Aramid papers (AP), made of aramid fibers, demonstrate superiority in electrical insulation applications. Unfortunately, the strength and electrical insulating properties of AP remain suboptimal, primarily due to the ...Aramid papers (AP), made of aramid fibers, demonstrate superiority in electrical insulation applications. Unfortunately, the strength and electrical insulating properties of AP remain suboptimal, primarily due to the smooth surface and chemical inertness of aramid fibers. Herein, AP are modified via the nacre-mimetic structure composed of aramid nanofibers (ANF) and carbonylated basalt nanosheets (CBSNs). This is achieved by impregnating AP into an ANF-CBSNs (A-C) suspension containing a 3D ANF framework as the matrix and 2D CBSNs as fillers. The resultant biomimetic composite papers (AP/A-C composite papers) exhibit a layered “brick-and-mortar” structure, demonstrating superior mechanical and electrical insulating properties. Notably, the tensile strength and breakdown strength of AP/A-C5 composite papers reach 39.69 MPa and 22.04 kV mm^(−1), respectively, representing a 155 % and 85 % increase compared to those of the control AP. These impressive properties are accompanied with excellent volume resistivity, exceptional dielectric properties, impressive folding endurance, outstanding heat insulation, and remarkable flame retardance. The nacre-inspired strategy offers an effective approach for producing highly promising electrical insulating papers for advanced electrical equipment.展开更多
This study investigates the compressive and tensile properties of basalt fiber-reinforced concrete (BFRC) after ultra-low-temperature freeze-thaw cycles. Scanning electron microscope (SEM) analysis was conducted to ex...This study investigates the compressive and tensile properties of basalt fiber-reinforced concrete (BFRC) after ultra-low-temperature freeze-thaw cycles. Scanning electron microscope (SEM) analysis was conducted to examine the deterioration mechanisms caused by freeze-thaw cycles and sulfate erosion. The results show that compressive and tensile strengths increase with basalt fiber dosage. The optimal dosage is 0.2%. With longer exposure to sulfate erosion, both strengths decline significantly. Basalt fibers effectively bridge cracks, control expansion, enhance compactness, and improve concrete performance. Ultra-low-temperature freeze-thaw cycles and sulfate erosion cause rapid crack growth. Sulfate erosion produces crystallization products and expansive substances. These fill cracks, create pressure, and damage the internal structure. Freezing and expansion forces further enlarge voids and cracks. This provides space for expansive substances, worsening concrete deterioration and reducing its performance.展开更多
Sizing treatment is a suitable technique to modify the fiber-matrix interfaces without damage of inherent performance of fibers.In this work,sizing agents based on Janus particles(JPs)were utilized to enhance the inte...Sizing treatment is a suitable technique to modify the fiber-matrix interfaces without damage of inherent performance of fibers.In this work,sizing agents based on Janus particles(JPs)were utilized to enhance the interface of basalt fiber(BF)/poly(vinyl chloride)(PVC)composites.polystyrene/poly(butyl acrylate)(PS/PBA)@silica JPs were synthesized by seed emulsion polymerization and three different sizing agents were prepared for BF sizing treatment.JPs with organic soft sphere and inorganic hard hemisphere enhanced the interfaces through their amphiphilicity,chemical bonding and mechanical interlock.The mechanical properties of composite with JPs sizing treated BFs performed better when there was one JPs layer modified on the interface.According to the intermitting bonding and gradient modulus theory,JPs patterned interfaces are ideal transition layers between high modulus BF and low modulus PVC.展开更多
The role of mantle plume in the final stages of rifting of the East Gondwana crustal fragments remains equivocal with only limited evidence so far reported from the southern part of Peninsular India.Here,we report for...The role of mantle plume in the final stages of rifting of the East Gondwana crustal fragments remains equivocal with only limited evidence so far reported from the southern part of Peninsular India.Here,we report for the first time a suite of columnar basalts from the Mesoarchean Coorg Block in the Southern Granulite Terrain(SGT)of India and characterize these rocks through field,petrological,geo-chemical,and isotope geochronological studies.The basalts show porphyritic texture with phenocrysts of pyroxene and plagioclase embedded in fine groundmass.Geochemical data reveal tholeiitic flood basalt affinity with affinities of plume-related magmatism.The zircon U-Pb data of the rocks yield a weighted mean age of 137 Ma,thus corresponding to the Valanginian Age of the Early Cretaceous Period.We suggest the possible geochemical affinity of the studied rocks Kerguelen plume basalts which provide new insights into magmatism associated with the final stages of East Gondwana rifting.展开更多
With mineral-melt thermobarometers,reconstruction of P-T-depth history of magmas can be established for vol-canic rocks.The pillow lava of Hantangang River Basalt is suitable for the study as it bears narrow compositi...With mineral-melt thermobarometers,reconstruction of P-T-depth history of magmas can be established for vol-canic rocks.The pillow lava of Hantangang River Basalt is suitable for the study as it bears narrow compositional range resulting from little or no fractional crystallization or crustal assimilation and shows evidence of rapid magma ascent.The established thermodynamic model covers the pathway from the magma source depth to the eruption.The model shows that the pillow lava originated at the depths of~85-100 km by fluid ascent from a stagnant slab.This range corresponds to the depth that encompasses the uppermost asthenosphere to the lowermost lithosphere corresponding to the upper garnet to the lower spinel sta-bility fields of the mantle.Subsequently,the melt rose to~66-71 km depth where a primary magma reservoir was generated possibly due to existence of a possible local discontinuity within the upper mantle.The magma uprose rapidly from~61 to~20 km or even to a shallower depth with crystallization of dendritic clinopyroxene and titano-magnetite,due to dehydration of magma.Magma ascent slowed down near the surface possibly due to the volcanic channel split into two or more toward the vents.The model can be applied to other volcanic areas composed of less evolved rocks.展开更多
