期刊文献+
共找到1,179篇文章
< 1 2 59 >
每页显示 20 50 100
Galerkin-Vlasov approach for bending analysis of flexoelectric doubly-curved sandwich nanoshells with piezoelectric/FGP/piezoelectric layers using the nonlocal strain theory 被引量:1
1
作者 Tran Van Ke Do Van Thom +2 位作者 Nguyen Thai Dung Nguyen Van Chinh Phung Van Minh 《Acta Mechanica Sinica》 2025年第2期7-40,共34页
Flexoelectricity refers to the link between electrical polarization and strain gradient fields in piezoelectric materials,particularly at the nano-scale.The present investigation aims to comprehensively focus on the s... Flexoelectricity refers to the link between electrical polarization and strain gradient fields in piezoelectric materials,particularly at the nano-scale.The present investigation aims to comprehensively focus on the static bending analysis of a piezoelectric sandwich functionally graded porous(FGP)double-curved shallow nanoshell based on the flexoelectric effect and nonlocal strain gradient theory.Two coefficients that reduce or increase the stiffness of the nanoshell,including nonlocal and length-scale parameters,are considered to change along the nanoshell thickness direction,and three different porosity rules are novel points in this study.The nanoshell structure is placed on a Pasternak elastic foundation and is made up of three separate layers of material.The outermost layers consist of piezoelectric smart material with flexoelectric effects,while the core layer is composed of FGP material.Hamilton’s principle was used in conjunction with a unique refined higher-order shear deformation theory to derive general equilibrium equations that provide more precise outcomes.The Navier and Galerkin-Vlasov methodology is used to get the static bending characteristics of nanoshells that have various boundary conditions.The program’s correctness is assessed by comparison with published dependable findings in specific instances of the model described in the article.In addition,the influence of parameters such as flexoelectric effect,nonlocal and length scale parameters,elastic foundation stiffness coefficient,porosity coefficient,and boundary conditions on the static bending response of the nanoshell is detected and comprehensively studied.The findings of this study have practical implications for the efficient design and control of comparable systems,such as micro-electromechanical and nano-electromechanical devices. 展开更多
关键词 Analytical solution Flexoelectric effect Nonlocal strain gradient theory Static bending of nanoshell
原文传递
Bending Characteristics of Folded Multi-celled Tubes with Square and Circular Section Geometries
2
作者 Rui Liang Fengxiang Xu +3 位作者 Zhen Zou Xiaoqiang Niu Xuebang Tang Tingpeng Li 《Acta Mechanica Solida Sinica》 2025年第1期125-141,共17页
This research investigates the bending response of folded multi-celled tubes(FMTs)fabricated by folded metal sheets.A three-point bending test for FMTs with circular and square sections is designed and introduced.The ... This research investigates the bending response of folded multi-celled tubes(FMTs)fabricated by folded metal sheets.A three-point bending test for FMTs with circular and square sections is designed and introduced.The base numerical models are correlated with physical experiments and a static crashworthiness analysis of six FMT configurations to assess their energy absorption characteristics.The influences of thickness,sectional shape,and load direction on the bending response are studied.Results indicate that increasing the thickness of the tube and radian of the inner tube enhances the crashworthiness performance of FMT,yielding a 20.50%increase in mean crushing force,a 55.53%increase in specific energy absorption,and an 18.05%decrease in peak crushing force compared to traditional multi-celled tubes(TMTs).A theoretical analysis of the specific energy absorption indicates that FMTs outperform TMTs,particularly when the peak crushing force is prominent.This study highlights the innovative and practical potential of FMTs to improve the crashworthiness of thin-walled structures. 展开更多
关键词 bending Folded Multi-celled tube Energy absorption Numerical
原文传递
Texture-dependent bending behaviors of extruded AZ31 magnesium alloy plates
3
作者 Kecheng Zhou Xiaochuan Sun +6 位作者 Hongwei Wang Xiaodan Zhang Ding Tang Weiqin Tang Yaodong Jiang Peidong Wu Huamiao Wang 《Journal of Magnesium and Alloys》 2025年第8期3617-3631,共15页
