期刊文献+
共找到224篇文章
< 1 2 12 >
每页显示 20 50 100
Physical and Chemical Properties and Plant Growth in an Engineered Soil Manufactured from Bauxite Residue, Green Waste Compost and Increasing Amounts of Sand
1
作者 Xinting Weng Richard Haynes Yafeng Zhou 《Open Journal of Soil Science》 2025年第1期70-83,共14页
A new manufactured soil product (Turba) was produced using acidified bauxite residue into which 10% green waste compost had been incorporated. A laboratory/greenhouse experiment was carried out to determine if sand co... A new manufactured soil product (Turba) was produced using acidified bauxite residue into which 10% green waste compost had been incorporated. A laboratory/greenhouse experiment was carried out to determine if sand could be used as an ingredient or an amendment for Turba. Sand was added at rates of 0%, 5%, 10%, 25, 50% and 75% (w/w) in two different ways 1) by incorporating it into the Turba during its manufacture (IN) or 2) by mixing it with Turba aggregates after their manufacture (OUT). Incorporation of sand into Turba aggregates (IN) decreased the percentage of sample present as large aggregates (2 - 4 mm dia.) after crushing and sieving (<4 mm) and also reduced the stability of 2 - 4 mm dia. formed aggregates (to dry/wet sieving) and are therefore not recommended. In a 16-week greenhouse study, ryegrass shoot yields were greater in Turba than in sand [and decreased with increasing sand additions (OUT)] while root dry matter showed the opposite trend. The greater grass growth in Turba than sand was attributed to incipit water stress in plants grown in sand and this may have promoted greater allocation of assimilates to roots resulting in a greater root-to-top mass ratio. The much lower macroporosity in Turba coupled with the solid cemented nature of Turba aggregates resulted in production of thinner roots and therefore greater root length than in sand. Turba (manufactured from bauxite residue and compost added at 10% w/w) is a suitable medium for plant growth and there is no advantage in incorporating sand into, or with, the Turba aggregates. 展开更多
关键词 Engineered Soil Manufactured Soil bauxite Residue Optimized bauxite Residue SAND Ryegrass Growth
在线阅读 下载PDF
Thermodynamics study on leaching process of gibbsitic bauxite by hydrochloric acid 被引量:4
2
作者 赵爱春 刘燕 +2 位作者 张廷安 吕国志 豆志河 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第1期266-270,共5页
For the low-grade gibbsitic bauxite,the leaching rate of alumina is very low during the Bayer process.The acid leaching method is attracting more attention,and the hydrochloric acid leaching was developed rapidly.The ... For the low-grade gibbsitic bauxite,the leaching rate of alumina is very low during the Bayer process.The acid leaching method is attracting more attention,and the hydrochloric acid leaching was developed rapidly.The mineral composition and chemical composition were investigated by X-ray diffraction analysis and semi-quantitative analysis.The thermodynamics of leaching process was analyzed.The results show that the major minerals in the bauxite are gibbsite,secondly goethite and quartz,anatase and so on.The acid leaching reactions of the bauxite would be thermodynamically easy and completed.Under the conditions that ore granularity is less than-55 μm,the L/S ratio is 100:7,and the leaching temperature is 373-383 K,the leaching time is 120 min and the concentration of HCl is 10%,both the leaching rates of Al and Fe are over 95%.The main composition of leaching slag is SiO2 which is easy for comprehensive utilization. 展开更多
关键词 ALUMINA bauxite gibbsitic bauxite acid leaching THERMODYNAMICS
在线阅读 下载PDF
Numerical simulation of circulating fluidization roasting desulfurization of high-sulfur bauxite based on computational particle fluid dynamics method
3
作者 Langfeng Fan Chengming Xie +5 位作者 Qijin Wei Hongliang Zhao Rongbin Li Yongmin Zhang Fengqin Liu Hong Yong Sohn 《Chinese Journal of Chemical Engineering》 2025年第6期138-152,共15页
As a pyrometallurgical process,circulating fluidized bed(CFB) roasting has good potential for application in desulfurization of high-sulfur bauxite.The gas-solid distribution and reaction during CFB roasting of high-s... As a pyrometallurgical process,circulating fluidized bed(CFB) roasting has good potential for application in desulfurization of high-sulfur bauxite.The gas-solid distribution and reaction during CFB roasting of high-sulfur bauxite were simulated using the computational particle fluid dynamics(CPFD) method.The effect of primary air flow velocity on particle velocity,particle volume distribution,furnace temperature distribution and pressure distribution were investigated.Under the condition of the same total flow of natural gas,the impact of the number of inlets on the desulfurization efficiency,atmosphere mass fraction distribution and temperature distribution in the furnace was further investigated. 展开更多
