Binary Decision Diagrams (BDDs) can be graphically manipulated to reduce the number of nodes and hence the area. In this context, ordering of BDDs play a major role. Most of the algorithms for input variable ordering ...Binary Decision Diagrams (BDDs) can be graphically manipulated to reduce the number of nodes and hence the area. In this context, ordering of BDDs play a major role. Most of the algorithms for input variable ordering of OBDD focus primarily on area minimization. However, suitable input variable ordering helps in minimizing the power consumption also. In this particular work, we have proposed two algorithms namely, a genetic algorithm based technique and a branch and bound algorithm to find an optimal input variable order. Of course, the node reordering is taken care of by the standard BDD package buddy-2.4. Moreover, we have evaluated the performances of the proposed algorithms by running an exhaustive search program. Experi-mental results show a substantial saving in area and power. We have also compared our techniques with other state-of-art techniques of variable ordering for OBDDs and found to give superior results.展开更多
The binary decision diagrams (BDDs) can give canonical representation to Boolean functions; they have wide applications in the design and verification of digital systems. A new method based on cultural algorithms fo...The binary decision diagrams (BDDs) can give canonical representation to Boolean functions; they have wide applications in the design and verification of digital systems. A new method based on cultural algorithms for minimizing the size of BDDs is presented in this paper. First of all, the coding of an individual representing a BDDs is given, and the fitness of an individual is defined. The population is built by a set of the individuals. Second, the implementations based on cultural algorithms for the minimization of BDDs, i.e., the designs of belief space and population space, and the designs of acceptance function and influence function, are given in detail. Third, the fault detection approaches using BDDs for digital circuits are studied. A new method for the detection of crosstalk faults by using BDDs is presented. Experimental results on a number of digital circuits show that the BDDs with small number of nodes can be obtained by the method proposed in this paper, and all test vectors of a fault in digital circuits can also be produced.展开更多
文摘Binary Decision Diagrams (BDDs) can be graphically manipulated to reduce the number of nodes and hence the area. In this context, ordering of BDDs play a major role. Most of the algorithms for input variable ordering of OBDD focus primarily on area minimization. However, suitable input variable ordering helps in minimizing the power consumption also. In this particular work, we have proposed two algorithms namely, a genetic algorithm based technique and a branch and bound algorithm to find an optimal input variable order. Of course, the node reordering is taken care of by the standard BDD package buddy-2.4. Moreover, we have evaluated the performances of the proposed algorithms by running an exhaustive search program. Experi-mental results show a substantial saving in area and power. We have also compared our techniques with other state-of-art techniques of variable ordering for OBDDs and found to give superior results.
基金supported by Natural Science Foundation of Guangdong Provincial of China (No.7005833)
文摘The binary decision diagrams (BDDs) can give canonical representation to Boolean functions; they have wide applications in the design and verification of digital systems. A new method based on cultural algorithms for minimizing the size of BDDs is presented in this paper. First of all, the coding of an individual representing a BDDs is given, and the fitness of an individual is defined. The population is built by a set of the individuals. Second, the implementations based on cultural algorithms for the minimization of BDDs, i.e., the designs of belief space and population space, and the designs of acceptance function and influence function, are given in detail. Third, the fault detection approaches using BDDs for digital circuits are studied. A new method for the detection of crosstalk faults by using BDDs is presented. Experimental results on a number of digital circuits show that the BDDs with small number of nodes can be obtained by the method proposed in this paper, and all test vectors of a fault in digital circuits can also be produced.