期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
儿童异常肺音识别的时序优化神经网络模型
1
作者 张龙基 魏云龙 +2 位作者 郑晓明 俞英健 熊丽君 《声学技术》 北大核心 2025年第5期730-737,共8页
异常肺音听诊识别是儿童支气管肺部疾病诊断的一种重要手段。针对儿童异常肺音分类研究常用的声谱图图像识别方法计算资源大、识别率不高等问题,提出了一种结合梅尔倒谱系数(Mel frequency cepstral coefficients,MFCC)特征、卷积神经网... 异常肺音听诊识别是儿童支气管肺部疾病诊断的一种重要手段。针对儿童异常肺音分类研究常用的声谱图图像识别方法计算资源大、识别率不高等问题,提出了一种结合梅尔倒谱系数(Mel frequency cepstral coefficients,MFCC)特征、卷积神经网络(convolutional neural network,CNN)与双向长短时记忆网络(bidirectional long short-term memory,BiLSTM)的混合模型,用于儿童异常肺音的分类方法。该方法通过CNN对MFCC特征进行空间特性提取,利用BiLSTM对MFCC音频特征进行时序特性提取,建立了BCNnet(BILSTM CNN network)模型。文章收集并建立了一个儿童肺音数据集,在该数据集上,所提方法平均准确率可达75.3%,与以声谱图为输入的CNN(并行池化)模型相比,准确率提高了3.7个百分点,且在模型大小和识别速度上均有改善。 展开更多
关键词 异常肺音 MFCC特征 卷积神经网络 双向长短时记忆网络 bcnnet模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部