关键词 FLUIDIZATION Circulating fluidized bed Numerical simulation CPFD method Roasting desulfurization bauxite
在线阅读 下载PDF
Maize straw-Penicillium oxalicum enhanced long-term aggregate stability in bauxite residue ameliorated with desulfurization gypsum
4
作者 ZHU Feng LIU Xing +5 位作者 JIANG Jun CHEN Li ZHONG Xiao-lin ZHANG Zi-ying GUO Lin XUE Sheng-guo 《Journal of Central South University》 2025年第8期2873-2893,共21页
To accurately identify the factors affecting the formation of stable aggregates in bauxite residue during the soil formation process,the comprehensive effects of a combined chemical-biological amelioration strategy in... To accurately identify the factors affecting the formation of stable aggregates in bauxite residue during the soil formation process,the comprehensive effects of a combined chemical-biological amelioration strategy including solid wastes and a functional microorganism on aggregate size distribution and its stability in bauxite residue were investigated during a 365-d simulation experiment.The results showed that the combined amelioration effectively reduced the saline alkalinity of bauxite residue,and markedly changed the contents of aggregate-associated chemical binding agents.Desulfurization gypsum and maize straw-Penicillium oxalicum(P.oxalicum)differentiated the formation of aggregates within different sizes.Maize straw-P.oxalicum stimulated the formation of water-stable macroaggregates with more durable erosion resistance by the wet-sieving and laser dynamic diffraction analysis.The Pearson correlation analysis showed that exchangeable polyvalent metal ions,pyrophosphate extractable Fe oxide,and organic carbon exhibited positive correlations with aggregate stability during the 365-d incubation.The findings in this study may provide data support and engineering practical reference for ecological restoration in the disposal areas. 展开更多
关键词 bauxite residue aggregate stability disintegration behavior Penicillium oxalicum chemical binding soil formation
在线阅读 下载PDF
Synthesis of backfill foam lightweight soil from bauxite tailings slurry and industrial byproducts
5
作者 OU Xiao-duo CHEN Fu-gui +3 位作者 LYU Zheng-fan JIANG Jie LIAO Bang YE Geng-chang 《Journal of Central South University》 2025年第8期3057-3069,共13页
Bauxite tailing(BT)slurry has been generated and accumulated in large quantities,posing a threat to the green and sustainable development of the alumina industry.The regression equation between the actual water conten... Bauxite tailing(BT)slurry has been generated and accumulated in large quantities,posing a threat to the green and sustainable development of the alumina industry.The regression equation between the actual water content and mud water separation rate was established to achieve efficient resource utilization,and the feasibility of foam lightweight soil(FLS)prepared from BT was investigated.The effects of industrial waste residues(fly ash and slag powder)on the properties of FLS were studied.Meanwhile,the micro-mechanisms were revealed by XRD,SEM-EDS,and TG-DSC.The results revealed that fly ash reduced the workability and compressive strength of FLS.Slag powder can significantly enhance the compressive strength of FLS,which increased by 18.60%-23.26%,17.07%-58.54% and 12.12%-52.12%,respectively.Besides,slag powder can improve the long-term water stability performance and enhance carbonation resistance.XRD and thermal analyses showed that adding fly ash decreased the hydration degree of FLS,leading to a decrease in the hydration products.Slag powder improved the pore structure and compacted the skeleton structure of FLS.This study would provide an effective way to realize the resource utilization of BT,fly ash,and slag powder,with certain socio-economic and environmental benefits. 展开更多
关键词 foam lightweight soil bauxite tailing slurry compressive strength volume absorption microscopic property
在线阅读 下载PDF
Stability analysis of inclined bauxite pillar under goaf of coal seam considering principal stress rotation