The Longshan orogenic belt is located in the southwestern margin of Ordos Basin at the junction zone between the Western Qinling and Northern Qilian orogenic belt.Voluminous Early Paleozoic magmatism in this area is o...The Longshan orogenic belt is located in the southwestern margin of Ordos Basin at the junction zone between the Western Qinling and Northern Qilian orogenic belt.Voluminous Early Paleozoic magmatism in this area is of key significance for determining the Early Paleozoic tectonic evolution and deep crust-mantle structure.Previous studies mainly focused on the Paleozoic granites;the coeval mafic rocks in this area are still poorly understood.A set of Late Silurian intraplate tholeiitic basalts has been discovered in Longshan area,providing key evidence for the mantle source and deep geodynamic background in this area.The Late Silurian Angou basalt has similar geochemical features as intraplate tholeiitic basalt,with high Na_(2)O/K_(2)O ratios(5.22-8.25),enriched in large ion lithophile elements and LREE.In combination with their relatively evolved Sr-Nd isotopic composition[^(87)Sr/^(86)Sr(i)=0.7128-0.7140;ε_(Nd)(t)=-5.55 to-3.40],it is suggested that it originated from decompression melting of metasomatized enriched mantle in extensional setting.These results indicate that the mantle source in the junction zone of the West Qinling-North Qilian orogenic belt evolved from depleted to enriched with the continuation of Proto-Tethys subduction from the Cambrian to the Silurian.These results are of great significance to understanding the genesis of contemporaneous granite and the crust-mantle interaction in the junction zone between the Western Qinling and Northern Qilian orogenic belt.展开更多
Mitigating climate change demands innovative solutions,and carbon sequestration technologies are at the forefront.Among these,basalt,a mafic volcanic rock packed with calcium,magnesium,and iron,emerges as a powerful c...Mitigating climate change demands innovative solutions,and carbon sequestration technologies are at the forefront.Among these,basalt,a mafic volcanic rock packed with calcium,magnesium,and iron,emerges as a powerful candidate for carbon dioxide(CO_(2))sequestration through mineral carbonation.This method transforms CO_(2)into stable carbonate minerals,ensuring a permanent and environmentally safe storage solution.While extensive research has explored into basalt’s potential under high hydration conditions,the untapped promise of low water content scenarios remains largely unexplored.Our ground-breaking study investigates the mineral carbonation of basalt powder under low water condi-tions using supercritical CO_(2)(sc-CO_(2)).Conducted at 50℃ and 15 MPa with a controlled moisture content of 30%,our experiment spans various time points(0,7,14,21,and 28 days).Utilising advanced X-ray diffraction(XRD)and scanning electron microscopy with energy-dispersive X-ray spectroscopy(SEM-EDS),we unveil the mineralogical and morphological transformations.The results are striking:even under low water conditions,basalt efficiently forms valuable carbonate minerals such as calcite,siderite,magnesite,and ankerite.The carbonation efficiency evolves over time,reflecting the dynamic transfor-mation of the basalt matrix.These findings offer pivotal insights into optimising CO_(2)sequestration in basalt under low hydration,marking a significant leap toward sustainable carbon capture and storage.展开更多
Basalt fibers/7075 aluminum matrix composites were studied to meet the demand of aluminum alloy drill pipes for material wear resistance.The composites with different basalt fiber additions were prepared by hot presse...Basalt fibers/7075 aluminum matrix composites were studied to meet the demand of aluminum alloy drill pipes for material wear resistance.The composites with different basalt fiber additions were prepared by hot pressed sintering and hot extrusion.The mechanical properties as well as friction and wear properties of the composites were studied by microstructure analysis,tensile experiments,friction and wear experiments.The results showed that basalt fibers were oriented and uniformly distributed and led to local grain refinement in the alloy matrix.The hardness and elongation of the composites were improved.The friction coefficient of the composites increased and then decreased,and the maximum wear depth and wear amount decreased,then increased,then decreased again with the growth of basalt fiber addition.Meanwhile,the inclusion of basalt fibers mitigated the uneven wear of the extruded 7075 aluminum alloy.The value of wear depth difference of 7075-0.2BF was the smallest,and that of 7075-2.0BF was close to it.The maximum wear depth and wear volume the 7075-0.2BF and 7075-2.0BF were also the smallest.The inhibition of uneven wear by basalt fibers enhanced of wear resistance for 7075 aluminum alloy,which has reference significance for improving the performance of aluminum alloy drill pipes.展开更多
Continental intraplate basalts form by partial melting of the mantle,and can provide important constraints on mantle heterogeneity.However,due to the thick overlying continental lithosphere,the origins of the geochemi...Continental intraplate basalts form by partial melting of the mantle,and can provide important constraints on mantle heterogeneity.However,due to the thick overlying continental lithosphere,the origins of the geochemical characteristics of continental intraplate basalts are controversial.In this study,we examined the geochemistry of Cenozoic basalts in southeast China.These basalts which are divided into four volcanic belts exhibit a DMM-EM2 mixing trend and spatial variations in Pb isotopes from inland(i.e.,thick lithosphere)to coastal(i.e.,thin lithosphere)regions.In contrast to the Pb isotopic variations,there are no spatial variations in Sr-Nd-Hf isotopes.Marked correlations between Pb isotopes and major elements(i.e.,Mg O and Si O_(2))suggest the continental lithospheric lid controlled their petrogenesis.Nonetheless,other factors are needed to explain the variations in Ti/Ti^(*)and Hf/Hf^(*)ratios,and Nd-Hf isotopes of the southeast China basalts.The increasing Pb isotope ratios from the inner to coastal regions are associated with decreases in CaO/Al_(2)O_(3) ratios and increases in FC3MS(FeO^(T)/CaO-3×Mg O/Si O_(2);in wt.%)values,indicating contributions from non-peridotite components in the mantle sources.The similarly depleted Nd-Hf isotopic compositions of the basalts from the three inner belts indicate these basalts have a similar origin,whereas the more enriched isotopic features of the basalts from the outer belt suggest their mantle source contains older recycled oceanic crust.Thus,source(i.e.,lithological)heterogeneity also had a significant role in controlling the geochemistry of these basalts.The DMM-EM2 mixing trend defined by the Pb isotopic compositions of continental intraplate basalts from southeast China was generated by variable degrees of melting of heterogeneous mantle that was controlled by the thickness of the continental lithospheric lid(i.e.,the melting pressure).This caused variable extents of melting of enriched components in the mantle sources of the basalts(i.e.,carbonated peridotite vs.pyroxenite).展开更多
