The role of mantle plume in the final stages of rifting of the East Gondwana crustal fragments remains equivocal with only limited evidence so far reported from the southern part of Peninsular India.Here,we report for...The role of mantle plume in the final stages of rifting of the East Gondwana crustal fragments remains equivocal with only limited evidence so far reported from the southern part of Peninsular India.Here,we report for the first time a suite of columnar basalts from the Mesoarchean Coorg Block in the Southern Granulite Terrain(SGT)of India and characterize these rocks through field,petrological,geo-chemical,and isotope geochronological studies.The basalts show porphyritic texture with phenocrysts of pyroxene and plagioclase embedded in fine groundmass.Geochemical data reveal tholeiitic flood basalt affinity with affinities of plume-related magmatism.The zircon U-Pb data of the rocks yield a weighted mean age of 137 Ma,thus corresponding to the Valanginian Age of the Early Cretaceous Period.We suggest the possible geochemical affinity of the studied rocks Kerguelen plume basalts which provide new insights into magmatism associated with the final stages of East Gondwana rifting.展开更多
The Longshan orogenic belt is located in the southwestern margin of Ordos Basin at the junction zone between the Western Qinling and Northern Qilian orogenic belt.Voluminous Early Paleozoic magmatism in this area is o...The Longshan orogenic belt is located in the southwestern margin of Ordos Basin at the junction zone between the Western Qinling and Northern Qilian orogenic belt.Voluminous Early Paleozoic magmatism in this area is of key significance for determining the Early Paleozoic tectonic evolution and deep crust-mantle structure.Previous studies mainly focused on the Paleozoic granites;the coeval mafic rocks in this area are still poorly understood.A set of Late Silurian intraplate tholeiitic basalts has been discovered in Longshan area,providing key evidence for the mantle source and deep geodynamic background in this area.The Late Silurian Angou basalt has similar geochemical features as intraplate tholeiitic basalt,with high Na_(2)O/K_(2)O ratios(5.22-8.25),enriched in large ion lithophile elements and LREE.In combination with their relatively evolved Sr-Nd isotopic composition[^(87)Sr/^(86)Sr(i)=0.7128-0.7140;ε_(Nd)(t)=-5.55 to-3.40],it is suggested that it originated from decompression melting of metasomatized enriched mantle in extensional setting.These results indicate that the mantle source in the junction zone of the West Qinling-North Qilian orogenic belt evolved from depleted to enriched with the continuation of Proto-Tethys subduction from the Cambrian to the Silurian.These results are of great significance to understanding the genesis of contemporaneous granite and the crust-mantle interaction in the junction zone between the Western Qinling and Northern Qilian orogenic belt.展开更多
Continental intraplate basalts form by partial melting of the mantle,and can provide important constraints on mantle heterogeneity.However,due to the thick overlying continental lithosphere,the origins of the geochemi...Continental intraplate basalts form by partial melting of the mantle,and can provide important constraints on mantle heterogeneity.However,due to the thick overlying continental lithosphere,the origins of the geochemical characteristics of continental intraplate basalts are controversial.In this study,we examined the geochemistry of Cenozoic basalts in southeast China.These basalts which are divided into four volcanic belts exhibit a DMM-EM2 mixing trend and spatial variations in Pb isotopes from inland(i.e.,thick lithosphere)to coastal(i.e.,thin lithosphere)regions.In contrast to the Pb isotopic variations,there are no spatial variations in Sr-Nd-Hf isotopes.Marked correlations between Pb isotopes and major elements(i.e.,Mg O and Si O_(2))suggest the continental lithospheric lid controlled their petrogenesis.Nonetheless,other factors are needed to explain the variations in Ti/Ti^(*)and Hf/Hf^(*)ratios,and Nd-Hf isotopes of the southeast China basalts.The increasing Pb isotope ratios from the inner to coastal regions are associated with decreases in CaO/Al_(2)O_(3) ratios and increases in FC3MS(FeO^(T)/CaO-3×Mg O/Si O_(2);in wt.%)values,indicating contributions from non-peridotite components in the mantle sources.The similarly depleted Nd-Hf isotopic compositions of the basalts from the three inner belts indicate these basalts have a similar origin,whereas the more enriched isotopic features of the basalts from the outer belt suggest their mantle source contains older recycled oceanic crust.Thus,source(i.e.,lithological)heterogeneity also had a significant role in controlling the geochemistry of these basalts.The DMM-EM2 mixing trend defined by the Pb isotopic compositions of continental intraplate basalts from southeast China was generated by variable degrees of melting of heterogeneous mantle that was controlled by the thickness of the continental lithospheric lid(i.e.,the melting pressure).This caused variable extents of melting of enriched components in the mantle sources of the basalts(i.e.,carbonated peridotite vs.pyroxenite).展开更多
With the development of the hyperspectral remote sensing technique,extensive chemical weathering profiles have been identified on Mars.These weathering sequences,formed through precipitation-driven leaching processes,...With the development of the hyperspectral remote sensing technique,extensive chemical weathering profiles have been identified on Mars.These weathering sequences,formed through precipitation-driven leaching processes,can reflect the paleoenvironments and paleoclimates during pedogenic processes.The specific composition and stratigraphic profiles mirror the mineralogical and chemical trends observed in weathered basalts on Hainan Island in south China.In this study,we investigated the laboratory reflectance spectra of a 53-m-long drilling core of a thick basaltic weathering profile collected from Hainan Island.We established a quantitative spectral model by combining the genetic algorithm and partial least squares regression(GA-PLSR)to predict the chemical properties(SiO2,Al2O3,Fe2O3)and index of laterization(IOL).The entire sample set was divided into a calibration set of 25 samples and a validation set of 12 samples.Specifically,the GA was used to select the spectral subsets for each composition,which were then input into the PLSR model to derive the chemical concentration.The coefficient of determination(R2)values on the validation set for SiO2,Al2O3,Fe2O3,and the IOL were greater than 0.9.In addition,the effects of various spectral preprocessing techniques on the model accuracy were evaluated.We found that the spectral derivative treatment boosted the prediction accuracy of the GA-PLSR model.The improvement achieved with the second derivative was more pronounced than when using the first derivative.The quantitative model developed in this work has the potential to estimate the contents of similar weathering basalt products,and thus infer the degree of alteration and provide insights into paleoclimatic conditions.Moreover,the informative bands selected by the GA can serve as a guideline for designing spectral channels for the next generation of spectrometers.展开更多