6
作者 LIU Wang YANG Yu-gui +4 位作者 CHEN Yong HUANG Bing-xiang CAI Cheng-zheng SHANG Run-peng QIU Chao 《Journal of Central South University》 2025年第11期4340-4360,共21页
The“upper coal and lower bauxite”resource distribution pattern is widespread in China,where mining of the overlying coal seam significantly alters the stress environment of the underlying bauxite layer.This study in... The“upper coal and lower bauxite”resource distribution pattern is widespread in China,where mining of the overlying coal seam significantly alters the stress environment of the underlying bauxite layer.This study investigates the stability of inclined bauxite pillars under the influence of stress redistribution caused by coal seam extraction.A theoretical model is developed to calculate the direction and magnitude of principal stresses in the inclined floor strata,and a pillar stability analysis model is established that considers the effect of principal stress rotation.The research employs a combination of theoretical analysis,physical modeling,numerical simulation,and field observation.Findings indicate that stress rotation is most pronounced at both ends of the coal seam goaf,with the maximum clockwise and counterclockwise rotation angles of 19°and-40°,respectively,observed in the bauxite layer.Inclined bauxite pillars are subjected to combined compressive and shear loading.Under such conditions,clockwise rotation of principal stress increases the shear-to-normal stress ratio,thereby reducing pillar stability.Pillars located beneath the coal wall are the first to fail due to stress concentration and principal stress rotation,which can trigger a cascade of instability among the adjacent pillars.The findings provide a theoretical basis and practical guidance for ensuring the safe co-mining of coal seams and bauxite resources. 展开更多
关键词 principal stress rotation theoretical model inclined bauxite pillar stability analysis floor stress distribution
在线阅读 下载PDF
Regional-scale investigation of salt ions distribution characteristics in bauxite residue: A case study in a disposal area 被引量:6
7
作者 XUE Sheng-guo WANG Qiong-li +3 位作者 TIAN Tao YE Yu-zhen ZHANG Yi-fan ZHU Feng 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第2期422-429,共8页
Revegetation on bauxite residue disposal areas is the most promising strategy to reduce its potential ecological risk during stacking or disposing.Migration of salt ions in bauxite residue is one of the major issues t... Revegetation on bauxite residue disposal areas is the most promising strategy to reduce its potential ecological risk during stacking or disposing.Migration of salt ions in bauxite residue is one of the major issues to stimulate soil formation to support plant growth.21 residue samples were collected and the related parameters including exchangeable cations,soluble ions,total salt,pH,electrical conductivity(EC)and exchangeable sodium percentage(ESP)were selected to evaluate alkalization and salinization of bauxite residue.High levels of ions,cation exchange capacity(TOC),total salt,exchangeable sodium percentage(ESP)and cation exchange capacity(CEC)in bauxite residue were detected with greater coefficient of variation(CV),which indicated that distribution characteristics of salt ions varied significantly.The percentage of sulfate-chloride-soda type in the residues accounted for 71.43%.The mean value of pH was 10.10,whilst mean value of ESP was 52.05%.It indicated that the residues in this case study belonged to sulfate-chloride-soda saline and alkaline soil.The research results could provide theoretical basis for soil formation in bauxite residue. 展开更多
关键词 bauxite residue bauxite residue disposal area SALT saline-alkali soil soil formation in bauxite residue
在线阅读 下载PDF
Natural ripening with subsequent additions of gypsum and organic matter is key to successful bauxite residue revegetation 被引量:4
8
作者 ZHOU Ya-feng 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第2期289-303,共15页