Foamed concrete has been used to address the issue of differential settlement in high-speed railway subgrades in China.However,to enhance crack resistance,reinforcement is still necessary,and further research is requi...Foamed concrete has been used to address the issue of differential settlement in high-speed railway subgrades in China.However,to enhance crack resistance,reinforcement is still necessary,and further research is required to better understand the performance of foamed concrete in subgrade applications.To this end,a series of tests—including uniaxial compres-sive and dynamic triaxial tests—were conducted to comprehensively examine the effects of basalt fiber reinforcement on the mechanical properties of foamed concrete with densities of 700 and 1000 kg/m3.Additionally,a full-scale model of the foamed concrete subgrade was established,and simulated loading was applied.The diffusion patterns of dynamic stress and dynamic acceleration within the subgrade were explored,leading to the development of experimental formulas to calculate the attenuation coefficients of these two parameters along the depth and width of the subgrade.Furthermore,the dynamic displacement and cumulative settlement were analyzed to evaluate the stability of the subgrade.These findings provide valuable insights for the design and construction of foamed concrete subgrades in high-speed rail systems.The outcomes are currently under consideration for inclusion in the code of practice for high-speed rail restoration.展开更多
Although supercritical carbon dioxide(SC-CO_(2))fracturing shows tremendous potential for maximizing injection efficiency and enhancing storage volumes,few investigations have been reported on the SC-CO_(2) fracturing...Although supercritical carbon dioxide(SC-CO_(2))fracturing shows tremendous potential for maximizing injection efficiency and enhancing storage volumes,few investigations have been reported on the SC-CO_(2) fracturing characteristics of tight basalts and the reactions between fractured basalt and SC-CO_(2).In this study,hydraulic fracturing experiments were conducted on cylindrical basalt specimens using water and SC-CO_(2) as fracturing fluids.Geometric parameters were proposed to characterize the fracture morphologies based on the three-dimensional(3D)reconstructions of fracture networks.The rock slices with induced fractures after SC-CO_(2) fracturing were then processed for fluid(deionized water/SC-CO_(2))-basalt reaction tests.The experimental results demonstrate that SC-CO_(2) fracturing can induce complex and tortuous fractures with spatially dispersed morphologies.Other fracturing behaviors accompanying the acoustic emission(AE)signals and pump pressure changes show that the AE activity responds almost simultaneously to variation in the pump pressure.The fractured basalt blocks exposed to both SC-CO_(2) and water exhibit rough and uneven surfaces,along with decreased intensities in the element peaks,indicating that solubility trapping predominantly occurs during the early injection stage.The above findings provide a laboratory research basis for understanding the fracturing and sequestration issues related to effective CO_(2) utilization.展开更多
The size of basalt fragments in Chang’E-5(CE-5)regolith are small(<6 mm^(2)),resulting in large variation on the estimated bulk composition of CE-5 basalt.For example,the estimated TiO_(2) content of CE-5 basalt r...The size of basalt fragments in Chang’E-5(CE-5)regolith are small(<6 mm^(2)),resulting in large variation on the estimated bulk composition of CE-5 basalt.For example,the estimated TiO_(2) content of CE-5 basalt ranges from 3.7 wt% to 12.7 wt% and the Mg#(molar percentage of Mg/[Mg+Fe])also shows a wide range(26.2-42.4).Preliminary experimental studies have shown that these geochemical characteristics of CE-5 basalt are critical for investigating the crystallization sequence and formation mechanism of its parent magma.This study presents new experimental data on the distribution coefficient of titanium between pyroxene and lunar basaltic magma(D_(Ti)^(Px/melt)).Combining with available literature data,we confirm that D_(Ti)Px/melt is affected by crystallization conditions such as pressure and temperature,but it is mainly controlled by the CaO content of pyroxene.Comparing with previous experimental results under similar conditions,we parameterized the effect as D_(Ti)^(Px/Melt)=D_(Ti)^(Px/Melt)=-0.0005X_(Cao)^(2)+0.0218X_(CaO)+0.0425(R^(2)=0.82),where X_(CaO) is the CaO content in pyroxene in weight percentage.The new experimental results suggest that pyroxene with high TiO_(2) content(>2.5 wt%)in CE-5 basalt is not a product of equilibrium crystallization,and the CaO content in pyroxene is also affected by cooling rate of its parent magma.The TiO_(2) content in the CE-5 parent magma is estimated to be about 5 wt% based on the Mg# of pyroxene and its calculated CaO content,which is consistent with those estimated from olivine grains.展开更多