The relatively insufficient knowledge of the deformation behavior has limited the wide application of the lightest structure material-Mg alloys.Among others,bending behavior is of great importance because it is unavoi... The relatively insufficient knowledge of the deformation behavior has limited the wide application of the lightest structure material-Mg alloys.Among others,bending behavior is of great importance because it is unavoidably involved in various forming processes,such as folding,stamping,etc.The hexagonal close-packed structure makes it even a strong texture-dependent behavior and even hard to capture and predict.In this regard,the bending behaviors are investigated in terms of both experiments and simulations in the current work.Bending samples with longitudinal directions inclined from the transverse direction by different angles have been prepared from an extruded AZ31 plate,respectively.The moment-curvature curves and strain distribution have been recorded in the four-point bending tests assisted with an in-situ digital image correlation(DIC)system.A crystal-plasticity-based bending-specific approach named EVPSC-BEND was applied to bridge the mechanical response to the microstructure evolution and underlying deformation mechanisms.The flow stress,texture,twin volume fraction,stress distribution,and strain distribution evolve differently from sample to sample,manifesting strong texture-dependent bending behaviors.The underlying mechanisms associated with this texture dependency,especially the occurrence of both twinning and detwinning during the monotonic bending,are carefully discussed.Besides,the simulation has been conducted to reveal the moment-inclination angle relation of the investigated AZ31 extruded plate in terms of the polar coordinate,which intuitively shows the texture-dependent behaviors.Specifically,the samples with longitudinal directions parallel to the extruded direction bear the biggest initial yielding moment. 展开更多
关键词 Magnesium alloy bending Texture-dependency Crystal plasticity Twinning and detwinning
在线阅读 下载PDF
Research on Birdcage Buckling in the Armor Wire of A Damaged Umbilical Cable Under Compression and Bending Cyclic Load
4
作者 CHEN Si-yuan DENG Yu +2 位作者 LIANG Xu DENG Xue-jiao WANG Zhen-kui 《China Ocean Engineering》 2025年第1期86-99,共14页
Buckling failure in submarine cables presents a prevalent challenge in ocean engineering.This work aims to explore the buckling behavior of umbilical cables with damaged sheaths subjected to compression and bending cy... Buckling failure in submarine cables presents a prevalent challenge in ocean engineering.This work aims to explore the buckling behavior of umbilical cables with damaged sheaths subjected to compression and bending cyclic loads.A finite element model is devised,incorporating a singular armor wire,a rigid core,and a damaged sheath.To scrutinize the buckling progression and corresponding deformation,axial compression and bending cyclic loads are introduced.The observations reveal that a reduction in axial compression results in a larger number of cycles before buckling ensues and progressively shifts the buckling position toward the extrados and fixed end.Decreasing the bending radius precipitates a reduction in the buckling cycle number and minimizes the deformation in the armor wire.Furthermore,an empirical model is presented to predict the occurrence of birdcage buckling,providing a means to anticipate buckling events and to estimate the requisite number of cycles leading to buckling. 展开更多
关键词 umbilical cable armor wire birdcage buckling bending cycle damaged sheath
在线阅读 下载PDF
A tactile glove for object recognition based on palmar pressure and joint bending strain sensing
5
作者 ZHANG Xuefeng ZHANG Shaojie +1 位作者 CHEN Xin ZHANG Jinhua 《Journal of Measurement Science and Instrumentation》 2025年第2期173-185,共13页
With the rapid development of flexible electronics,the tactile systems for object recognition are becoming increasingly delicate.This paper presents the design of a tactile glove for object recognition,integrating 243... With the rapid development of flexible electronics,the tactile systems for object recognition are becoming increasingly delicate.This paper presents the design of a tactile glove for object recognition,integrating 243 palm pressure units and 126 finger joint strain units that are implemented by piezoresistive Velostat film.The palm pressure and joint bending strain data from the glove were collected using a two-dimensional resistance array scanning circuit and further converted into tactile images with a resolution of 32×32.To verify the effect of tactile data types on recognition precision,three datasets of tactile images were respectively built by palm pressure data,joint bending strain data,and a tactile data combing of both palm pressure and joint bending strain.An improved residual convolutional neural network(CNN)model,SP-ResNet,was developed by light-weighting ResNet-18 to classify these tactile images.Experimental results show that the data collection method combining palm pressure and joint bending strain demonstrates a 4.33%improvement in recognition precision compared to the best results obtained by using only palm pressure or joint bending strain.The recognition precision of 95.50%for 16 objects can be achieved by the presented tactile glove with SP-ResNet of less computation cost.The presented tactile system can serve as a sensing platform for intelligent prosthetics and robot grippers. 展开更多