The processes involved in the major steps of successful revegetation of bauxite residues are examined.The first phase is the natural physical,chemical and microbial ripening of the profile.This involves allowing the p... The processes involved in the major steps of successful revegetation of bauxite residues are examined.The first phase is the natural physical,chemical and microbial ripening of the profile.This involves allowing the profile to drain,dry,shrink and crack to depth,leaching of soluble salts,alkalinity and Na down out of the surface layers,acidification by direct carbonation and natural seeding of tolerant vegetation with an accumulation of organic matter near the surface and an attendant development of an active microbial community.Following ripening,the surface layer can be tilled and gypsum and organic matter(e.g.manures,composts,biosolids)incorporated.These amendments result in a further decrease in pH,increase in Ca and other exchangeable cations,increased leaching of Na(with a reduction in exchangeable Na and ESP),improved physical properties,particularly aggregation,and a large increase in microbial activity.Other important considerations include the choice of suitable plant species tolerant to salinity/sodicity and local environmental conditions and the addition of balanced fertilizer applications. 展开更多
关键词 bauxite residue bauxite residue disposal area substrate amendment natural ripening soil formation in bauxite residue
在线阅读 下载PDF
Flotation of low-grade bauxite using organosilicon cationic collector and starch depressant 被引量:8
9
作者 余新阳 王浩林 +2 位作者 王强强 冯博 钟宏 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第4期1112-1117,共6页
The flotation of diaspore and three kinds of silicate minerals, including kaolinite, illite and pyrophyllite, using an organosilicon cationic surfactant (TAS101) as collector and starch as depressant was investigated.... The flotation of diaspore and three kinds of silicate minerals, including kaolinite, illite and pyrophyllite, using an organosilicon cationic surfactant (TAS101) as collector and starch as depressant was investigated. The results show that both diaspore and aluminosilicate minerals float readily with organosilicon cationic collector TAS101 at pH values of 4 to 10. Starch has a strong depression effect for diaspore in the alkaline pH region but has little influence on the flotation of aluminosilicate minerals. It is possible to separate diaspore from aluminosilicate minerals using the organosilicon cationic collector and starch depressant. Further studies of bauxite ore flotation were also conducted, and the reverse flotation separation process was adopted. The concentrates with the mass ratio of Al2O3 to SiO2 of 9.58 and Al2O3 recovery of 83.34% are obtained from natural bauxite ore with the mass ratio of Al2O3 to SiO2 of 6.1 at pH value of 11 using the organosilicon cationic collector and starch depressant. 展开更多
关键词 bauxite reverse flotation organosilicon cationic collector starch depressant
在线阅读 下载PDF
Sulfur phase and sulfur removal in high sulfur-containing bauxite 被引量:16
10
作者 胡小莲 陈文汨 谢巧玲 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第7期1641-1647,共7页
The sulfur phase in high sulfur-containing bauxite was studied by an X-ray diffraction analysis and a chemistry quantitative analysis.The methods for the removal of different shaped sulfur were also discussed.The resu... The sulfur phase in high sulfur-containing bauxite was studied by an X-ray diffraction analysis and a chemistry quantitative analysis.The methods for the removal of different shaped sulfur were also discussed.The results show that sulfur phases in high sulfur-containing bauxites exist in the main form of sulfide sulfur (pyrite) or sulfate sulfur,and the main sulfur forms of bauxites from different regions are not the same.Through a combination of an X-ray diffraction analysis and a chemistry quantitative analysis,the sulfur phases of high sulfur-containing bauxite could be accurately investigated.Deciding the main sulfur form of high sulfur-containing bauxite could provide theoretical instruction for choosing methods for the removal of sulfur from bauxite,and an oxidizing-roasting process is an effective way to remove sulfide sulfur from high sulfur-containing bauxite,the content of S^2-in crude ore in the digestion liquor is above 1.7 g/L,but in the roasted ore digestion liquor,it is below 0.18 g/L.Using the sodium carbonate solution washing technology to wash bauxite can effectively remove sulfate sulfur,the content of the total sulfur in ore is lowered to below 0.2% and can meet the production requirements for the sulfur content. 展开更多
关键词 high sulfur-containing bauxite sulfur phase oxidizing-roasting sodium carbonate solution washing technology
在线阅读 下载PDF
Three-dimensional orebody modelling and intellectualized longwall mining for stratiform bauxite deposits 被引量:4