Global warming has greatly threatened the human living environment and carbon capture and storage(CCS)technology is recognized as a promising way to reduce carbon emissions.Mineral storage is considered a reliable opt...Global warming has greatly threatened the human living environment and carbon capture and storage(CCS)technology is recognized as a promising way to reduce carbon emissions.Mineral storage is considered a reliable option for long-term carbon storage.Basalt rich in alkaline earth elements facilitates rapid and permanent CO_(2) fixation as carbonates.However,the complex CO_(2)-fluid-basalt interaction poses challenges for assessing carbon storage potential.Under different reaction conditions,the carbonation products and carbonation rates vary.Carbon mineralization reactions also induce petrophysical and mechanical responses,which have potential risks for the long-term injectivity and the carbon storage safety in basalt reservoirs.In this paper,recent advances in carbon mineralization storage in basalt based on laboratory research are comprehensively reviewed.The assessment methods for carbon storage potential are introduced and the carbon trapping mechanisms are investigated with the identification of the controlling factors.Changes in pore structure,permeability and mechanical properties in both static reactions and reactive percolation experiments are also discussed.This study could provide insight into challenges as well as perspectives for future research.展开更多
The experimental results of the reactions between an alkaline basaltic melt and mantle orthopyroxenes under high-temperature and high-pressure conditions of 1300–1400℃ and 2.0–3.0 GPa using a six-anvil apparatus ar...The experimental results of the reactions between an alkaline basaltic melt and mantle orthopyroxenes under high-temperature and high-pressure conditions of 1300–1400℃ and 2.0–3.0 GPa using a six-anvil apparatus are reported in this paper.The reactions are proposed to simulate the interactions between melts from the asthenospheric mantle and the lithospheric mantle.The starting melt in the experiments was made from the alkaline basalt occurring in Fuxin,Liaoning Province,and the orthopyroxenes were separated from the mantle xenoliths in Damaping,Hebei Province.The results show that clinopyroxenes were formed in all the reactions between the alkaline basaltic melt and orthopyroxenes under the studied P–T conditions.The formation of clinopyroxene in the reaction zone is mainly controlled by dissolution–crystallization,and the chemical compositions of the reacted melt are primarily infl uenced by the diff usion eff ect.Temperature is the most important parameter controlling the reactions between the melt and orthopyroxenes,which has a direct impact on the melting of orthopyroxenes and the diff usion of chemical components in the melt.Temperature also directly controls the chemical compositions of the newly formed clinopyroxenes in the reaction zone and the reacted melt.The formation of clinopyroxenes from the reactions between the alkaline basaltic melt and orthopyroxenes can result in an increase of CaO and Al_(2)O_(3) contents in the rocks containing this mineral.Therefore,the reactions between the alkaline basaltic melt from the asthenospheric mantle and orthopyroxenes from the lithospheric mantle can lead to the evolution of lithospheric mantle in the North China Craton from refractory to fertile with relatively high CaO and Al 2 O 3 contents.In addition,the reacted melts in some runs were transformed from the starting alkaline basaltic into tholeiitic after reactions,indicating that tholeiitic magma could be generated from alkaline basaltic one via reactions between the latter and orthopyroxene.展开更多
The importance of this study is to identify the newly reordered and recognized basaltic intrusion for the first time in Maasser El Chouf in Lebanon. The recorded basaltic intrusion cut the Jurassic-Lower Cretaceous ro...The importance of this study is to identify the newly reordered and recognized basaltic intrusion for the first time in Maasser El Chouf in Lebanon. The recorded basaltic intrusion cut the Jurassic-Lower Cretaceous rock in this area. Necessary field inspection, geology, mineralogy and chemical tests were carried out on 8 basalt samples to determine their mineralogy, petrography and chemical composition. Representative samples have been tested with polarizing microscope, X-ray diffraction (XRD) and X-ray fluorescence (XRF). Petrographic and mineralogical studies show that the basalt is characterized by presence mainly of calcic-plagioclase feldspar, pyroxene-augite and olivine minerals. Secondary minerals of iron oxides also present (ilmenite and magnetite). The most appeared property is the alteration of olivine mineral to iddingsite that indicated highly weathered process. The composition of the basaltic samples reflects ultrabasic-basic type (Basanite-Tholeiitic basalt). The existence of volcanic activity occurred mostly with Pliocene age (< 2 Ma) as indicated by previous studies for similar basalt in Lebanon. Possibly, these boulders have been carried up from some deeper intrusive magmatic body under very active tension zones. Volcanism of Lebanon basalts belong to the alkaline olivine basalt, suite generally associated with tension, rifting and block faulting movements of the continental crust. Most of the volcanisms in Lebanon and in Harrat Ash Shaam Basalt from Syria and Palestine through Jordan to Saudi Arabia are related and connected to the opening of the Red Sea Rift System, making the area with tremendous volcanic tectonic activities.展开更多
To promote the production and application of artificial aggregates,save natural sand resources and protect the ecological environment,we evaluated the feasibility of using spherical porous functional aggregates(SPFAs)...To promote the production and application of artificial aggregates,save natural sand resources and protect the ecological environment,we evaluated the feasibility of using spherical porous functional aggregates(SPFAs) formed by basalt saw mud under autoclave curing in ordinary structural concrete.In our work,two types of prewetted functional aggregates were taken as replacements for natural aggregates with different volume substitution rates(0%,5%,10%,15%,20%,25%,and 30%) in the preparation of ordinary structural concrete with water-to-binder ratios(W/B) of 0.48 and 0.33.The effects of the functional aggregate properties and content,W/B,and curing age on the fluidity,density,mechanical properties and autogenous shrinkage of ordinary concrete were analyzed.The experimental results showed that the density of concrete declined at a rate of not more than 5%,and the 28 d compressive strength could reach 31.0-68.2 MPa.Low W/B,long curing age and high-quality functional aggregates were conducive to enhancing the mechanical properties of SPFAs concrete.Through the rolling effects,SPFAs can optimize the particle gradation of aggregate systems and improve the fluidity of concrete,and the water stored inside SPFAs provides an internal curing effect,which prolongs the cement hydration process and considerably reduces the autogenous shrinkage of concrete.SPFAs exhibits high strength and high density,as well as being more cost-effective and ecological,and is expected to be widely employed in ordinary structural concrete.展开更多
