依赖不充分等问题;利用BiGRU(Bi-Gate Recurrent Unit)提取文本向量化后的特征,输出高特征的文本序列;利用CRF(Conditional Random Fields)计算全局最优输出节点的概率优势,优化文本序列特征结果,提出一种基于动态字向量的BERT-BiGRU-CRF融合模型,用于交通事故文本关键信息提取。通过对比实验表明,该模型在交通事故文本信息提取中平均准确率为0.952,F1为0.925,比基于静态词向量Word2Vec模型的精确率与F1值分别提高了6.3个百分点和7.9个百分点。展开更多
预训练语言模型能够表达句子丰富的句法和语法信息,并且能够对词的多义性建模,在自然语言处理中有着广泛的应用,BERT(bidirectional encoder representations from transformers)预训练语言模型是其中之一。在基于BERT微调的命名实体识...预训练语言模型能够表达句子丰富的句法和语法信息,并且能够对词的多义性建模,在自然语言处理中有着广泛的应用,BERT(bidirectional encoder representations from transformers)预训练语言模型是其中之一。在基于BERT微调的命名实体识别方法中,存在的问题是训练参数过多,训练时间过长。针对这个问题提出了基于BERT-IDCNN-CRF(BERT-iterated dilated convolutional neural network-conditional random field)的中文命名实体识别方法,该方法通过BERT预训练语言模型得到字的上下文表示,再将字向量序列输入IDCNN-CRF模型中进行训练,训练过程中保持BERT参数不变,只训练IDCNN-CRF部分,在保持多义性的同时减少了训练参数。实验表明,该模型在MSRA语料上F1值能够达到94.41%,在中文命名实体任务上优于目前最好的Lattice-LSTM模型,提高了1.23%;与基于BERT微调的方法相比,该方法的F1值略低但是训练时间大幅度缩短。将该模型应用于信息安全、电网电磁环境舆情等领域的敏感实体识别,速度更快,响应更及时。展开更多
字符的位置信息和语义信息对命名方式繁杂且名称长度较长的中文农业实体的识别至关重要。为解决命名实体识别过程中由于捕获字符位置信息、上下文语义特征和长距离依赖信息不充足导致识别效果不理想的问题,该研究提出一种基于EmBERT-BiL...字符的位置信息和语义信息对命名方式繁杂且名称长度较长的中文农业实体的识别至关重要。为解决命名实体识别过程中由于捕获字符位置信息、上下文语义特征和长距离依赖信息不充足导致识别效果不理想的问题,该研究提出一种基于EmBERT-BiLSTM-CRF模型的中文农业命名实体识别方法。该方法采用基于Transformer的深度双向预训练语言模型(Bidirectional Encoder Representation from Transformers,BERT)作为嵌入层提取字向量的深度双向表示,并使用实体级遮蔽策略使模型更好地表征中文语义;然后使用双向长短时记忆网络(BidirectionalLong Short-Term Memory,BiLSTM)学习文本的长序列语义特征;最后使用条件随机场(Conditional Random Field,CRF)在训练数据中学习标注约束规则,并利用相邻标签之间的信息输出全局最优的标注序列。训练过程中使用了焦点损失函数来缓解样本分布不均衡的问题。试验在构建的语料库上对农作物品种、病害、虫害和农药4类农业实体进行识别。结果表明,该研究的EmBERT-BiLSTM-CRF模型对4类农业实体的识别性能相较于其他模型有明显提升,准确率为94.97%,F1值为95.93%。展开更多
文摘针对现有的中文命名实体识别算法没有充分考虑实体识别任务的数据特征,存在中文样本数据的类别不平衡、训练数据中的噪声太大和每次模型生成数据的分布差异较大的问题,提出了一种以BERT-BiLSTM-CRF(Bidirectional Encoder Representations from Transformers-Bidirectional Long Short-Term Memory-Conditional Random Field)为基线改进的中文命名实体识别模型。首先在BERT-BiLSTM-CRF模型上结合P-Tuning v2技术,精确提取数据特征,然后使用3个损失函数包括聚焦损失(Focal Loss)、标签平滑(Label Smoothing)和KL Loss(Kullback-Leibler divergence loss)作为正则项参与损失计算。实验结果表明,改进的模型在Weibo、Resume和MSRA(Microsoft Research Asia)数据集上的F 1得分分别为71.13%、96.31%、95.90%,验证了所提算法具有更好的性能,并且在不同的下游任务中,所提算法易于与其他的神经网络结合与扩展。
文摘针对油气领域知识图谱构建过程中命名实体识别使用传统方法存在实体特征信息提取不准确、识别效率低的问题,提出了一种基于BERT-BiLSTM-CRF模型的命名实体识别研究方法。该方法首先利用BERT(bidirectional encoder representations from transformers)预训练模型得到输入序列语义的词向量;然后将训练后的词向量输入双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)模型进一步获取上下文特征;最后根据条件随机场(conditional random fields,CRF)的标注规则和序列解码能力输出最大概率序列标注结果,构建油气领域命名实体识别模型框架。将BERT-BiLSTM-CRF模型与其他2种命名实体识别模型(BiLSTM-CRF、BiLSTM-Attention-CRF)在包括3万多条文本语料数据、4类实体的自建数据集上进行了对比实验。实验结果表明,BERT-BiLSTM-CRF模型的准确率(P)、召回率(R)和F_(1)值分别达到91.3%、94.5%和92.9%,实体识别效果优于其他2种模型。
文摘针对现存交通事故文本信息中存在的大量时间、地点、伤亡损失等关键异构数据难以有效提取,以及用静态词向量深度学习模型提取交通事故文本信息精确度较低的问题,本文利用BERT(Bidirectional Encoder Representations from Transformers)对文本字符进行动态向量映射,从数据表达源头解决一词多义、上下文依赖不充分等问题;利用BiGRU(Bi-Gate Recurrent Unit)提取文本向量化后的特征,输出高特征的文本序列;利用CRF(Conditional Random Fields)计算全局最优输出节点的概率优势,优化文本序列特征结果,提出一种基于动态字向量的BERT-BiGRU-CRF融合模型,用于交通事故文本关键信息提取。通过对比实验表明,该模型在交通事故文本信息提取中平均准确率为0.952,F1为0.925,比基于静态词向量Word2Vec模型的精确率与F1值分别提高了6.3个百分点和7.9个百分点。
文摘字符的位置信息和语义信息对命名方式繁杂且名称长度较长的中文农业实体的识别至关重要。为解决命名实体识别过程中由于捕获字符位置信息、上下文语义特征和长距离依赖信息不充足导致识别效果不理想的问题,该研究提出一种基于EmBERT-BiLSTM-CRF模型的中文农业命名实体识别方法。该方法采用基于Transformer的深度双向预训练语言模型(Bidirectional Encoder Representation from Transformers,BERT)作为嵌入层提取字向量的深度双向表示,并使用实体级遮蔽策略使模型更好地表征中文语义;然后使用双向长短时记忆网络(BidirectionalLong Short-Term Memory,BiLSTM)学习文本的长序列语义特征;最后使用条件随机场(Conditional Random Field,CRF)在训练数据中学习标注约束规则,并利用相邻标签之间的信息输出全局最优的标注序列。训练过程中使用了焦点损失函数来缓解样本分布不均衡的问题。试验在构建的语料库上对农作物品种、病害、虫害和农药4类农业实体进行识别。结果表明,该研究的EmBERT-BiLSTM-CRF模型对4类农业实体的识别性能相较于其他模型有明显提升,准确率为94.97%,F1值为95.93%。