The basalts within the greenstone belt worldwide serve as an ideal target to decipher the nature of Archean mantle sources and further to extend the understanding of the early stages of Earth's evolution.To provid...The basalts within the greenstone belt worldwide serve as an ideal target to decipher the nature of Archean mantle sources and further to extend the understanding of the early stages of Earth's evolution.To provide important insights into the issues,we carried out a detailed investigation of whole-rock geochemistry and Sm-Nd isotopes,and zircon U-Pb-Hf isotopes for the Late Neoarchean metamorphosed basalts in eastern Hebei,North China Craton.U-Pb isotopic dating using the LA-ICPMS on zircons reveals that the basalts in eastern Hebei erupted at ca.2.48-2.51 Ga and subsequently experienced multiple regional metamorphic events at 2477 and 1798 Ma,respectively.The metamorphosed basalts are featured by low SiO_(2),MgO,K_(2)O+Na_(2)O,and high Fe O contents,endowed with the subalkaline and high-Fe tholeiitic affinities.The radiogenic initial Nd and Hf isotope values and correlations among V,Ni and Cr contents strongly imply that the basalts experienced significant clinopyroxene and olivine fractionation and minor crustal contamination during magma evolution.They are also characterized by the relatively low total REE contents and exhibit significant depletions to moderate enrichments in the LREE contents,indicating the derivation from a deep mantle source in an Archean proto-mantle plume setting.展开更多
We analyze the first-order observations,basic concepts and explicit/implicit assumptions built into the three major hypotheses for the enriched component(s)in the source of ocean island basalts(OIB)in terms of incompa...We analyze the first-order observations,basic concepts and explicit/implicit assumptions built into the three major hypotheses for the enriched component(s)in the source of ocean island basalts(OIB)in terms of incompatible trace elements:(1)subducted ocean crust(SOC),(2)subducted continental sediments,and(3)mantle metasomatism.展开更多
Based on the temporal-spatial distribution and geochemical characteristics,the Emeishan basalts can be divided into two types: high-P_2O-TiO_2 basalt (HPT) andlow-P_2O_5-TiO_2 basalt (LPT), which differ distinctly in ...Based on the temporal-spatial distribution and geochemical characteristics,the Emeishan basalts can be divided into two types: high-P_2O-TiO_2 basalt (HPT) andlow-P_2O_5-TiO_2 basalt (LPT), which differ distinctly in geochemistry: the LPTs are characterizedby relatively high abundances of MgO, total FeO and P_2O_5 and compatible elements (Cr, Ni, Sc), andrelatively low contents of moderately compatible elements (V, Y, Yb, Co), LREE and otherincompatible elements compared with the HPT. On the diagrams of trace element ratios, they areplotted on an approximately linear mixing line between depleted and enriched mantle sources,suggesting that these two types of basalts resulted from interactions of varying degrees betweenmantle plume and lithospheric mantle containing such volatile-rich minerals as amphibole andapatite. The source region of the LPT involves a smaller proportion of lithospheric components,while that of the HTP has a larger proportion of lithospheric components. Trachyte is generated bypartial melting of the basic igneous rocks at the base of the lower continental crust. Both the twotypes of magmas underwent certain crystal fractionation and contamination of the lower crest athigh-level magma chambers and en route to the surface.展开更多
The Late Permian Emeishan Large Igneous Province (ELIP) is commonly regarded as being located in the western part of the Yangtze craton, SW China, with an asymmetrical shape and a small area. This area, however, is ju...The Late Permian Emeishan Large Igneous Province (ELIP) is commonly regarded as being located in the western part of the Yangtze craton, SW China, with an asymmetrical shape and a small area. This area, however, is just a maximum estimation because some parts of the ELIP were not recognized or dismembered and destroyed during the Triassic to Cenozoic tectonism. In this paper, the chemostratigraphical data of the Zongza block, the Garze-Litang belt and the Songpan-Garze block suggest that the Late Permian basalts in these areas have remarkable similarities to the ELIP basalts in petrography and geochemistry. Flood basalts in the Sanjiangkou area are composed of the lower part of the low-Ti (LT) tholeiite and the upper part of the high-Ti (HT) tholeiite, which is the same as the flood basalts on the western margin of the Yangtze craton. Flood basalts in the Zongza and Songpan-Garze areas, which are far from the Yangtze craton, consist of HT tholeiite only. This is the same as the flood basalts within the Yangtze craton. Therefore we argue that these contemporary basalts all originated from the Emeishan mantle plume, and the ELIP could have a significant westward extension with an outcropped area of over 500,000 km2. This new scenario shows that the LT tholeiite occurs on the western margin of the Yangtze craton, while the HT tholeiite overlying the LT basalts occupies the whole area of the ELIP.展开更多
Greenstone basalts and komatiites provide a means to track both mantle composition and magma generation temperature with time. Four types of mantle are characterized from incompatible element distributions in basalts ...Greenstone basalts and komatiites provide a means to track both mantle composition and magma generation temperature with time. Four types of mantle are characterized from incompatible element distributions in basalts and komatiites: depleted, hydrated, enriched and mantle from which komatiites are derived. Our most important observation is the recognition for the first time of what we refer to as a Great Thermal Divergence within the mantle beginning near the end of the Archean, which we ascribe to thermal and convective evolution. Prior to 2.5 Ga, depleted and enriched mantle have indistinguishable thermal histories, whereas at 2.5-2.0 Ga a divergence in mantle magma generation temperature begins between these two types of mantle. Major and incompatible element distributions and calculated magma generation temperatures suggest that Archean enriched mantle did not come from mantle plumes, but was part of an undifferentiated or well-mixed mantle similar in composition to calculated primitive mantle. During this time, however, high-temperature mantle plumes from dominantly depleted sources gave rise to komatiites and associated basalts. Recycling of oceanic crust into the deep mantle after the Archean may have contributed to enrichment ofTi, A1, Ca and Na in basalts derived from enriched mantle sources. After 2.5 Ga, increases in Mg# in basalts from depleted mantle and decreases in Fe and Mn reflect some combination of growing depletion and cooling of depleted mantle with time. A delay in cooling of depleted mantle until after the Archean probably reflects a combination of greater radiogenic heat sources in the Archean mantle and the propagation of plate tectonics after 3 Ga.展开更多
Neoproterozoic rifting-related mafic igneous rocks are widely distributed both in the northern and southern margins of the Tarim Block,NW China.Here we report the geochronology and systematic whole-rock geochemistry o...Neoproterozoic rifting-related mafic igneous rocks are widely distributed both in the northern and southern margins of the Tarim Block,NW China.Here we report the geochronology and systematic whole-rock geochemistry of the Neoproterozoic mafic dykes and basalts along the southern margin of Tarim.Our zircon U-Pb age,in combination with stratigraphic constraint on their emplacement ages,indicates that the mafic dykes were crystallized at ca.802 Ma,and the basalt, possibly coeval with the ca.740 Ma volcanic rocks in Quruqtagh in the northern margin of Tarim. Elemental and Nd isotope geochemistry of the mafic dykes and basalts suggest that their primitive magma was derived from asthenospheric mantle(OIB-like) and lithospheric mantle respectively,with variable assimilation of crustal materials.Integrating the data supplied in the present study and that reported previously in the northern margin of Tarim,we recognize two types of mantle sources of the Neoproterozoic mafic igneous rocks in Tarim,namely the matasomatized subcontinental lithospheric mantle(SCLM) in the northern margin and the long-term enriched lithospheric mantle and asthenospheric mantle in the southern margin.A comprehensive synthesis of the Neoproterozoic igneous rocks throughout the Tarim Block led to the recognition of two major episodes of Neoproterozoic igneous activities at ca.820-800 Ma and ca.780-740 Ma,respectively.These two episodes of igneous activities were concurrent with those in many other Rodinian continents and were most likely related to mantle plume activities during the break-up of the Rodinia.展开更多