Basalt is a major component of the earth and moon crust.Mineral composition and temperature influence frictional instability and thus the potential for seismicity on basaltic faults.We performed velocitystepping shear...Basalt is a major component of the earth and moon crust.Mineral composition and temperature influence frictional instability and thus the potential for seismicity on basaltic faults.We performed velocitystepping shear experiments on basalt gouges at a confining pressure of 100 MPa,temperatures in the range of 100-400℃ and with varied obsidian mass fractions of 0-100%under wet/dry conditions to investigate the frictional strength and stability of basaltic faults.We observe a transition from velocity-neutral to velocity-weakening behaviors with increasing obsidian content.The frictional stability response of the mixed obsidian/basalt gouges is characterized by a transition from velocitystrengthening to velocity-weakening at 200℃ and another transition to velocity-strengthening at temperatures>300℃.Conversely,frictional strengths of the obsidian-bearing gouges are insensitive to temperature and wet/dry conditions.These results suggest that obsidian content dominates the potential seismic response of basaltic faults with the effect of temperature controlling the range of seismogenic depths.Thus,shallow moonquakes tend to occur in the lower lunar crust due to the corresponding anticipated higher glass content and a projected temperature range conducive to velocity-weakening behavior.These observations contribute to a better understanding of the nucleation mechanism of shallow seismicity in basaltic faults.展开更多
Fibre reinforced polymer composites have become a new generation of structural materials due to their unique advantages such as high specific strength,designability,good dimensional stability and ease of large-area mo...Fibre reinforced polymer composites have become a new generation of structural materials due to their unique advantages such as high specific strength,designability,good dimensional stability and ease of large-area monolithic forming.However,the problem of interfacial bonding between the resin matrix and the fibres limits the direct use of reinforcing fibres and has become a central difficulty in the development of basalt fibre-epoxy composites.This paper proposes a solution for enhancing the strength of the fibre-resin interface using maize starch nanocrystals,which are highly yield and eco-friendly.Firstly,in this paper,corn starch nanocrystals(SNC)were prepared by hydrolysis,and were deposited on the surface of basalt fibers by electrostatic adsorption.After that,in order to maximize the modification effect of nano-starch crystals on the interface,the basalt fiber-epoxy resin composite samples were prepared by mixing in a pressureless molding method.The test results shown that the addition of basalt fibers alone led to a reduction in the strength of the sample.Deposition of 0.1 wt%SNC on the surface of basalt fibers can make the strength consistent with pure epoxy resin.When the adsorption amount of SNC reached 0.5 wt%,the tensile strength of the samples was 23.7%higher than that of pure epoxy resin.This is due to the formation of ether bond homopolymers between the SNC at the fibre-epoxy interface and the epoxy resin,which distorts the originally smooth interface,leading to increased stress concentration and the development of cracks.This enhances the binding of basalt fibers.The conclusions of this paper can provide an effective,simple,low-cost and non-polluting method of interfacial enhancement modification.展开更多
The basalts within the greenstone belt worldwide serve as an ideal target to decipher the nature of Archean mantle sources and further to extend the understanding of the early stages of Earth's evolution.To provid...The basalts within the greenstone belt worldwide serve as an ideal target to decipher the nature of Archean mantle sources and further to extend the understanding of the early stages of Earth's evolution.To provide important insights into the issues,we carried out a detailed investigation of whole-rock geochemistry and Sm-Nd isotopes,and zircon U-Pb-Hf isotopes for the Late Neoarchean metamorphosed basalts in eastern Hebei,North China Craton.U-Pb isotopic dating using the LA-ICPMS on zircons reveals that the basalts in eastern Hebei erupted at ca.2.48-2.51 Ga and subsequently experienced multiple regional metamorphic events at 2477 and 1798 Ma,respectively.The metamorphosed basalts are featured by low SiO_(2),MgO,K_(2)O+Na_(2)O,and high Fe O contents,endowed with the subalkaline and high-Fe tholeiitic affinities.The radiogenic initial Nd and Hf isotope values and correlations among V,Ni and Cr contents strongly imply that the basalts experienced significant clinopyroxene and olivine fractionation and minor crustal contamination during magma evolution.They are also characterized by the relatively low total REE contents and exhibit significant depletions to moderate enrichments in the LREE contents,indicating the derivation from a deep mantle source in an Archean proto-mantle plume setting.展开更多
Mineral carbonation, which precipitates dissolved carbon dioxide(CO_(2)) as carbonate minerals in basaltic groundwater environments, is a potential technique for negative emissions. The Leizhou Peninsula in southwest ...Mineral carbonation, which precipitates dissolved carbon dioxide(CO_(2)) as carbonate minerals in basaltic groundwater environments, is a potential technique for negative emissions. The Leizhou Peninsula in southwest Guangdong province has extensive basalt, indicating a promising potential for CO_(2) storage through rapid mineralization. However, understanding of the basic geological setting, potential, and mechanisms of CO_(2) mineralization in the basalts of the Leizhou Peninsula is still limited. The mineralization processes associated with CO_(2)storage at two candidate sites in the area are investigated in this paper: Yongshi Farm and Tianyang Basin(of the dried maar lake). Petrography,rock geochemistry, basalt petrophysical properties, and groundwater hydrochemistry analyses are included in the study. Numerical