关键词 tactile glove object recognition Velostat joint bending strain sensors palmar pressure sensors convolutional neural network
在线阅读 下载PDF
Fracture behavior of sandstone with partial filling flaw under mixed-mode loading: Three-point bending tests and discrete element method
6
作者 Dongdong Ma Yu Wu +4 位作者 Xiao Ma Xunjian Hu Wenbao Dong Decheng Li Lingyu Li 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期291-308,共18页
The fracture behavior of natural fracture in the geological reservoir subjected to filling property,affects the crack initiation and propagation under stress perturbation.Partial filling flaws were intermediate betwee... The fracture behavior of natural fracture in the geological reservoir subjected to filling property,affects the crack initiation and propagation under stress perturbation.Partial filling flaws were intermediate between open fractures and filled fractures,the fracture response may be worth exploring.In this work,the effect of the filling property of sandstone with partial filling flaws on the fracture behavior was systematically investigated based on three-point bending tests and the numerical approach of discrete element method(DEM).In the laboratory,semi-circular three-point bending tests were carried out with partial filling flaws of various filling strengths.Based on this,numerical simulations were used to further investigate the effect of the filling ratio and the inclination of the partial filling flaw on the mechanical and fracture responses,and the effect of the partial filling flaw under mixed-mode loading on the fracture mechanism was elucidated coupled with acoustic emission(AE)characteristics.The obtained results showed that the increase in filling strength and filling ratio of partial filling flaw led to an increase in peak strength,with a decreasing trend in peak strength with the inclination of partial filling flaw.In terms of crack propagation pattern,the increasing filling strength of the partial filling flaw induced the transformation of the fracture mechanism toward deflection,with a tortuosity path,while the filling ratio and inclination of partial filling flaw led to fracture mechanism change from deflection to penetration and attraction,accompanied with a larger AE event source in filler.Accordingly,the b-value based on the Gutenberg-Richter equation fluctuated between 5 and 4 at low filling ratio and inclination and remained around 5 at high filling ratio and inclination of partial filling flaw.Related results may provide an application prospective for reservoir stimulation using the natural fracture system. 展开更多
关键词 Partial filling flaw Mixed-mode loading Semi-circular three-point bending Acoustic emission(AE) B-VALUE
在线阅读 下载PDF
A smart finger patch with coupled magnetoelastic and resistive bending sensors
7
作者 Ziyi Dai Mingrui Wang +4 位作者 Yu Wang Zechuan Yu Yan Li Weidong Qin Kai Qian 《Journal of Semiconductors》 2025年第1期194-203,共10页
In the era of Metaverse and virtual reality(VR)/augmented reality(AR),capturing finger motion and force interactions is crucial for immersive human-machine interfaces.This study introduces a flexible electronic skin f... In the era of Metaverse and virtual reality(VR)/augmented reality(AR),capturing finger motion and force interactions is crucial for immersive human-machine interfaces.This study introduces a flexible electronic skin for the index finger,addressing coupled perception of both state and process in dynamic tactile sensing.The device integrates resistive and giant magnetoelastic sensors,enabling detection of surface pressure and finger joint bending.This e-skin identifies three phases of finger action:bending state,dynamic normal force and tangential force(sweeping).The system comprises resistive carbon nanotubes(CNT)/polydimethylsiloxane(PDMS)films for bending sensing and magnetoelastic sensors(NdFeB particles,EcoFlex,and flexible coils)for pressure detection.The inward bending resistive sensor,based on self-assembled microstructures,exhibits directional specificity with a response time under 120 ms and bending sensitivity from 0°to 120°.The magnetoelastic sensors demonstrate specific responses to frequency and deformation magnitude,as well as sensitivity to surface roughness during sliding and material hardness.The system’s capability is demonstrated through tactile-based bread type and condition recognition,achieving 92%accuracy.This intelligent patch shows broad potential in enhancing interactions across various fields,from VR/AR interfaces and medical diagnostics to smart manufacturing and industrial automation. 展开更多