The Ordovician Laohushan ophiolite, located in the eastern part of the North Qilian Mountains, is mainly composed of meta-peridotites, gabbros and basalts alternating with sediments. The sediments are mainly turbidite...The Ordovician Laohushan ophiolite, located in the eastern part of the North Qilian Mountains, is mainly composed of meta-peridotites, gabbros and basalts alternating with sediments. The sediments are mainly turbidites, including sandstones, siltstones, cherts etc. Major elements show that the basalts are subalkaline tholeiites and may be analogous to ocean-floor basalts. Except a few N-MORBs, most of the basalts are E-MORBs as indicated by incompatible element ratios such as (La/Ce)N, La/Sm, Ce/Zr, Zr/Y and Zr/Nb. Negative Nb anomaly is common but negative Zr, Hf and Ti anomalies are quite rare. Based on the geochemical characteristics, it is suggested that the Laohushan basalts were formed in a back-arc basin. ENd (t) of the basalts ranges between +3.0 and +8.9 and (87Sr/86Sr), ranges between 0.7030 and 0.7060, indicating a depleted mantle source which was mixed with more or less enriched mantle components. Furthermore, the petrography of the sandstones and geochemistry of the cherts suggest that the sediments were deposited near a continental margin.展开更多
A suite of continental flood basalts sampled over a vast exposure and stratigraphic thickness in the Emeishan large igneous province (LIP), SW China was investigated for laser microprobe ^40Ar/^39Ar dating. There ar...A suite of continental flood basalts sampled over a vast exposure and stratigraphic thickness in the Emeishan large igneous province (LIP), SW China was investigated for laser microprobe ^40Ar/^39Ar dating. There are two ^40Ar/^39Ar age groups for these basalts, corresponding to 259-246 Ma and 177-137 Ma, respectively. A well-defined isochron gives an eruption age of huge quantities of mafic magmas at 258.9±3.4 Ma, which is identical to previous dating and paleontological data. Much younger ^40Ar/^39Ar ages for some basalts with Iow-greenschist metamorphic facies probably recorded a late thermo-tectonic event caused by collision between the Yangtze and Qiangtang continental blocks during the Mesozoic, which resulted in the reset of argon isotope system. The ^40Ar/^39Ar age data, we present here, combined with previous dating and paleontological data, suggest relatively short duration (about 3 Ma) of mafic volcanism, which have important implication on mantle plume genesis of the Emeishan continental flood basalts in the LIP.展开更多
Geochronology of continental flood basalts sampled from the Emei large igneous province (LIP) on the western margin of the Yangtze platform was investigated by the laser microprobe 40Ar/39Ar dating technique. These ba...Geochronology of continental flood basalts sampled from the Emei large igneous province (LIP) on the western margin of the Yangtze platform was investigated by the laser microprobe 40Ar/39Ar dating technique. These basalts yield a fairly wide range of 40Ar/39Ar ages, varying from 259 to 135 Ma. One basalt sample, at least altered, recorded the oldest 40Ar/39Ar age of about 259 Ma, corresponding to a peak eruption age of the Emei LIP continental flood basalts. Most of the samples yield much younger ages from 135 to 177 Ma, which are consistent with the K-Ar ages for the same samples (122.8-172.1 Ma). The dating data suggest that these Permian basalts had been widely affected by the regional tectonothermal event at 177-135 Ma. The event was probably caused by the convergence and collision among the Laurasia, Yangtze and Qiangtang-Qamdo continental blocks on the eastern margin of the Qinghai-Tibet plateau after the late Triassic. The age of the event reflects the timing of the peak collisional orogeny.展开更多
Electronic microprobe analyses for olivine, clinopyroxene and Cr-spinel in picrites, which we have discovered recently in the Emeishan continental flood basalt province (ECFBP), show that the olivine is rich in Mg, an...Electronic microprobe analyses for olivine, clinopyroxene and Cr-spinel in picrites, which we have discovered recently in the Emeishan continental flood basalt province (ECFBP), show that the olivine is rich in Mg, and that Cr-spinel is rich in Cr. Based on the olivine-melt equilibrium, the primary parental melt compositions are calculated. The high-Mg olivine-hosted picrite can be regarded as parental melt. Thus, the melting temperature and pressure are estimated: T=1600℃ and P=4.5 GPa. It suggests that the picrites are connected with the activity of mantle plumes. Their major element composition is comparable to many other CFBs by their high Fe8, (CaO/Al2O3)8 and low Na8, indicating a high pressure. All rocks display a similar chondrite-normalized REE patterns, i.e., enrichment of LREE, relative depletion of HFSE and absence of negative Nb and Ta but depletion in P and K. Some incompatible element ratios, such as La/Ta, La/ Sm, (La/Nb)PM, (Th/Ta)PM, are in a limited range, show that they were derived from the mantle plume, and there was no or little crustal contamination during magma ascent en route to the surface. They were generated by 7% partial melting of garnet peridotite. The axis of the plume might be located beneath Lijiang Town, Yunnan province.展开更多
The Central Indian Ocean Basin (CIOB) basalts are plagioclase-rich, while olivine and pyroxene are very few. The analyses of 41 samples reveal high FeOT (~10-18 wt%) and TiO 2 (~1.4-2.7 wt%) indicating a ferro...The Central Indian Ocean Basin (CIOB) basalts are plagioclase-rich, while olivine and pyroxene are very few. The analyses of 41 samples reveal high FeOT (~10-18 wt%) and TiO 2 (~1.4-2.7 wt%) indicating a ferrobasaltic composition. The basalts have high incompatible elements (Zr 63-228 ppm; Nb ~1-5 ppm; Ba ~15-78 ppm; La ~3-16 ppm), a similar U/Pb (0.02-0.4) ratio as the normal midoceanic basalt (0.16±0.07) but the Ba/Nb (12.5-53) ratio is much larger than that of the normal midoceanic ridge basalt (~5.7) and Primitive Mantle (9.56). Interestingly almost all of the basalts have a significant negative Eu anomaly (Eu/Eu*=0.78-1.00) that may have been a result of the removal of feldspar and pyroxene during crystal fractionation. These compositional variations suggest that the basalts were derived through fractional crystallization together with low partial melting of a shallow seated magma.展开更多
To evaluate the columnar jointed basalts in the dam site of Baihetan hydropower station in southwest China, we developed a basic conceptual model of single jointed rock mass. Considering that the rock mass deformation...To evaluate the columnar jointed basalts in the dam site of Baihetan hydropower station in southwest China, we developed a basic conceptual model of single jointed rock mass. Considering that the rock mass deformation consists of rock block deformation and joints deformation, the linear mechanical characteristics of the cell (including the elastic joints and the nonlinear mechanical behaviors of the cell) with a combined frictional-elastic interface were analyzed. We developed formulas to calculate the rock block deformation, which can be adapted for multiple jointed rock mass and columnar jointed basalts. The formulas are effective in calculating the equivalent modulus of multiple jointed rock mass, and precisely reveal the anisotropic properties of columnar jointed basalts. Furthermore, the in situ rigid bearing plate tests were analyzed and calculated, and the types of loading-unloading curves and the equivalent modulus along different directions of columnar jointed basalts were obtained. The analytical results are in close compliance with the test results.展开更多