simulation is used to examine the reaction process and its effects. The results show that basalts in the study areas mainly comprise plagioclase, pyroxene, and Fe–Ti oxides, revealing a total volume fraction exceeding 85%. Additionally, small amounts of quartz and fayalite are available, with volume fractions of 5.1% and 1.0%, respectively. The basalts are rich in divalent metal cations, which can form carbonate minerals, with an average of approximately 6.2 moles of metal cations per 1 kg of rock. The groundwater samples have a pH of 7.5–8.2 and are dominated by the Mg–Ca–HCO3 type. The basalts demonstrate a porosity range of 10.9% to 28.8%, with over 70% of interconnected pores. A 20-year geochemical simulation revealed that CO_(2) injection dissolves primary minerals, including anorthite, albite, and diopside, while CO_(2)mineralization dissolves precipitation secondary minerals, such as calcite, siderite, and dolomite. Furthermore, a substantial rise in pH from 7.6to 10.6 is observed in the vicinity of the injected well, accompanied by a slight reduction in porosity from 20% to 19.8%. Additionally, 36.8% of the injected CO_(2) underwent complete mineralization within five years, revealing an increasing percentage of 66.1% if the experimental period is extended to 20 years. The presence of abundant divalent metal cations in basalts and water-bearing permeable rocks in the Leizhou Peninsula supports the potential for mineral carbonation in basalts, as indicated by the geochemical simulation results. Additional research is necessary to identify the factors that influence the CO_(2) mineralization, storage, and sensitivity analysis of basalt in the Leizhou Peninsula.展开更多
基金supported by the National Natural Science Foundation of China(No.22278260)the Open Foundation of Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry(No.KFKT2021-14)Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology(No.KFKT2021-14).
文摘Aramid papers (AP), made of aramid fibers, demonstrate superiority in electrical insulation applications. Unfortunately, the strength and electrical insulating properties of AP remain suboptimal, primarily due to the smooth surface and chemical inertness of aramid fibers. Herein, AP are modified via the nacre-mimetic structure composed of aramid nanofibers (ANF) and carbonylated basalt nanosheets (CBSNs). This is achieved by impregnating AP into an ANF-CBSNs (A-C) suspension containing a 3D ANF framework as the matrix and 2D CBSNs as fillers. The resultant biomimetic composite papers (AP/A-C composite papers) exhibit a layered “brick-and-mortar” structure, demonstrating superior mechanical and electrical insulating properties. Notably, the tensile strength and breakdown strength of AP/A-C5 composite papers reach 39.69 MPa and 22.04 kV mm^(−1), respectively, representing a 155 % and 85 % increase compared to those of the control AP. These impressive properties are accompanied with excellent volume resistivity, exceptional dielectric properties, impressive folding endurance, outstanding heat insulation, and remarkable flame retardance. The nacre-inspired strategy offers an effective approach for producing highly promising electrical insulating papers for advanced electrical equipment.
文摘This study investigates the compressive and tensile properties of basalt fiber-reinforced concrete (BFRC) after ultra-low-temperature freeze-thaw cycles. Scanning electron microscope (SEM) analysis was conducted to examine the deterioration mechanisms caused by freeze-thaw cycles and sulfate erosion. The results show that compressive and tensile strengths increase with basalt fiber dosage. The optimal dosage is 0.2%. With longer exposure to sulfate erosion, both strengths decline significantly. Basalt fibers effectively bridge cracks, control expansion, enhance compactness, and improve concrete performance. Ultra-low-temperature freeze-thaw cycles and sulfate erosion cause rapid crack growth. Sulfate erosion produces crystallization products and expansive substances. These fill cracks, create pressure, and damage the internal structure. Freezing and expansion forces further enlarge voids and cracks. This provides space for expansive substances, worsening concrete deterioration and reducing its performance.
基金supported by the National Natural Science Foundation of China(Nos.U22A20252 and 52173076)the Beijing Natural Science Foundation(Nos.Z240030 and L248023)the Liaoning Province Key Research and Development Project(No.2024JH2/102400046)。
文摘Sizing treatment is a suitable technique to modify the fiber-matrix interfaces without damage of inherent performance of fibers.In this work,sizing agents based on Janus particles(JPs)were utilized to enhance the interface of basalt fiber(BF)/poly(vinyl chloride)(PVC)composites.polystyrene/poly(butyl acrylate)(PS/PBA)@silica JPs were synthesized by seed emulsion polymerization and three different sizing agents were prepared for BF sizing treatment.JPs with organic soft sphere and inorganic hard hemisphere enhanced the interfaces through their amphiphilicity,chemical bonding and mechanical interlock.The mechanical properties of composite with JPs sizing treated BFs performed better when there was one JPs layer modified on the interface.According to the intermitting bonding and gradient modulus theory,JPs patterned interfaces are ideal transition layers between high modulus BF and low modulus PVC.
基金supported by the“Startup Grant for the University Teachers”of the University of Kerala.
文摘The role of mantle plume in the final stages of rifting of the East Gondwana crustal fragments remains equivocal with only limited evidence so far reported from the southern part of Peninsular India.Here,we report for the first time a suite of columnar basalts from the Mesoarchean Coorg Block in the Southern Granulite Terrain(SGT)of India and characterize these rocks through field,petrological,geo-chemical,and isotope geochronological studies.The basalts show porphyritic texture with phenocrysts of pyroxene and plagioclase embedded in fine groundmass.Geochemical data reveal tholeiitic flood basalt affinity with affinities of plume-related magmatism.The zircon U-Pb data of the rocks yield a weighted mean age of 137 Ma,thus corresponding to the Valanginian Age of the Early Cretaceous Period.We suggest the possible geochemical affinity of the studied rocks Kerguelen plume basalts which provide new insights into magmatism associated with the final stages of East Gondwana rifting.