关键词 human machine interface flexible sensor wearable sensor giant magnetoelastic effect inward bending sensor
在线阅读 下载PDF
Bending Crashworthiness of Thin⁃Walled Square Tubes Partially Filled with Metallic Foams
8
作者 Zhongyou Xie Limin Guo +1 位作者 Cheng Li Jianwen Cai 《Journal of Harbin Institute of Technology(New Series)》 2025年第2期24-37,共14页
Two cross⁃sectional configurations of thin⁃walled square tubes partially filled with lightweight metallic foams are proposed,and termed as double⁃cell configuration partially filled with foam(DC⁃PF)and double⁃tube con... Two cross⁃sectional configurations of thin⁃walled square tubes partially filled with lightweight metallic foams are proposed,and termed as double⁃cell configuration partially filled with foam(DC⁃PF)and double⁃tube configuration partially filled with foam(DT⁃PF),respectively.The bending crashworthiness is investigated based on three⁃point bending tests using finite element ABAQUS/Explicit code.The two key mechanical indicators including Crash Load Efficiency(CLE)and Specific Energy Absorption(SEA)are introduced to evaluate the effect of foams in comparison with empty square tubes and fully filled square tubes.The numerical results show that the two partially filled configurations,especially DT⁃PF,display dramatically excellent bending crashworthiness compared with empty and fully filled square tubes.There exists a foam density threshold,beyond which the CLE of DT⁃PF achieves a maximum constant.In addition,there seems to be another foam density threshold,beyond which the SEA of DT⁃PF gets to the maximum value.It is also shown that the foam density threshold corresponding to the maximum SEA varies with the thickness of thin⁃walled square tubes. 展开更多
关键词 thin⁃walled tube lightweight foam bending crashworthiness energy absorption finite element analysis
在线阅读 下载PDF
Effect of Compound Energy Field with Laser and Ultrasonic Assisted Molding on Bending Performance of TC4 Titanium Alloy
9
作者 GAO Tiejun ZHAO Kexiang +2 位作者 LI Weijie WANG Kaifeng WANG Xiaokang 《Journal of Wuhan University of Technology(Materials Science)》 2025年第3期852-858,共7页
Aiming at solve the difficulty and low dimensional accuracy in bending titanium alloy specimens at room temperature,we proposed a compound energy field(CEF)with laser and ultrasonic forming method.Through the conventi... Aiming at solve the difficulty and low dimensional accuracy in bending titanium alloy specimens at room temperature,we proposed a compound energy field(CEF)with laser and ultrasonic forming method.Through the conventional bending,laser-assisted energy field bending and CEF-assisted bending experiments on TC4 titanium alloy,the effects of bending force,laser-assisted energy field and CEF on the springback angle and fillet radius of TC4 titanium alloy specimens in V-shape bending were analyzed.The impact of the CEF-assisted bending process on the microstructure of TC4 titanium alloy was also investigated.The results show that CEF-assisted bending process has the advantages of high energy density,simple operation process and small influence area of the microstructure performances.It is effective in reducing the springback and fillet radius of bending specimens.Thus,CEF-assisted bending effectively improves the formability and surface quality of titanium alloy specimens. 展开更多
关键词 TC4 titanium alloy laser and ultrasonic compound energy field bending performances MICROSTRUCTURE
原文传递
Significant Influence on Residual Bending Strength by Cracks Generation During Grinding of Ceramics
10
作者 Jinshuo Zhang Tianyi Sui +3 位作者 Bin Lin Bingrui Lv Jingming Li Jingguo Zhou 《Chinese Journal of Mechanical Engineering》 2025年第2期60-83,共24页
Any product must undergo precise manufacturing before use.The damage incurred during the manufacturing process can significantly impact the residual strength of the product post-manufacturing.However,the relationship ... Any product must undergo precise manufacturing before use.The damage incurred during the manufacturing process can significantly impact the residual strength of the product post-manufacturing.However,the relationship between residual bending strength and manufacturing-induced damage remains unclear,despite being a crucial parameter for assessing material service life and performance,leading to a decrease in product performance reliability.This study focuses on investigating the impact of crack generation on residual bending strength through theoretical and experimental analyses of scratching,grinding,and three-point bending.The research first elucidates the forms and mechanisms of material damage through scratch experiments.Subsequently,using resin-bonded and electroplated wheels as case studies,the influence of different process parameters on grinding damage and residual bending strength is explored.The reduction of brittle removal can lead to a 50%–60%decrease in residual bending strength.Lastly,a model is developed to delineate the relationship between processing parameters and the residual bending strength of the product,with the model exhibiting an error margin of less than 11%.This model clearly reveals the effect of crack generation under different process parameters on residual flexural strength. 展开更多