11
作者 王少锋 李夕兵 +4 位作者 王善勇 李启月 陈冲 冯帆 陈英 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第10期2724-2730,共7页
Acoupled biharmonic spline and linear interpolation algorithm was proposed to create a three-dimensional smooth deposit model with minimal curvature containing grade and position data. To obtain the optimal technical ... Acoupled biharmonic spline and linear interpolation algorithm was proposed to create a three-dimensional smooth deposit model with minimal curvature containing grade and position data. To obtain the optimal technical parameters, such as cuttingheight and drum diameter, a virtual longwall mining procedure was modelled by simulating the actual fully mechanized longwall mining process. Based on the above work, a bauxite deposit in a longwall mining panel was modelled by scattered grade data from ores sampled on the entry wall. The deposit was then demarcated by industrial indexes and sliced according to the virtual longwallmining procedure. The results show that the proposed interpolation algorithm can depict the stratiform structure of bauxite depositsand that the uncovered bauxite deposit has high proportions of high-grade and rich ore. The ranges of optimal cutting height and drum diameters are 1.72-2.84 m and 1.42-1.72 m, respectively. Finally, an intellectualized longwall mining procedure was designed to guide the mining process with the lowest dilution and loss rates. 展开更多
关键词 stratiform bauxite deposit orebodymodelling interpolation algorithm virtual longwall mining cutting height drum diameter
在线阅读 下载PDF
Effects of water hardness on selective flocculation of diasporic bauxite 被引量:2
12
作者 刘文莉 孙伟 胡岳华 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第9期2248-2254,共7页
The effect of electrolyte on settling behavior of kaolinite was studied. Effects of hard water on selective flocculation of diasporic bauxite was tested and the measures were taken to eliminate the effects of Ca2+ an... The effect of electrolyte on settling behavior of kaolinite was studied. Effects of hard water on selective flocculation of diasporic bauxite was tested and the measures were taken to eliminate the effects of Ca2+ and Mg2+ in hard water. The results indicated that, not only the concentration of electrolyte ions but also the ionic valence of the electrolyte ions affects the settling behavior of kaolinite; hard water significantly affects its selective flocculation owing to Ca2+ and Mg2+; general dispersants could not eliminate the effects of Ca2+ and Mg2+. Self-made softening agent in our lab could weaken or eliminate the effects of hard water on flocculation processes. The results of molecular dynamics simulation show that softening agent molecules could restrict Ca2+ and prevent them from playing their roles, so as to eliminate the effects. The continuous pilot experiment results of bauxite flocculation were even better than those obtained in laboratory. 展开更多
关键词 softening agent hard water bauxite DISPERSANT FLOCCULATION
在线阅读 下载PDF
Industrial wastes applications for alkalinity regulation in bauxite residue:A comprehensive review 被引量:29
13
作者 XUE Sheng-guo WU Yu-jun +5 位作者 LI Yi-wei KONG Xiang-feng ZHU Feng LI Xiao-fei YE Yu-zhen WILLIAM Hartley 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第2期268-288,共21页
Bauxite residue is a highly alkaline material generated from the production of alumina in which bauxite is dissolved in caustic soda.Approximately 4.4 billion tons of bauxite residues are either stockpiled or landfill... Bauxite residue is a highly alkaline material generated from the production of alumina in which bauxite is dissolved in caustic soda.Approximately 4.4 billion tons of bauxite residues are either stockpiled or landfilled,creating environmental risks either from the generation of dust or migration of filtrates.High alkalinity is the critical factor restricting complete utilization of bauxite residues,whilst the application of alkaline regulation agents is costly and difficult to apply widely.For now,current industrial wastes,such as waste acid,ammonia nitrogen wastewater,waste gypsum and biomass,have become major problems restricting the development of the social economy.Regulation of bauxite residues alkalinity by industrial waste was proposed to achieve‘waste control by waste’with good economic and ecological benefits.This review will focus on the origin and transformation of alkalinity in bauxite residues using typical industrial waste.It will propose key research directions with an emphasis on alkaline regulation by industrial waste,whilst also providing a scientific reference point for their potential use as amendments to enhance soil formation and establish vegetation on bauxite residue disposal areas(BRDAs)following large-scale disposal. 展开更多