基金supported by the 2021 Research Project for UNESCO Hantangang River Global Geopark supported by Gyeonggi Provincial Office(Grant No.20210606641-00)Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.2019R1A6A1A03033167).
文摘With mineral-melt thermobarometers,reconstruction of P-T-depth history of magmas can be established for vol-canic rocks.The pillow lava of Hantangang River Basalt is suitable for the study as it bears narrow compositional range resulting from little or no fractional crystallization or crustal assimilation and shows evidence of rapid magma ascent.The established thermodynamic model covers the pathway from the magma source depth to the eruption.The model shows that the pillow lava originated at the depths of~85-100 km by fluid ascent from a stagnant slab.This range corresponds to the depth that encompasses the uppermost asthenosphere to the lowermost lithosphere corresponding to the upper garnet to the lower spinel sta-bility fields of the mantle.Subsequently,the melt rose to~66-71 km depth where a primary magma reservoir was generated possibly due to existence of a possible local discontinuity within the upper mantle.The magma uprose rapidly from~61 to~20 km or even to a shallower depth with crystallization of dendritic clinopyroxene and titano-magnetite,due to dehydration of magma.Magma ascent slowed down near the surface possibly due to the volcanic channel split into two or more toward the vents.The model can be applied to other volcanic areas composed of less evolved rocks.
基金supported by the National Natural Science Foundation of China(42172010,42372071,41102037)。
文摘The Longshan orogenic belt is located in the southwestern margin of Ordos Basin at the junction zone between the Western Qinling and Northern Qilian orogenic belt.Voluminous Early Paleozoic magmatism in this area is of key significance for determining the Early Paleozoic tectonic evolution and deep crust-mantle structure.Previous studies mainly focused on the Paleozoic granites;the coeval mafic rocks in this area are still poorly understood.A set of Late Silurian intraplate tholeiitic basalts has been discovered in Longshan area,providing key evidence for the mantle source and deep geodynamic background in this area.The Late Silurian Angou basalt has similar geochemical features as intraplate tholeiitic basalt,with high Na_(2)O/K_(2)O ratios(5.22-8.25),enriched in large ion lithophile elements and LREE.In combination with their relatively evolved Sr-Nd isotopic composition[^(87)Sr/^(86)Sr(i)=0.7128-0.7140;ε_(Nd)(t)=-5.55 to-3.40],it is suggested that it originated from decompression melting of metasomatized enriched mantle in extensional setting.These results indicate that the mantle source in the junction zone of the West Qinling-North Qilian orogenic belt evolved from depleted to enriched with the continuation of Proto-Tethys subduction from the Cambrian to the Silurian.These results are of great significance to understanding the genesis of contemporaneous granite and the crust-mantle interaction in the junction zone between the Western Qinling and Northern Qilian orogenic belt.
基金supported by the National Natural Science Foundation of China(Grant No.52374192)the Henan Province Funds for Distinguished Young Youths(Grant No.242300421013)the Innovative Scientific Research Team Project of Henan Polytechnic University(Grant No.T2024-1).
文摘Mitigating climate change demands innovative solutions,and carbon sequestration technologies are at the forefront.Among these,basalt,a mafic volcanic rock packed with calcium,magnesium,and iron,emerges as a powerful candidate for carbon dioxide(CO_(2))sequestration through mineral carbonation.This method transforms CO_(2)into stable carbonate minerals,ensuring a permanent and environmentally safe storage solution.While extensive research has explored into basalt’s potential under high hydration conditions,the untapped promise of low water content scenarios remains largely unexplored.Our ground-breaking study investigates the mineral carbonation of basalt powder under low water condi-tions using supercritical CO_(2)(sc-CO_(2)).Conducted at 50℃ and 15 MPa with a controlled moisture content of 30%,our experiment spans various time points(0,7,14,21,and 28 days).Utilising advanced X-ray diffraction(XRD)and scanning electron microscopy with energy-dispersive X-ray spectroscopy(SEM-EDS),we unveil the mineralogical and morphological transformations.The results are striking:even under low water conditions,basalt efficiently forms valuable carbonate minerals such as calcite,siderite,magnesite,and ankerite.The carbonation efficiency evolves over time,reflecting the dynamic transfor-mation of the basalt matrix.These findings offer pivotal insights into optimising CO_(2)sequestration in basalt under low hydration,marking a significant leap toward sustainable carbon capture and storage.
基金Project(2021YFC2900200)supported by the National Key Research and Development Project of ChinaProject(20230203114SF)supported by the Key Research and Development Project of Jilin Province,China。
文摘Basalt fibers/7075 aluminum matrix composites were studied to meet the demand of aluminum alloy drill pipes for material wear resistance.The composites with different basalt fiber additions were prepared by hot pressed sintering and hot extrusion.The mechanical properties as well as friction and wear properties of the composites were studied by microstructure analysis,tensile experiments,friction and wear experiments.The results showed that basalt fibers were oriented and uniformly distributed and led to local grain refinement in the alloy matrix.The hardness and elongation of the composites were improved.The friction coefficient of the composites increased and then decreased,and the maximum wear depth and wear amount decreased,then increased,then decreased again with the growth of basalt fiber addition.Meanwhile,the inclusion of basalt fibers mitigated the uneven wear of the extruded 7075 aluminum alloy.The value of wear depth difference of 7075-0.2BF was the smallest,and that of 7075-2.0BF was close to it.The maximum wear depth and wear volume the 7075-0.2BF and 7075-2.0BF were also the smallest.The inhibition of uneven wear by basalt fibers enhanced of wear resistance for 7075 aluminum alloy,which has reference significance for improving the performance of aluminum alloy drill pipes.