关键词 Hot isostatic pressing sinter SI3N4 SCRATCHING GRINDING Residual bending strength
在线阅读 下载PDF
A sixth-order method for large deflection bending analysis of complex plates with multiple holes
11
作者 Yonggu Feng Youhe Zhou Jizeng Wang 《Acta Mechanica Sinica》 2025年第6期105-124,共20页
The challenge of solving nonlinear problems in multi-connected domains with high accuracy has garnered significant interest.In this paper,we propose a unified wavelet solution method for accurately solving nonlinear b... The challenge of solving nonlinear problems in multi-connected domains with high accuracy has garnered significant interest.In this paper,we propose a unified wavelet solution method for accurately solving nonlinear boundary value problems on a two-dimensional(2D)arbitrary multi-connected domain.We apply this method to solve large deflection bending problems of complex plates with holes.Our solution method simplifies the treatment of the 2D multi-connected domain by utilizing a natural discretization approach that divides it into a series of one-dimensional(1D)intervals.This approach establishes a fundamental relationship between the highest-order derivative in the governing equation of the problem and the remaining lower-order derivatives.By combining a wavelet high accuracy integral approximation format on 1D intervals,where the convergence order remains constant regardless of the number of integration folds,with the collocation method,we obtain a system of algebraic equations that only includes discrete point values of the highest order derivative.In this process,the boundary conditions are automatically replaced using integration constants,eliminating the need for additional processing.Error estimation and numerical results demonstrate that the accuracy of this method is unaffected by the degree of nonlinearity of the equations.When solving the bending problem of multi-perforated complex-shaped plates under consideration,it is evident that directly using higher-order derivatives as unknown functions significantly improves the accuracy of stress calculation,even when the stress exhibits large gradient variations.Moreover,compared to the finite element method,the wavelet method requires significantly fewer nodes to achieve the same level of accuracy.Ultimately,the method achieves a sixth-order accuracy and resembles the treatment of one-dimensional problems during the solution process,effectively avoiding the need for the complex 2D meshing process typically required by conventional methods when solving problems with multi-connected domains. 展开更多
关键词 Wavelet integral collocation method Multi-connected domain Large deflection bending Plate with holes Highaccuracy
原文传递
Multiscale analysis of microstructure-based bending characteristics of advanced high strength dual-phase steel
12
作者 Ming-shuai Huo Hai-bo Xie +10 位作者 Tao Zhang Guan-qiao Su Lian-jie Li Meng-yuan Ren Zhou Li Jing-bao Liu Ting Yang Xi Zhang Yan-bin Du Valerie Linton Zheng-yi Jiang 《Journal of Iron and Steel Research International》 2025年第7期2054-2063,共10页
Different stress states have a significant influence on the magnitude of the microscopic plastic strain and result in the development of the microstructure evolution.As a result,a comprehensive understanding of the di... Different stress states have a significant influence on the magnitude of the microscopic plastic strain and result in the development of the microstructure evolution.As a result,a comprehensive understanding of the different scale variation on microstructure evolution during bending deformation is essential.The advanced high strength dual-phase(DP1180)steel was investigated using multiscale microstructure-based 3D representative volume element(RVE)modelling technology with emphasis on understanding the relationship between the microstructure,localised stress-strain evolution as well as the deformation characteristics in the bending process.It is demonstrated that the localised development in bending can be more accurately described by microscopic deformation when taking into account microstructural properties.Microstructure-based 3D RVEs from each chosen bending condition generally have comparable localisation properties,whilst the magnitudes and intensities differ.In addition,the most severe localised bands are predicted to occur close to the ferrite and martensite phase boundaries where the martensite grains are close together or have a somewhat sharp edge.The numerically predicted results for the microstructure evolution,shear bands development and stress and strain distribution after 3-point bending exhibit a good agreement with the relevant experimental observations. 展开更多
