A novel low temperature co-fired ceramic(LTCC) material was fabricated by zinc titanate(ZnTiO_3) ceramics doped with B_2O_3-BaO-SiO_2-ZnO-Li_2O(BBSZL) glass. The influences of BBSZL glass on wetting behavior, sinterin...A novel low temperature co-fired ceramic(LTCC) material was fabricated by zinc titanate(ZnTiO_3) ceramics doped with B_2O_3-BaO-SiO_2-ZnO-Li_2O(BBSZL) glass. The influences of BBSZL glass on wetting behavior, sintering activation energy, phase composition, microstructure and microwave dielectric properties were investigated. The experimental results show that the sintering temperature of ZnTiO3 ceramics can be reduced from 1 100 to 925 ℃, meanwhile the sintering activation energy is decreased from 465.32 to 390.54 kJ·mol^(-1) by BBSZL glass aid, respectively. Moreover, BBSZL glass can inhibit the high Q×f ZnTiO_3 phase decompose into the low Q×f value Zn_2TiO_4 phase, which is propitious to obtain high Q×f value LTCC material. The ZnTiO_3-BBSZL composite sintered at 925℃ displays the excellent microwave dielectric properties with ε_r of 21.8, Q×f value of 42000 GHz, and τ_f of-75 ppm·℃^(-1).展开更多
基金Funded by the Open Project Program of Key Laboratory of Inorganic Functional Materials and Devices,Chinese Academy of Sciences(No.KLIFMD201606)the National Natural Science Foundation of China(51502220,51521001,51672197)the Open Foundation of Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics(Wuhan University of Technology)(No.TAM201802)
文摘A novel low temperature co-fired ceramic(LTCC) material was fabricated by zinc titanate(ZnTiO_3) ceramics doped with B_2O_3-BaO-SiO_2-ZnO-Li_2O(BBSZL) glass. The influences of BBSZL glass on wetting behavior, sintering activation energy, phase composition, microstructure and microwave dielectric properties were investigated. The experimental results show that the sintering temperature of ZnTiO3 ceramics can be reduced from 1 100 to 925 ℃, meanwhile the sintering activation energy is decreased from 465.32 to 390.54 kJ·mol^(-1) by BBSZL glass aid, respectively. Moreover, BBSZL glass can inhibit the high Q×f ZnTiO_3 phase decompose into the low Q×f value Zn_2TiO_4 phase, which is propitious to obtain high Q×f value LTCC material. The ZnTiO_3-BBSZL composite sintered at 925℃ displays the excellent microwave dielectric properties with ε_r of 21.8, Q×f value of 42000 GHz, and τ_f of-75 ppm·℃^(-1).