Since the Early Cenozoic,the Philippine Sea Plate(PSP)has undergone a complex tectonic evolution.During this period the Parece Vela Basin(PVB)was formed by seafloor spreading in the back-arc region of the proto-Izu-Bo...Since the Early Cenozoic,the Philippine Sea Plate(PSP)has undergone a complex tectonic evolution.During this period the Parece Vela Basin(PVB)was formed by seafloor spreading in the back-arc region of the proto-Izu-Bonin-Mariana(IBM)arc.However,until now,studies of the geological,geophysical,and tectonic evolution of the PVB have been rare.In this study,we obtained in situ trace element and major element compositions of minerals in basalts collected from two sites in the southern part of the PVB.The results reveal that the basalts from site CJ09-63 were likely formed via~10%partial melting of spinel-garnet lherzolite,while the basalts from site CJ09-64 were likely formed via 15%–25%partial melting of garnet lherzolite.The order of mineral crystallization for the basalts from site CJ09-64 was olivine,spinel,clinopyroxene,and plagioclase,while the plagioclase in the basalts from site CJ09-63 crystallized earlier than the clinopyroxene.Using a plagioclase-liquid hygrometer and an olivine-liquid oxybarometer,we determined that the basalts in this study have high H2O contents and oxygen fugacities,suggesting that the magma source of the Parece Vela basalts was affected by subduction components,which is consistent with the trace element composition of whole rock.展开更多
In this paper, a new discrimination diagram using absolute measures of Th and Nb is applied to postArchean ophiolites to best discriminate a large number of different ophiolitic basalts. This diagram was obtained usi...In this paper, a new discrimination diagram using absolute measures of Th and Nb is applied to postArchean ophiolites to best discriminate a large number of different ophiolitic basalts. This diagram was obtained using 〉2000 known ophiolitic basalts and was tested using -560 modern rocks from known tectonic settings. Ten different basaltic varieties from worldwide ophiolitic complexes have been examined. They include two basaltic types that have never been considered before, which are: (1) medium-Ti basalts (MTB) generated at nascent forearc settings; (2) a type of mid-ocean ridge basalts showing garnet signature (G-MORB) that characterizes Alpine-type (i,e., non volcanic) rifted margins and ocean-continent transition zones (OCTZ). In the Th-Nb diagram, basalts generated in oceanic subductionunrelated settings, rifted margins, and OCTZ can be distinguished from subduction-related basalts with a misclassification rate 〈 1%. This diagram highlights the chemical variation of oceanic, rifted margin, and OCTZ basalts from depleted compositions to progressively more enriched compositions reflecting, in turn, the variance of source composition and degree of melting within the MORB-OIB array. It also highlights the chemical contributions of enriched (OIB-type) components to mantle sources. Enrichment of Th relative to Nb is particularly effective for highlighting crustal input via subduction or crustal contamination. Basalts formed at continental margin arcs and island arc with a complex polygenetic crust can be distinguished from those generated in intra-oceanic arcs in supra-subducrion zones (SSZ) with a misclassification rate 〈1%. Within the SSZ group, two sub-settings can be recognized with a misclassification rate 〈0.5%. They are: (1) SSZ influenced by chemical contribution from subduction- derived components (forearc and intra-arc sub-settings) characterized by island arc tholeiitic (IAT) and boninitic basalts; (2) SSZ with no contribution from subduction-derived components (nascent forearc sub-settings) characterized by MTBs and depleted-MORBs. Two additional discrimination diagrams are proposed: (1) a Dy-Yb diagram is used for discriminating boninite and IAT basalts; (2) a Ce/Yb-Dy/Yb diagram is used for discriminating G-MORBs and normal MORBs. The proposed method may effectively assist in recovering the tectonic affinity of ancient ophiolites, which is fundamental for establishing the geodvnamic evolution of ancient oceanic and continental domains, as well as orogenic belts.展开更多
Recently, we focused on the Darbut and Karamay ophiolitic m41anges in West Junggar of the Central Asian Orogenic Belt (CAOB, SengOr et al., 1993; Windley et al., 2007; Xiao and Santosh, 2014), and made much progress...Recently, we focused on the Darbut and Karamay ophiolitic m41anges in West Junggar of the Central Asian Orogenic Belt (CAOB, SengOr et al., 1993; Windley et al., 2007; Xiao and Santosh, 2014), and made much progress. This study was supported by the National Nature Science Foundation of China (No. 41303027) and Special Fund for Basic Scientific Research of Central Colleges Project (No. 2014G1271058). The achievements are illustrated as follows.展开更多
The Binchuan area of Yunnan is located in the western part of the Emeishan large igneous province in the western margin of the Yangtze Block. In the present study, the Wuguiqing profile in thickness of about 1440 m is...The Binchuan area of Yunnan is located in the western part of the Emeishan large igneous province in the western margin of the Yangtze Block. In the present study, the Wuguiqing profile in thickness of about 1440 m is mainly composed of high-Ti basalts, with minor picrites in the lower part and andesites, trachytes, and rhyolites in the upper part. The picrites have relatively higher platinum- group element (PGE) contents (PGE=16.3-28.2 ppb), with high Cu/Zr and Pd/Zr ratios, and low S contents (5.03-16.9 ppm), indicating the parental magma is S-unsaturated and generated by high degree of partial melting of the Emeishan large igneous province (ELIP) mantle source. The slightly high Cu/Pd ratios (11 000-24 000) relative to that of the primitive mantle suggest that 0.007% sulfides have been retained in the mantle source. The PGE contents of the high-Ti basalts exhibit a wider range (~PGE=0.517-30.8 ppb). The samples in the middle and upper parts are depleted in PGE and have ~Nd (260 Ma) ratios ranging from -2.8 to -2.2, suggesting that crustal contamination of the parental magma during ascent triggered sulfur saturation and segregation of about 0.446%-0.554% sulfides, and the sulfide segregation process may also provide the ore-forming material for the magmatic Cu-Ni-PGE sulfide deposits close to the studied basalts. The samples in this area show Pt- Pd type primitive mantle-normalized PGE patterns, and the Pd/Ir ratios are higher than that of the primitive mantle (Pd/Ir=l), indicating that the obvious differentiation between Ir-group platinum- group elements (IPGE) and Pd-group platinum-group elements (PPGE) are mainly controlled by olivine or chromites fractionation during magma evolution. The Pd/Pt ratios of most samples are higher than the average ratio of mantle (Pd/Pt=0.55), showing that the differentiation happened between Pt and Pd. The differentiation in picrites may be relevant to Pt hosted in discrete refractory Pt-alloy phase in the mantle; whereas the differentiation in the high-Ti basalts is probably associated with the fractionation of Fe-Pt alloys, coprecipitating with Ir-Ru-Os alloys. Some high-Ti basalt samples exhibit negative Ru anomalies, possibly due to removal of laurite collected by the early crystallized chromites.展开更多
基金supported by the“Startup Grant for the University Teachers”of the University of Kerala.