关键词 Advanced high strength dual-phase steel 3D representative volume element Microstructure-based modelling bending characteristics Multiscaleanalysis
原文传递
Nonlinear Bending of FG-CNTR Curved Nanobeams in Thermal Environments
13
作者 Yuanyuan Zhang Yanxin Li +1 位作者 Guoyong Zhang Xin Zhang 《Acta Mechanica Solida Sinica》 2025年第1期166-180,共15页
By focusing on the nonlinear bending behavior of functionally graded carbon nanotube-reinforced(FG-CNTR)curved nanobeams under thermal loads while considering size effects,this paper fills the apparent void by compreh... By focusing on the nonlinear bending behavior of functionally graded carbon nanotube-reinforced(FG-CNTR)curved nanobeams under thermal loads while considering size effects,this paper fills the apparent void by comprehensively incorporating the Chen-Yao surface elasticity theory and modified couple-stress theory.A tri-parameter elastic substrate model is introduced,and the temperature dependence of material properties is considered.Through a two-step perturbation technique,the asymptotic solutions for the temperature-deflection relationship are obtained.After that,novel numerical results are provided to explore the impacts of temperature,size effects,geometric characteristics of the curved beams,elastic substrates,properties of the CNT reinforcements,and boundary conditions.The results indicate that surface effects,couple stress effects,and the elastic foundation enhance the bending stiffness of FG-CNTR curved nanobeams.By considering both size effect theories,this study provides a more comprehensive and precise description of the nonlinear bending of FG-CNTR curved nanobeams under thermal loads. 展开更多
关键词 Nonlinear bending Carbon nanotube-reinforced composites Size effect Two step perturbation technique
原文传递
Enhancement of bending toughness for Fe-based amorphous nanocrystalline alloy with deep cryogenic-cycling treatment
14
作者 Yi-ran Zhang Dong Yang +5 位作者 Qing-chun Xiang Hong-yu Liu Jing Pang Ying-lei Ren Xiao-yu Li Ke-qiang Qiu 《China Foundry》 2025年第1期99-107,共9页
The effects of deep cryogenic-cycling treatment(DCT)on the mechanical properties,soft magnetic properties,and atomic scale structure of the Fe_(73.5)Si_(13.5)B_(9)Nb_(3)Cu_(1)amorphous nanocrystalline alloy were inves... The effects of deep cryogenic-cycling treatment(DCT)on the mechanical properties,soft magnetic properties,and atomic scale structure of the Fe_(73.5)Si_(13.5)B_(9)Nb_(3)Cu_(1)amorphous nanocrystalline alloy were investigated.The DCT samples were obtained by subjecting the as-annealed samples to a thermal cycling process between the temperature of the supercooled liquid zone and the temperature of liquid nitrogen.Through flat plate bending testing,hardness measurements,and nanoindentation experiment,it is found that the bending toughness of the DCT samples is improved and the soft magnetic properties are also slightly enhanced.These are attributed to the rejuvenation behavior of the DCT samples,which demonstrate a higher enthalpy of relaxation.Therefore,DCT is an effective method to enhance the bending toughness of Fe-based amorphous nanocrystalline alloys without degrading the soft magnetic properties. 展开更多
关键词 deep cryogenic-cycling treatment Fe-based amorphous nanocrystalline alloy bending toughness REJUVENATION
在线阅读 下载PDF
Three-Point Bending Deformation Behavior of a High Plasticity Mg–2.6Er–0.6Zr Alloy Sheet
15
作者 Yuanxiao Dai Yue Zhang +3 位作者 Mei Wang Jie Liu Yaobo Hu Bin Jiang 《Acta Metallurgica Sinica(English Letters)》 2025年第7期1109-1126,共18页
Bending is a crucial deformation process in metal sheet forming.In this study,the microstructural evolution of a highly ductile Mg–Er–Zr alloy sheet was examined in various bending regions under different bending st... Bending is a crucial deformation process in metal sheet forming.In this study,the microstructural evolution of a highly ductile Mg–Er–Zr alloy sheet was examined in various bending regions under different bending strains using electron backscatter diffraction and optical microscopy.The results show that the Mg–Er–Zr extruded sheet has excellent bending properties,with a failure bending strain of 39.3%,bending yield strength,and ultimate bending strength of 75.1 MPa and 250.5 MPa,respectively.The exceptional bending properties of the Mg–Er–Zr extruded sheets are primarily due to their fine grain size and the formation of rare-earth(RE)textures resulting from Er addition.Specifically,the in-grain misorientation axes(IGMA)and the twinning behaviors in various regions of the specimen during bending were thoroughly analyzed.Due to the polarity of the tensile twins and their low activation stress,a significant number of tensile twins are activated in the compression zone to regulate plastic deformation.The addition of Er weakens the basal texture of the sheet and reduces the critical resolved shear stress difference between non-basal slip and basal slip.Consequently,in the tensile zone,the basal and non-basal slips co-operate to coordinate the plastic deformation,effectively impeding crack initiation and propagation,and thereby enhancing the bending toughness of the Mg–Er–Zr sheet. 展开更多