关键词 bauxite residue alkalinity transformation alkalinity regulation industrial waste soil formation in bauxite residue
在线阅读 下载PDF
Variation of alkaline characteristics in bauxite residue under phosphogypsum amendment 被引量:26
14
作者 LI Yi-wei LUO Xing-hua +3 位作者 LI Chu-xuan JIANG Jun XUE Sheng-guo Graeme J.MILLAR 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第2期361-372,共12页
Aiming at alkaline problem of bauxite residue,this work focused variation of alkaline characteristics in bauxite residue through phosphogypsum treatment.The results demonstrated that the pH of bauxite residue reduced ... Aiming at alkaline problem of bauxite residue,this work focused variation of alkaline characteristics in bauxite residue through phosphogypsum treatment.The results demonstrated that the pH of bauxite residue reduced from initial 10.83 to 8.70 when 1.50 wt%phosphogypsum was added for 91 d.The removal rates of free alkali and exchangeable sodium were 97.94%and 75.87%,respectively.Meanwhile,significant positive correlations(P<0.05)existed between pH and free alkali,exchangeable sodium.The effect of free alkali composition was CO3^2–>OH^–>AlO2^–>HCO3^–.In addition,alkaline phase decreased from 52.81%to 48.58%and gypsum stably presented in bauxite residue which continuously provided Ca^2+to inhibit dissolution of combined alkali.Furthermore,phosphogypsum promoted formation of macroaggregate structure,increased Ca^2+,decreased Na+and Al^3+on the surface of bauxite residue significantly,ultimately promoting soil formation in bauxite residue. 展开更多
关键词 bauxite residue alkaline regulation free alkali phosphogypsum amendment soil formation in bauxite residue
在线阅读 下载PDF
Effect of substrate amendment on alkaline minerals and aggregate stability in bauxite residue 被引量:13
15
作者 TIAN Tao KE Wen-shun +4 位作者 ZHU Feng WANG Qiong-li YE Yu-zhen GUO Ying XUE Sheng-guo 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第2期393-403,共11页
Bauxite residue is an alkaline waste material in the process of alumina production due to its characteristics of higher salinity and alkalinity,which results in environmental issues and extremely restricts the sustain... Bauxite residue is an alkaline waste material in the process of alumina production due to its characteristics of higher salinity and alkalinity,which results in environmental issues and extremely restricts the sustainable development of alumina industries.In this work,we conduct a column experiment to study the effects of two amendments on aggregate stability and variations in alkaline minerals of bauxite residue.The two amendments are phosphogypsum(PG)and phosphogypsum and vermicompost(PVC).The dominant fraction in aggregate is 1–0.25 mm in diameter on the surface,which takes up 39.34%,39.38%,and 44.51%for CK,PG,and PVC,respectively.Additions of PG and PVC decreased pH,EC,ESP,exchangeable Na^+concentration and the percentage of alkaline minerals,and then increased exchangeable Ca^2+concentration in bauxite residue.There was significant positive correlation between pH and exchangeable Na^+concentration,the percentage of cancrinite,tricalcium aluminate and calcite;while negative correlation was found in pH value versus exchangeable Ca^2+concentration.Theses findings confirmed that additions of phosphogypsum and vermicompost have a stimulative effect on aggregate stability in bauxite residue.In particular,amendment neutralization(phosphogypsum+vermicompost)in column represents an advantage for large-scale simulation of vegetation rehabilitate in bauxite residue disposal areas. 展开更多
关键词 bauxite residue substrate amendment alkaline minerals aggregate stability soil formation in bauxite residue
在线阅读 下载PDF
Rehabilitation of bauxite residue to support soil development and grassland establishment 被引量:9
16
作者 XUE Sheng-guo 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第2期353-360,共8页