文摘The role of mantle plume in the final stages of rifting of the East Gondwana crustal fragments remains equivocal with only limited evidence so far reported from the southern part of Peninsular India.Here,we report for the first time a suite of columnar basalts from the Mesoarchean Coorg Block in the Southern Granulite Terrain(SGT)of India and characterize these rocks through field,petrological,geo-chemical,and isotope geochronological studies.The basalts show porphyritic texture with phenocrysts of pyroxene and plagioclase embedded in fine groundmass.Geochemical data reveal tholeiitic flood basalt affinity with affinities of plume-related magmatism.The zircon U-Pb data of the rocks yield a weighted mean age of 137 Ma,thus corresponding to the Valanginian Age of the Early Cretaceous Period.We suggest the possible geochemical affinity of the studied rocks Kerguelen plume basalts which provide new insights into magmatism associated with the final stages of East Gondwana rifting.
基金supported by the National Natural Science Foundation of China(42172010,42372071,41102037)。
文摘The Longshan orogenic belt is located in the southwestern margin of Ordos Basin at the junction zone between the Western Qinling and Northern Qilian orogenic belt.Voluminous Early Paleozoic magmatism in this area is of key significance for determining the Early Paleozoic tectonic evolution and deep crust-mantle structure.Previous studies mainly focused on the Paleozoic granites;the coeval mafic rocks in this area are still poorly understood.A set of Late Silurian intraplate tholeiitic basalts has been discovered in Longshan area,providing key evidence for the mantle source and deep geodynamic background in this area.The Late Silurian Angou basalt has similar geochemical features as intraplate tholeiitic basalt,with high Na_(2)O/K_(2)O ratios(5.22-8.25),enriched in large ion lithophile elements and LREE.In combination with their relatively evolved Sr-Nd isotopic composition[^(87)Sr/^(86)Sr(i)=0.7128-0.7140;ε_(Nd)(t)=-5.55 to-3.40],it is suggested that it originated from decompression melting of metasomatized enriched mantle in extensional setting.These results indicate that the mantle source in the junction zone of the West Qinling-North Qilian orogenic belt evolved from depleted to enriched with the continuation of Proto-Tethys subduction from the Cambrian to the Silurian.These results are of great significance to understanding the genesis of contemporaneous granite and the crust-mantle interaction in the junction zone between the Western Qinling and Northern Qilian orogenic belt.
基金supported by the National Natural Science Foundation of China(No.41906051)the National Key R&D Program of China(No.2018YFE0202402)+1 种基金sponsored by the Fundamental Research Funds for the Central Universities(Tongji University)(No.22120210525)Shanghai Pilot Program for Basic Research。
文摘Continental intraplate basalts form by partial melting of the mantle,and can provide important constraints on mantle heterogeneity.However,due to the thick overlying continental lithosphere,the origins of the geochemical characteristics of continental intraplate basalts are controversial.In this study,we examined the geochemistry of Cenozoic basalts in southeast China.These basalts which are divided into four volcanic belts exhibit a DMM-EM2 mixing trend and spatial variations in Pb isotopes from inland(i.e.,thick lithosphere)to coastal(i.e.,thin lithosphere)regions.In contrast to the Pb isotopic variations,there are no spatial variations in Sr-Nd-Hf isotopes.Marked correlations between Pb isotopes and major elements(i.e.,Mg O and Si O_(2))suggest the continental lithospheric lid controlled their petrogenesis.Nonetheless,other factors are needed to explain the variations in Ti/Ti^(*)and Hf/Hf^(*)ratios,and Nd-Hf isotopes of the southeast China basalts.The increasing Pb isotope ratios from the inner to coastal regions are associated with decreases in CaO/Al_(2)O_(3) ratios and increases in FC3MS(FeO^(T)/CaO-3×Mg O/Si O_(2);in wt.%)values,indicating contributions from non-peridotite components in the mantle sources.The similarly depleted Nd-Hf isotopic compositions of the basalts from the three inner belts indicate these basalts have a similar origin,whereas the more enriched isotopic features of the basalts from the outer belt suggest their mantle source contains older recycled oceanic crust.Thus,source(i.e.,lithological)heterogeneity also had a significant role in controlling the geochemistry of these basalts.The DMM-EM2 mixing trend defined by the Pb isotopic compositions of continental intraplate basalts from southeast China was generated by variable degrees of melting of heterogeneous mantle that was controlled by the thickness of the continental lithospheric lid(i.e.,the melting pressure).This caused variable extents of melting of enriched components in the mantle sources of the basalts(i.e.,carbonated peridotite vs.pyroxenite).
基金National Key Research and Development Project(Grant No.2019YFE0123300)National Natural Science Foundation of China(Grant Nos.42072337,42241111,and 42241129)+1 种基金Pandeng Program of National Space Science Center,Chinese Academy of Sciences.Xing Wu also acknowledges support from the Young Elite Scientists Sponsorship Program by the China Association for Science and Technology(Grant No.2022QNRC001)China Postdoctoral Science Foundation(Grant No.2021M700149).
文摘With the development of the hyperspectral remote sensing technique,extensive chemical weathering profiles have been identified on Mars.These weathering sequences,formed through precipitation-driven leaching processes,can reflect the paleoenvironments and paleoclimates during pedogenic processes.The specific composition and stratigraphic profiles mirror the mineralogical and chemical trends observed in weathered basalts on Hainan Island in south China.In this study,we investigated the laboratory reflectance spectra of a 53-m-long drilling core of a thick basaltic weathering profile collected from Hainan Island.We established a quantitative spectral model by combining the genetic algorithm and partial least squares regression(GA-PLSR)to predict the chemical properties(SiO2,Al2O3,Fe2O3)and index of laterization(IOL).The entire sample set was divided into a calibration set of 25 samples and a validation set of 12 samples.Specifically,the GA was used to select the spectral subsets for each composition,which were then input into the PLSR model to derive the chemical concentration.The coefficient of determination(R2)values on the validation set for SiO2,Al2O3,Fe2O3,and the IOL were greater than 0.9.In addition,the effects of various spectral preprocessing techniques on the model accuracy were evaluated.We found that the spectral derivative treatment boosted the prediction accuracy of the GA-PLSR model.The improvement achieved with the second derivative was more pronounced than when using the first derivative.The quantitative model developed in this work has the potential to estimate the contents of similar weathering basalt products,and thus infer the degree of alteration and provide insights into paleoclimatic conditions.Moreover,the informative bands selected by the GA can serve as a guideline for designing spectral channels for the next generation of spectrometers.