关键词 Mg alloy sheet Three-point bending Deformation mechanism In-grain misorientation axis(IGMA)
原文传递
A self-correction algorithm for positioning error in sequential point bending tests of a microbeam for Young’s modulus based on atomic force microscopy
16
作者 Yuxin Liu Linyan Xu 《Nanotechnology and Precision Engineering》 2025年第3期131-137,共7页
The single-point bending method,based on atomic force microscopy(AFM),has been extensively validated for characterizing the structural mechanical properties of micro-and nanobeams.Nevertheless,the influence of AFM pro... The single-point bending method,based on atomic force microscopy(AFM),has been extensively validated for characterizing the structural mechanical properties of micro-and nanobeams.Nevertheless,the influence of AFM probe loading and positioning has yet to be subjected to comprehensive investigation.This paper proposes a novel bending-test method based on sequential loading points,in which a series of evenly distributed loads are applied along the length of the central axis on the upper surface of the cantilever.The preliminary measured values of Young’s modulus for an unknown alloy material were 193,178,and 176 GPa,exhibiting a considerable degree of dispersion.An algorithm for self-correction of the positioning error was developed,and this resulted in a positioning error of 53 nm and a final converged Young’s modulus of 161 GPa. 展开更多
关键词 Microbeam structure Young’s modulus Sequential point bending test Self-correcting positioning error Atomic force microscopy
在线阅读 下载PDF
UHPC Reinforcement of Damaged RC Beams under Load Conditions Cracking and Bending Performance
17
作者 Xuezhi Wang Sanzhao Xiao +1 位作者 Shixun Wang Shuwen Deng 《Journal of World Architecture》 2025年第4期103-109,共7页
In order to study the mechanical properties of damaged reinforced concrete(RC)beams reinforced with ultra-high-performance concrete(UHPC),a four-point bending test was conducted to systematically investigate the influ... In order to study the mechanical properties of damaged reinforced concrete(RC)beams reinforced with ultra-high-performance concrete(UHPC),a four-point bending test was conducted to systematically investigate the influence of factors such as the number of reinforcement surfaces and the degree of damage.The results indicate that single-sided repaired beams have certain advantages in crack resistance performance,but are more disadvantageous in ultimate bearing capacity,with obvious debonding phenomenon before the end of loading.Compared with single-sided reinforcement,the cracking load of the three-sided reinforced beam increased by an average of 1.85 times,the ultimate bearing capacity increased by an average of 177.5%,and a good UHPC-RC combination effect could be formed,which could work synergistically until the end of loading.The degree of pre damage has a significant impact on the crack resistance performance of reinforced beams,while its impact on the ultimate bearing capacity is relatively limited.When the pre splitting width of the RC beam increases from 0.2 mm to 0.4 mm,the ultimate bearing capacity decreases by 28.33%. 展开更多
关键词 UHPC reinforcement Three-sided repair bending performance:Cracking characteristics Ultimate bearing capacity
在线阅读 下载PDF
Size-dependent axisymmetric bending and buckling analysis of functionally graded sandwich Kirchhoff nanoplates using nonlocal strain gradient integral model
18
作者 Chang LI Hai QING 《Applied Mathematics and Mechanics(English Edition)》 2025年第3期467-484,共18页
This paper extends the one-dimensional(1D)nonlocal strain gradient integral model(NStraGIM)to the two-dimensional(2D)Kirchhoff axisymmetric nanoplates,based on nonlocal strain gradient integral relations formulated al... This paper extends the one-dimensional(1D)nonlocal strain gradient integral model(NStraGIM)to the two-dimensional(2D)Kirchhoff axisymmetric nanoplates,based on nonlocal strain gradient integral relations formulated along both the radial and circumferential directions.By transforming the proposed integral constitutive equations into the equivalent differential forms,complemented by the corresponding constitutive boundary conditions(CBCs),a well-posed mathematical formulation is established for analyzing the axisymmetric bending and buckling of annular/circular functionally graded(FG)sandwich nanoplates.The boundary conditions at the inner edge of a solid nanoplate are derived by L'H?spital's rule.The numerical solution is obtained by the generalized differential quadrature method(GDQM).The accuracy of the proposed model is validated through comparison with the data from the existing literature.A parameter study is conducted to demonstrate the effects of FG sandwich parameters,size parameters,and nonlocal gradient parameters. 展开更多
