Brain-computer interfaces(BCIs)represent an emerging technology that facilitates direct communication between the brain and external devices.In recent years,numerous review articles have explored various aspects of BC...Brain-computer interfaces(BCIs)represent an emerging technology that facilitates direct communication between the brain and external devices.In recent years,numerous review articles have explored various aspects of BCIs,including their fundamental principles,technical advancements,and applications in specific domains.However,these reviews often focus on signal processing,hardware development,or limited applications such as motor rehabilitation or communication.This paper aims to offer a comprehensive review of recent electroencephalogram(EEG)-based BCI applications in the medical field across 8 critical areas,encompassing rehabilitation,daily communication,epilepsy,cerebral resuscitation,sleep,neurodegenerative diseases,anesthesiology,and emotion recognition.Moreover,the current challenges and future trends of BCIs were also discussed,including personal privacy and ethical concerns,network security vulnerabilities,safety issues,and biocompatibility.展开更多
The steady-state visual evoked potential(SSVEP)-based speller has emerged as a widely adopted paradigm in current brain–computer interface(BCI) systems due to its rapid processing and consistent performance across di...The steady-state visual evoked potential(SSVEP)-based speller has emerged as a widely adopted paradigm in current brain–computer interface(BCI) systems due to its rapid processing and consistent performance across different individuals. Calibration-free SSVEP algorithms, as opposed to their calibration-based counterparts, offer clear and intuitive mathematical principles, making them accessible to novice developers. During the World Robot Contest(WRC)2022, participants in the undergraduate category utilized various approaches to accomplish target detection in the calibration-free setting, successfully implementing the algorithms using MATLAB.The winning approach achieved an average information transfer rate of 198.94 bits/min in the final test, which is notably high given the calibration-free scenario. This paper presents an introduction to the underlying principles of the selected methods, accompanied by a comparison of their effectiveness through analysis of results from both the final test and offline experiments. Additionally, we propose that the youth competition of WRC could serve as an ideal starting point for beginners interested in studying and developing their own BCI systems.展开更多
基金supported by the National Key R&D Program of China(2021YFF1200602)the National Science Fund for Excellent Overseas Scholars(0401260011)+3 种基金the National Defense Science and Technology Innovation Fund of Chinese Academy of Sciences(c02022088)the Tianjin Science and Technology Program(20JCZDJC00810)the National Natural Science Foundation of China(82202798)the Shanghai Sailing Program(22YF1404200).
文摘Brain-computer interfaces(BCIs)represent an emerging technology that facilitates direct communication between the brain and external devices.In recent years,numerous review articles have explored various aspects of BCIs,including their fundamental principles,technical advancements,and applications in specific domains.However,these reviews often focus on signal processing,hardware development,or limited applications such as motor rehabilitation or communication.This paper aims to offer a comprehensive review of recent electroencephalogram(EEG)-based BCI applications in the medical field across 8 critical areas,encompassing rehabilitation,daily communication,epilepsy,cerebral resuscitation,sleep,neurodegenerative diseases,anesthesiology,and emotion recognition.Moreover,the current challenges and future trends of BCIs were also discussed,including personal privacy and ethical concerns,network security vulnerabilities,safety issues,and biocompatibility.
基金Open Project of Key Laboratory of Intelligent Computing&Signal Processing,Ministry of Education(Grant No.2020A005)。
文摘The steady-state visual evoked potential(SSVEP)-based speller has emerged as a widely adopted paradigm in current brain–computer interface(BCI) systems due to its rapid processing and consistent performance across different individuals. Calibration-free SSVEP algorithms, as opposed to their calibration-based counterparts, offer clear and intuitive mathematical principles, making them accessible to novice developers. During the World Robot Contest(WRC)2022, participants in the undergraduate category utilized various approaches to accomplish target detection in the calibration-free setting, successfully implementing the algorithms using MATLAB.The winning approach achieved an average information transfer rate of 198.94 bits/min in the final test, which is notably high given the calibration-free scenario. This paper presents an introduction to the underlying principles of the selected methods, accompanied by a comparison of their effectiveness through analysis of results from both the final test and offline experiments. Additionally, we propose that the youth competition of WRC could serve as an ideal starting point for beginners interested in studying and developing their own BCI systems.