基金supported financially by the National Natural Science Foundation of China(Nos.42002238 and 41872057)。
文摘The basalts within the greenstone belt worldwide serve as an ideal target to decipher the nature of Archean mantle sources and further to extend the understanding of the early stages of Earth's evolution.To provide important insights into the issues,we carried out a detailed investigation of whole-rock geochemistry and Sm-Nd isotopes,and zircon U-Pb-Hf isotopes for the Late Neoarchean metamorphosed basalts in eastern Hebei,North China Craton.U-Pb isotopic dating using the LA-ICPMS on zircons reveals that the basalts in eastern Hebei erupted at ca.2.48-2.51 Ga and subsequently experienced multiple regional metamorphic events at 2477 and 1798 Ma,respectively.The metamorphosed basalts are featured by low SiO_(2),MgO,K_(2)O+Na_(2)O,and high Fe O contents,endowed with the subalkaline and high-Fe tholeiitic affinities.The radiogenic initial Nd and Hf isotope values and correlations among V,Ni and Cr contents strongly imply that the basalts experienced significant clinopyroxene and olivine fractionation and minor crustal contamination during magma evolution.They are also characterized by the relatively low total REE contents and exhibit significant depletions to moderate enrichments in the LREE contents,indicating the derivation from a deep mantle source in an Archean proto-mantle plume setting.
基金supported by the Chinese 111 Project(No B07011)Chinese NSF(No 91014003,41130314).
文摘We analyze the first-order observations,basic concepts and explicit/implicit assumptions built into the three major hypotheses for the enriched component(s)in the source of ocean island basalts(OIB)in terms of incompatible trace elements:(1)subducted ocean crust(SOC),(2)subducted continental sediments,and(3)mantle metasomatism.
文摘Based on the temporal-spatial distribution and geochemical characteristics,the Emeishan basalts can be divided into two types: high-P_2O-TiO_2 basalt (HPT) andlow-P_2O_5-TiO_2 basalt (LPT), which differ distinctly in geochemistry: the LPTs are characterizedby relatively high abundances of MgO, total FeO and P_2O_5 and compatible elements (Cr, Ni, Sc), andrelatively low contents of moderately compatible elements (V, Y, Yb, Co), LREE and otherincompatible elements compared with the HPT. On the diagrams of trace element ratios, they areplotted on an approximately linear mixing line between depleted and enriched mantle sources,suggesting that these two types of basalts resulted from interactions of varying degrees betweenmantle plume and lithospheric mantle containing such volatile-rich minerals as amphibole andapatite. The source region of the LPT involves a smaller proportion of lithospheric components,while that of the HTP has a larger proportion of lithospheric components. Trachyte is generated bypartial melting of the basic igneous rocks at the base of the lower continental crust. Both the twotypes of magmas underwent certain crystal fractionation and contamination of the lower crest athigh-level magma chambers and en route to the surface.
文摘The Late Permian Emeishan Large Igneous Province (ELIP) is commonly regarded as being located in the western part of the Yangtze craton, SW China, with an asymmetrical shape and a small area. This area, however, is just a maximum estimation because some parts of the ELIP were not recognized or dismembered and destroyed during the Triassic to Cenozoic tectonism. In this paper, the chemostratigraphical data of the Zongza block, the Garze-Litang belt and the Songpan-Garze block suggest that the Late Permian basalts in these areas have remarkable similarities to the ELIP basalts in petrography and geochemistry. Flood basalts in the Sanjiangkou area are composed of the lower part of the low-Ti (LT) tholeiite and the upper part of the high-Ti (HT) tholeiite, which is the same as the flood basalts on the western margin of the Yangtze craton. Flood basalts in the Zongza and Songpan-Garze areas, which are far from the Yangtze craton, consist of HT tholeiite only. This is the same as the flood basalts within the Yangtze craton. Therefore we argue that these contemporary basalts all originated from the Emeishan mantle plume, and the ELIP could have a significant westward extension with an outcropped area of over 500,000 km2. This new scenario shows that the LT tholeiite occurs on the western margin of the Yangtze craton, while the HT tholeiite overlying the LT basalts occupies the whole area of the ELIP.
基金funding from the European Research Council(ERC StG 279828)
文摘Greenstone basalts and komatiites provide a means to track both mantle composition and magma generation temperature with time. Four types of mantle are characterized from incompatible element distributions in basalts and komatiites: depleted, hydrated, enriched and mantle from which komatiites are derived. Our most important observation is the recognition for the first time of what we refer to as a Great Thermal Divergence within the mantle beginning near the end of the Archean, which we ascribe to thermal and convective evolution. Prior to 2.5 Ga, depleted and enriched mantle have indistinguishable thermal histories, whereas at 2.5-2.0 Ga a divergence in mantle magma generation temperature begins between these two types of mantle. Major and incompatible element distributions and calculated magma generation temperatures suggest that Archean enriched mantle did not come from mantle plumes, but was part of an undifferentiated or well-mixed mantle similar in composition to calculated primitive mantle. During this time, however, high-temperature mantle plumes from dominantly depleted sources gave rise to komatiites and associated basalts. Recycling of oceanic crust into the deep mantle after the Archean may have contributed to enrichment ofTi, A1, Ca and Na in basalts derived from enriched mantle sources. After 2.5 Ga, increases in Mg# in basalts from depleted mantle and decreases in Fe and Mn reflect some combination of growing depletion and cooling of depleted mantle with time. A delay in cooling of depleted mantle until after the Archean probably reflects a combination of greater radiogenic heat sources in the Archean mantle and the propagation of plate tectonics after 3 Ga.
基金supported by National Science Foundation of China(40772123,40721063).
文摘Neoproterozoic rifting-related mafic igneous rocks are widely distributed both in the northern and southern margins of the Tarim Block,NW China.Here we report the geochronology and systematic whole-rock geochemistry of the Neoproterozoic mafic dykes and basalts along the southern margin of Tarim.Our zircon U-Pb age,in combination with stratigraphic constraint on their emplacement ages,indicates that the mafic dykes were crystallized at ca.802 Ma,and the basalt, possibly coeval with the ca.740 Ma volcanic rocks in Quruqtagh in the northern margin of Tarim. Elemental and Nd isotope geochemistry of the mafic dykes and basalts suggest that their primitive magma was derived from asthenospheric mantle(OIB-like) and lithospheric mantle respectively,with variable assimilation of crustal materials.Integrating the data supplied in the present study and that reported previously in the northern margin of Tarim,we recognize two types of mantle sources of the Neoproterozoic mafic igneous rocks in Tarim,namely the matasomatized subcontinental lithospheric mantle(SCLM) in the northern margin and the long-term enriched lithospheric mantle and asthenospheric mantle in the southern margin.A comprehensive synthesis of the Neoproterozoic igneous rocks throughout the Tarim Block led to the recognition of two major episodes of Neoproterozoic igneous activities at ca.820-800 Ma and ca.780-740 Ma,respectively.These two episodes of igneous activities were concurrent with those in many other Rodinian continents and were most likely related to mantle plume activities during the break-up of the Rodinia.