Rehabilitation(amendment and vegetation establishment)on bauxite residue is viewed as a promising strategy to stabilize the surface and initiate soil development.However,such approaches are inhibited by high pH,high e... Rehabilitation(amendment and vegetation establishment)on bauxite residue is viewed as a promising strategy to stabilize the surface and initiate soil development.However,such approaches are inhibited by high pH,high exchangeable sodium(ESP)and poor nutrient status.Amendment with gypsum is effective in improving residue physical and chemical properties and promoting seed establishment and growth.Application of organics(e.g.compost)can address nutrient deficiencies but supplemental fertilizer additions may be required.A series of germination bioassays were performed on residue to determine candidate species and optimum rehabilitation application rates.Subsequent field trials assessed establishment of grassland species Holcus lanatus and Trifolium pratense as well as physical and chemical properties of amended residue.Follow up monitoring over five years assessed elemental content in grassland and species dynamics.With co-application of the amendments several grassland species can grow on the residue.Over time other plant species can invade the restored area and fast growing nutrient demanding grasses are replaced.Scrub species can establish within a 5 Yr period and there is evidence of nutrient cycling.High pH,sodicity and nutrient deficiencies are the major limiting factors to establishing grassland on residue.Following restoration several plant species can grow on amended residue. 展开更多
关键词 bauxite residue substrate amendment soil development soil formation in bauxite residue vegetation establishment
在线阅读 下载PDF
Outline of Metallogenic Regularity of Bauxite Deposits in China 被引量:6
17
作者 GAO Lan LI Jihong +3 位作者 WANG Denghong XIONG Xiaoyun YI Chengwei HAN Meizhi 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第6期2072-2084,共13页
Among the abundant aluminum ore resources in China, bauxite is dominated, which is mainly distributed in 19 provinces and regions, including Shanxi, Henan, Guizhou and Guangxi. The major deposit type of bauxite is pal... Among the abundant aluminum ore resources in China, bauxite is dominated, which is mainly distributed in 19 provinces and regions, including Shanxi, Henan, Guizhou and Guangxi. The major deposit type of bauxite is paleo-weathering crust sedimentary type, and the other one is the accumulation type. The main metallogenic period is the late Paleozoic Era followed by the Cenozoic Era. The metallogenic tectonic background is characterized by a cratonic environment. This paper summarizes the bauxite metallogenic regularity based on the characteristics of bauxite resources, bauxite deposit type, bauxite metallogenic belt and metallogenic series in China, and 15 bauxite metallogenic belts, 8 bauxite metallogenic series and 7 bauxite ore concentrated areas were identified in the study. This paper also provides a theoretical basis for the evaluation of the potential of bauxite resources. 展开更多
关键词 bauxite deposit type bauxite metallogenic belt metallogenic series metallogenicregularity
在线阅读 下载PDF
Dynamic change and diagnosis of physical,chemical and biological properties in bauxite residue disposal areas 被引量:6
18
作者 GUO Ying ZHU Feng +3 位作者 WU Chuan TIAN Tao XUE Sheng-guo RICHARD J.Haynes 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第2期410-421,共12页
Vegetation encroachment occurred in bauxite residue disposal area(BRDA)following natural weathering processes,whilst the typical indicators of soil formation are still uncertain.Residue samples were collected from the... Vegetation encroachment occurred in bauxite residue disposal area(BRDA)following natural weathering processes,whilst the typical indicators of soil formation are still uncertain.Residue samples were collected from the BRDA in Central China,and related physical,chemical and biological indicators of bauxite residue with different storage years were determined.The indicators of soil formation in bauxite residue were selected using principal component analysis,factor analysis,and comprehensive evaluation to establish soil quality diagnostic index model on disposal areas.Following natural weathering processes,the texture of bauxite residue changed from silty loam to sandy loam.The pH and EC decreased,whilst porosity,nutrient element content and microbial biomass increased.The identified minimum data set(MDS)included available phosphorus(AP),moisture content(MC),C/N,sand content,total nitrogen(TN),microbial biomass carbon(MBC),and pH.The soil quality index of bauxite residue increased,and the relative soil quality index decreased from 1.89 to 0.15,which indicated that natural weathering had a significant effect on improveing the quality of bauxite residue and forming a new soil-like matrix.The diagnostic model of bauxite residue was established to provide data support for the regeneration on disposal area. 展开更多