关键词 size effect nonlocal strain gradient integral model(NStraGIM) bending buckling Kirchhoff annular/circular nanoplate functionally graded(FG)sandwich material
在线阅读 下载PDF
Cryogenic springback of 2219-W aluminum alloy sheet through V-shaped bending 被引量:3
19
作者 Xiao-bo FAN Qi-liang WANG +1 位作者 Fang-xing WU Xu-gang WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第10期3185-3193,共9页
A V-shaped bending device was established to evaluate the effects of temperature and bending fillet radius on springback behavior of 2219-W aluminum alloy at cryogenic temperatures.The cryogenic springback mechanism w... A V-shaped bending device was established to evaluate the effects of temperature and bending fillet radius on springback behavior of 2219-W aluminum alloy at cryogenic temperatures.The cryogenic springback mechanism was elucidated through mechanical analyses and numerical simulations.The results indicated that the springback angle at cryogenic temperatures was greater than that at room temperature.The springback angle increased further as the temperature returned to ambient conditions,attributed to the combined effects of the “dual enhancement effect” and thermal expansion.Notably,a critical fillet radius made the springback angle zero for 90° V-shaped bending.The critical fillet radius at cryogenic temperatures was smaller than that at room temperature,owing to the influence of temperature variations on the bending moment ratio between the forward bending section at the fillet and the reverse bending section of the straight arm. 展开更多
关键词 2219-W aluminum alloy cryogenic forming V-shape bending SPRINGBACK critical fillet radius
在线阅读 下载PDF
Effect of characteristics and distribution of Mg_(17)Al_(12)precipitates on tensile and bending properties of high-Al-containing Mg alloys 被引量:2
20
作者 Sumi Jo Gyo Myeong Lee +2 位作者 Jong Un Lee Young Min Kim Sung Hyuk Park 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期779-793,共15页
This study investigates the effect of characteristics and distribution of Mg_(17)Al_(12)precipitates on the uniaxial tensile and three-point bending properties of extruded Mg alloys containing high Al contents.The ext... This study investigates the effect of characteristics and distribution of Mg_(17)Al_(12)precipitates on the uniaxial tensile and three-point bending properties of extruded Mg alloys containing high Al contents.The extruded Mg–9Al–1Zn–0.3Mn(AZ91)alloy contains lamellar-structured Mg_(17)Al_(12)discontinuous precipitates along the grain boundaries,which are formed via static precipitation during natural air cooling.The extruded Mg–11Al–1Zn–0.3Mn(AZ111)alloy contains spherical Mg_(17)Al_(12)precipitates at the grain boundaries and inside the grains,which are formed via dynamic precipitation during extrusion.Due to inhomogeneous distribution of precipitates,the AZ111 alloy consists of two different precipitate regions:precipitate-rich region with numerous precipitates and finer grains and precipitate-scarce region with a few precipitates and coarser grains.The AZ111 alloy exhibits a higher tensile strength than the AZ91 alloy because its smaller grain size and more abundant precipitates result in stronger grain-boundary hardening and precipitation hardening effects,respectively.However,the tensile elongation of the AZ111 alloy is lower than that of the AZ91 alloy because the weak cohesion between the dynamic precipitates and the matrix facilitates the crack initiation and propagation.During bending,a macrocrack initiates on the outer surface of bending specimen in both alloys.The AZ111 alloy exhibits higher bending yield strength and lower failure bending strain than the AZ91 alloy.The bending specimens of the AZ91 alloy have similar bending formability,whereas those of the AZ111 alloy exhibit considerable differences in bending formability and crack propagation behavior,depending on the distribution and number density of precipitates in the specimen.In bending specimens of the AZ111 alloy,it is found that the failure bending strain(ε_(f,bending))is inversely proportional to the area fraction of precipitates in the outer zone of bending specimen(A_(ppt)),with a relationship ofε_(f,bending)=–0.1A_(ppt)+5.86. 展开更多
关键词 Mg–Al alloy EXTRUSION bending Precipitation Microstructure
在线阅读 下载PDF
上一页 1 2 59 下一页 到第
使用帮助 返回顶部