文摘The Ordovician Laohushan ophiolite, located in the eastern part of the North Qilian Mountains, is mainly composed of meta-peridotites, gabbros and basalts alternating with sediments. The sediments are mainly turbidites, including sandstones, siltstones, cherts etc. Major elements show that the basalts are subalkaline tholeiites and may be analogous to ocean-floor basalts. Except a few N-MORBs, most of the basalts are E-MORBs as indicated by incompatible element ratios such as (La/Ce)N, La/Sm, Ce/Zr, Zr/Y and Zr/Nb. Negative Nb anomaly is common but negative Zr, Hf and Ti anomalies are quite rare. Based on the geochemical characteristics, it is suggested that the Laohushan basalts were formed in a back-arc basin. ENd (t) of the basalts ranges between +3.0 and +8.9 and (87Sr/86Sr), ranges between 0.7030 and 0.7060, indicating a depleted mantle source which was mixed with more or less enriched mantle components. Furthermore, the petrography of the sandstones and geochemistry of the cherts suggest that the sediments were deposited near a continental margin.
基金supported by a Youth Foundation from the former Ministry of GeologyMineral Resources and an 0utstanding Youth Foundation from the National Natural Science Foundation of China(grant 40425014).
文摘A suite of continental flood basalts sampled over a vast exposure and stratigraphic thickness in the Emeishan large igneous province (LIP), SW China was investigated for laser microprobe ^40Ar/^39Ar dating. There are two ^40Ar/^39Ar age groups for these basalts, corresponding to 259-246 Ma and 177-137 Ma, respectively. A well-defined isochron gives an eruption age of huge quantities of mafic magmas at 258.9±3.4 Ma, which is identical to previous dating and paleontological data. Much younger ^40Ar/^39Ar ages for some basalts with Iow-greenschist metamorphic facies probably recorded a late thermo-tectonic event caused by collision between the Yangtze and Qiangtang continental blocks during the Mesozoic, which resulted in the reset of argon isotope system. The ^40Ar/^39Ar age data, we present here, combined with previous dating and paleontological data, suggest relatively short duration (about 3 Ma) of mafic volcanism, which have important implication on mantle plume genesis of the Emeishan continental flood basalts in the LIP.
基金the Youth Foundation of the Ministry of Land and Resources and the National Natural Science Foundation of China(Grant 49973003).
文摘Geochronology of continental flood basalts sampled from the Emei large igneous province (LIP) on the western margin of the Yangtze platform was investigated by the laser microprobe 40Ar/39Ar dating technique. These basalts yield a fairly wide range of 40Ar/39Ar ages, varying from 259 to 135 Ma. One basalt sample, at least altered, recorded the oldest 40Ar/39Ar age of about 259 Ma, corresponding to a peak eruption age of the Emei LIP continental flood basalts. Most of the samples yield much younger ages from 135 to 177 Ma, which are consistent with the K-Ar ages for the same samples (122.8-172.1 Ma). The dating data suggest that these Permian basalts had been widely affected by the regional tectonothermal event at 177-135 Ma. The event was probably caused by the convergence and collision among the Laurasia, Yangtze and Qiangtang-Qamdo continental blocks on the eastern margin of the Qinghai-Tibet plateau after the late Triassic. The age of the event reflects the timing of the peak collisional orogeny.
基金the National Key Fundamental Research Project(No.G1999043205) the National National Science Foundation of China(Nos.40273020 , 40172026) Program of Excellent Young Scientists of the Ministry of Land and Resources.
文摘Electronic microprobe analyses for olivine, clinopyroxene and Cr-spinel in picrites, which we have discovered recently in the Emeishan continental flood basalt province (ECFBP), show that the olivine is rich in Mg, and that Cr-spinel is rich in Cr. Based on the olivine-melt equilibrium, the primary parental melt compositions are calculated. The high-Mg olivine-hosted picrite can be regarded as parental melt. Thus, the melting temperature and pressure are estimated: T=1600℃ and P=4.5 GPa. It suggests that the picrites are connected with the activity of mantle plumes. Their major element composition is comparable to many other CFBs by their high Fe8, (CaO/Al2O3)8 and low Na8, indicating a high pressure. All rocks display a similar chondrite-normalized REE patterns, i.e., enrichment of LREE, relative depletion of HFSE and absence of negative Nb and Ta but depletion in P and K. Some incompatible element ratios, such as La/Ta, La/ Sm, (La/Nb)PM, (Th/Ta)PM, are in a limited range, show that they were derived from the mantle plume, and there was no or little crustal contamination during magma ascent en route to the surface. They were generated by 7% partial melting of garnet peridotite. The axis of the plume might be located beneath Lijiang Town, Yunnan province.
基金the project "Surveys for Polymetallic Nodules" project funded by Ministry of Earth Sciences, (previously Department of Ocean Development), New DelhiPD acknowledges the Councilof Scientific and Industrial Research, New Delhi, for financial assistance in the form of a Research Fellowship
文摘The Central Indian Ocean Basin (CIOB) basalts are plagioclase-rich, while olivine and pyroxene are very few. The analyses of 41 samples reveal high FeOT (~10-18 wt%) and TiO 2 (~1.4-2.7 wt%) indicating a ferrobasaltic composition. The basalts have high incompatible elements (Zr 63-228 ppm; Nb ~1-5 ppm; Ba ~15-78 ppm; La ~3-16 ppm), a similar U/Pb (0.02-0.4) ratio as the normal midoceanic basalt (0.16±0.07) but the Ba/Nb (12.5-53) ratio is much larger than that of the normal midoceanic ridge basalt (~5.7) and Primitive Mantle (9.56). Interestingly almost all of the basalts have a significant negative Eu anomaly (Eu/Eu*=0.78-1.00) that may have been a result of the removal of feldspar and pyroxene during crystal fractionation. These compositional variations suggest that the basalts were derived through fractional crystallization together with low partial melting of a shallow seated magma.
基金Project (Nos. 50911130366 and 2011CB013504) supported by the National Natural Science Foundation of Chinathe Postdoctoral Advanced Research Programs Class Ⅱ of Zhejiang Province (No. BSH1302013), China
文摘To evaluate the columnar jointed basalts in the dam site of Baihetan hydropower station in southwest China, we developed a basic conceptual model of single jointed rock mass. Considering that the rock mass deformation consists of rock block deformation and joints deformation, the linear mechanical characteristics of the cell (including the elastic joints and the nonlinear mechanical behaviors of the cell) with a combined frictional-elastic interface were analyzed. We developed formulas to calculate the rock block deformation, which can be adapted for multiple jointed rock mass and columnar jointed basalts. The formulas are effective in calculating the equivalent modulus of multiple jointed rock mass, and precisely reveal the anisotropic properties of columnar jointed basalts. Furthermore, the in situ rigid bearing plate tests were analyzed and calculated, and the types of loading-unloading curves and the equivalent modulus along different directions of columnar jointed basalts were obtained. The analytical results are in close compliance with the test results.