关键词 bauxite residue disposal area soil properties minimum data set diagnostic indices natural weathering soil formation in bauxite residue
在线阅读 下载PDF
Colonization of Penicillium oxalicum enhanced neutralization effects of microbial decomposition of organic matter in bauxite residue 被引量:4
19
作者 LIAO Jia-xin ZHANG Yi-fan +3 位作者 CHENG Qing-yu WU Hao ZHU Feng XUE Sheng-guo 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第2期331-342,共12页
Bauxite residue is a highly alkaline waste product from refining bauxite ore.Bioremediation driven by microbial activities has been evidently effective in lowering the alkalinity of bauxite residues,which is critical ... Bauxite residue is a highly alkaline waste product from refining bauxite ore.Bioremediation driven by microbial activities has been evidently effective in lowering the alkalinity of bauxite residues,which is critical to the initiation of pedogenesis under engineered conditions.The present study investigated the changes of alkalinity and aggregation of bauxite residue at different depth in response to the colonization of Penicillium oxalicum in columns.The results demonstrated that the inoculation of P.oxalicum decreased the residue’s pH to about 7 after 30 d only at the surface layer,which was exposed to aerobic conditions.The formation of aggregates was improved overall in the organic matter treated bauxite residue.However,the EC of bauxite residue increased with time under the incubation condition,probably due to accelerated hydrolysis of sodium-rich minerals.The inoculation of P.oxalicum had no effects on urease activity,but increased cellulose enzyme activity at surface layer only. 展开更多
关键词 bauxite residue alkalinity transformation Penicillium oxalicum soil formation in bauxite residue column experiment
在线阅读 下载PDF
Straw addition increases enzyme activities and microbial carbon metabolism activities in bauxite residue 被引量:1
20
作者 Hao Wu Wei Sun +4 位作者 Feng Zhu Yifan Jiang Shiwei Huang Johnvie Goloran Shengguo Xue 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第1期332-344,共13页
Recovery of microbial functions is one of the critical processes in the nutrient cycling of bauxite residue for improving revegetation.Straw is considered to be effective to increase microbial diversity and drive the ... Recovery of microbial functions is one of the critical processes in the nutrient cycling of bauxite residue for improving revegetation.Straw is considered to be effective to increase microbial diversity and drive the development of the microbial community,but its effect on microbial carbon metabolism has not been illustrated.The present study evaluated the effects of phosphogypsum(PG),straw(SF)and phosphogypsum plus straw(PGSF)on physicochemical properties,enzyme activities,and microbial carbon metabolism activities in bauxite residue.After 180 days incubation,PG,SF and PGSF treatment significantly reduced the residue pH from 10.85 to 8.64,9.39 and 8.06,respectively.Compared to CK treatment,SF treatment significantly increased the content of total organic carbon(TOC)and organic carbon fractions(DOC,MBC,EOC,and POC).In addition,straw addition significantly increased glucosidase,cellulose,urease,and alkaline phosphatase by 7.2-9.1 times,5.8-7.1 times,11.1-12.5 times,and 1.1-2.2 times,respectively.The Biolog results showed that straw addition significantly increased microbial metabolic activity(AWCD)and diversity in bauxite residue.Redundancy analysis indicated total nitrogen(TN)and carbon fractions(POC,MBC and DOC)were the most important environmental factors affecting microbial metabolic activity and diversity in bauxite residue.These findings provided us with a biogeochemical perspective to reveal soil formation in bauxite residue and suggested that nutrient supplement and regulation of salinity-alkalinity benefit the establishment of microbial communities and functions in bauxite residue. 展开更多
关键词 bauxite residue Labile organic carbon fractions Enzyme activities Community-level physiological profiles Soil formation in bauxite residue
原文传递
上一页 1 2 12 下一页 到第
使用帮助 返回顶部