基金supported by Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)(No.2022QNLM050201-3)the National Natural Science Foundations of China(Grants Nos.41230960,41322036,41776070)+1 种基金Aoshan Talents Program of Pilot National Laboratory for Marine Science and Technology(Qingdao)(QNLM2015ASTPES16)Taishan Scholarship from Shandong Province.
文摘Since the Early Cenozoic,the Philippine Sea Plate(PSP)has undergone a complex tectonic evolution.During this period the Parece Vela Basin(PVB)was formed by seafloor spreading in the back-arc region of the proto-Izu-Bonin-Mariana(IBM)arc.However,until now,studies of the geological,geophysical,and tectonic evolution of the PVB have been rare.In this study,we obtained in situ trace element and major element compositions of minerals in basalts collected from two sites in the southern part of the PVB.The results reveal that the basalts from site CJ09-63 were likely formed via~10%partial melting of spinel-garnet lherzolite,while the basalts from site CJ09-64 were likely formed via 15%–25%partial melting of garnet lherzolite.The order of mineral crystallization for the basalts from site CJ09-64 was olivine,spinel,clinopyroxene,and plagioclase,while the plagioclase in the basalts from site CJ09-63 crystallized earlier than the clinopyroxene.Using a plagioclase-liquid hygrometer and an olivine-liquid oxybarometer,we determined that the basalts in this study have high H2O contents and oxygen fugacities,suggesting that the magma source of the Parece Vela basalts was affected by subduction components,which is consistent with the trace element composition of whole rock.
文摘In this paper, a new discrimination diagram using absolute measures of Th and Nb is applied to postArchean ophiolites to best discriminate a large number of different ophiolitic basalts. This diagram was obtained using 〉2000 known ophiolitic basalts and was tested using -560 modern rocks from known tectonic settings. Ten different basaltic varieties from worldwide ophiolitic complexes have been examined. They include two basaltic types that have never been considered before, which are: (1) medium-Ti basalts (MTB) generated at nascent forearc settings; (2) a type of mid-ocean ridge basalts showing garnet signature (G-MORB) that characterizes Alpine-type (i,e., non volcanic) rifted margins and ocean-continent transition zones (OCTZ). In the Th-Nb diagram, basalts generated in oceanic subductionunrelated settings, rifted margins, and OCTZ can be distinguished from subduction-related basalts with a misclassification rate 〈 1%. This diagram highlights the chemical variation of oceanic, rifted margin, and OCTZ basalts from depleted compositions to progressively more enriched compositions reflecting, in turn, the variance of source composition and degree of melting within the MORB-OIB array. It also highlights the chemical contributions of enriched (OIB-type) components to mantle sources. Enrichment of Th relative to Nb is particularly effective for highlighting crustal input via subduction or crustal contamination. Basalts formed at continental margin arcs and island arc with a complex polygenetic crust can be distinguished from those generated in intra-oceanic arcs in supra-subducrion zones (SSZ) with a misclassification rate 〈1%. Within the SSZ group, two sub-settings can be recognized with a misclassification rate 〈0.5%. They are: (1) SSZ influenced by chemical contribution from subduction- derived components (forearc and intra-arc sub-settings) characterized by island arc tholeiitic (IAT) and boninitic basalts; (2) SSZ with no contribution from subduction-derived components (nascent forearc sub-settings) characterized by MTBs and depleted-MORBs. Two additional discrimination diagrams are proposed: (1) a Dy-Yb diagram is used for discriminating boninite and IAT basalts; (2) a Ce/Yb-Dy/Yb diagram is used for discriminating G-MORBs and normal MORBs. The proposed method may effectively assist in recovering the tectonic affinity of ancient ophiolites, which is fundamental for establishing the geodvnamic evolution of ancient oceanic and continental domains, as well as orogenic belts.
基金supported by the National Nature Science Foundation of China(No.41303027)Special Fund for Basic Scientific Research of Central Colleges Project(No.2014G1271058)
文摘Recently, we focused on the Darbut and Karamay ophiolitic m41anges in West Junggar of the Central Asian Orogenic Belt (CAOB, SengOr et al., 1993; Windley et al., 2007; Xiao and Santosh, 2014), and made much progress. This study was supported by the National Nature Science Foundation of China (No. 41303027) and Special Fund for Basic Scientific Research of Central Colleges Project (No. 2014G1271058). The achievements are illustrated as follows.
基金supported by the National Basic Research Program of China(No.2007CB411401)the Knowledge Innovation Program of the Chinese Academy of Sciences(No.KZCX2-YW-136)the National Natural Science Formation of China(No.40873028)
文摘The Binchuan area of Yunnan is located in the western part of the Emeishan large igneous province in the western margin of the Yangtze Block. In the present study, the Wuguiqing profile in thickness of about 1440 m is mainly composed of high-Ti basalts, with minor picrites in the lower part and andesites, trachytes, and rhyolites in the upper part. The picrites have relatively higher platinum- group element (PGE) contents (PGE=16.3-28.2 ppb), with high Cu/Zr and Pd/Zr ratios, and low S contents (5.03-16.9 ppm), indicating the parental magma is S-unsaturated and generated by high degree of partial melting of the Emeishan large igneous province (ELIP) mantle source. The slightly high Cu/Pd ratios (11 000-24 000) relative to that of the primitive mantle suggest that 0.007% sulfides have been retained in the mantle source. The PGE contents of the high-Ti basalts exhibit a wider range (~PGE=0.517-30.8 ppb). The samples in the middle and upper parts are depleted in PGE and have ~Nd (260 Ma) ratios ranging from -2.8 to -2.2, suggesting that crustal contamination of the parental magma during ascent triggered sulfur saturation and segregation of about 0.446%-0.554% sulfides, and the sulfide segregation process may also provide the ore-forming material for the magmatic Cu-Ni-PGE sulfide deposits close to the studied basalts. The samples in this area show Pt- Pd type primitive mantle-normalized PGE patterns, and the Pd/Ir ratios are higher than that of the primitive mantle (Pd/Ir=l), indicating that the obvious differentiation between Ir-group platinum- group elements (IPGE) and Pd-group platinum-group elements (PPGE) are mainly controlled by olivine or chromites fractionation during magma evolution. The Pd/Pt ratios of most samples are higher than the average ratio of mantle (Pd/Pt=0.55), showing that the differentiation happened between Pt and Pd. The differentiation in picrites may be relevant to Pt hosted in discrete refractory Pt-alloy phase in the mantle; whereas the differentiation in the high-Ti basalts is probably associated with the fractionation of Fe-Pt alloys, coprecipitating with Ir-Ru-Os alloys. Some high-Ti basalt samples exhibit negative Ru anomalies, possibly due to removal of laurite collected by the early crystallized chromites.