基金supported by the National Natural Science Foundation of China(No.41906051)the National Key R&D Program of China(No.2018YFE0202402)+1 种基金sponsored by the Fundamental Research Funds for the Central Universities(Tongji University)(No.22120210525)Shanghai Pilot Program for Basic Research。
文摘Continental intraplate basalts form by partial melting of the mantle,and can provide important constraints on mantle heterogeneity.However,due to the thick overlying continental lithosphere,the origins of the geochemical characteristics of continental intraplate basalts are controversial.In this study,we examined the geochemistry of Cenozoic basalts in southeast China.These basalts which are divided into four volcanic belts exhibit a DMM-EM2 mixing trend and spatial variations in Pb isotopes from inland(i.e.,thick lithosphere)to coastal(i.e.,thin lithosphere)regions.In contrast to the Pb isotopic variations,there are no spatial variations in Sr-Nd-Hf isotopes.Marked correlations between Pb isotopes and major elements(i.e.,Mg O and Si O_(2))suggest the continental lithospheric lid controlled their petrogenesis.Nonetheless,other factors are needed to explain the variations in Ti/Ti^(*)and Hf/Hf^(*)ratios,and Nd-Hf isotopes of the southeast China basalts.The increasing Pb isotope ratios from the inner to coastal regions are associated with decreases in CaO/Al_(2)O_(3) ratios and increases in FC3MS(FeO^(T)/CaO-3×Mg O/Si O_(2);in wt.%)values,indicating contributions from non-peridotite components in the mantle sources.The similarly depleted Nd-Hf isotopic compositions of the basalts from the three inner belts indicate these basalts have a similar origin,whereas the more enriched isotopic features of the basalts from the outer belt suggest their mantle source contains older recycled oceanic crust.Thus,source(i.e.,lithological)heterogeneity also had a significant role in controlling the geochemistry of these basalts.The DMM-EM2 mixing trend defined by the Pb isotopic compositions of continental intraplate basalts from southeast China was generated by variable degrees of melting of heterogeneous mantle that was controlled by the thickness of the continental lithospheric lid(i.e.,the melting pressure).This caused variable extents of melting of enriched components in the mantle sources of the basalts(i.e.,carbonated peridotite vs.pyroxenite).
基金support for this research from the Fundamental Research Funds for the National Natural Science Foundation of China (Grant Nos. 51978588, 52078434, and 52368065)the China Scholarship Council (Grant No. 202107000077)UKRI Engineering and Physical Science ResearchCouncil (EPSRC) for the financial sponsorship of Re4Rail project (Grant No. EP/Y015401/1)
文摘Foamed concrete has been used to address the issue of differential settlement in high-speed railway subgrades in China.However,to enhance crack resistance,reinforcement is still necessary,and further research is required to better understand the performance of foamed concrete in subgrade applications.To this end,a series of tests—including uniaxial compres-sive and dynamic triaxial tests—were conducted to comprehensively examine the effects of basalt fiber reinforcement on the mechanical properties of foamed concrete with densities of 700 and 1000 kg/m3.Additionally,a full-scale model of the foamed concrete subgrade was established,and simulated loading was applied.The diffusion patterns of dynamic stress and dynamic acceleration within the subgrade were explored,leading to the development of experimental formulas to calculate the attenuation coefficients of these two parameters along the depth and width of the subgrade.Furthermore,the dynamic displacement and cumulative settlement were analyzed to evaluate the stability of the subgrade.These findings provide valuable insights for the design and construction of foamed concrete subgrades in high-speed rail systems.The outcomes are currently under consideration for inclusion in the code of practice for high-speed rail restoration.
基金supported by the National Key Research and Development Project(Grant No.2023YFE0110900)the National Natural Science Foundation of China(Grant No.42320104003)the Shanghai Pujiang Programme(Grant No.23PJD105).
文摘Although supercritical carbon dioxide(SC-CO_(2))fracturing shows tremendous potential for maximizing injection efficiency and enhancing storage volumes,few investigations have been reported on the SC-CO_(2) fracturing characteristics of tight basalts and the reactions between fractured basalt and SC-CO_(2).In this study,hydraulic fracturing experiments were conducted on cylindrical basalt specimens using water and SC-CO_(2) as fracturing fluids.Geometric parameters were proposed to characterize the fracture morphologies based on the three-dimensional(3D)reconstructions of fracture networks.The rock slices with induced fractures after SC-CO_(2) fracturing were then processed for fluid(deionized water/SC-CO_(2))-basalt reaction tests.The experimental results demonstrate that SC-CO_(2) fracturing can induce complex and tortuous fractures with spatially dispersed morphologies.Other fracturing behaviors accompanying the acoustic emission(AE)signals and pump pressure changes show that the AE activity responds almost simultaneously to variation in the pump pressure.The fractured basalt blocks exposed to both SC-CO_(2) and water exhibit rough and uneven surfaces,along with decreased intensities in the element peaks,indicating that solubility trapping predominantly occurs during the early injection stage.The above findings provide a laboratory research basis for understanding the fracturing and sequestration issues related to effective CO_(2) utilization.
基金funded by National natural Science Foundation of China(41973058 and 42473052)the B-type Strategic Priority Research Program of Chinese Academy of Sciences(XDB41020305)National Key and Development Program of China(2024YFF0807500).
文摘The size of basalt fragments in Chang’E-5(CE-5)regolith are small(<6 mm^(2)),resulting in large variation on the estimated bulk composition of CE-5 basalt.For example,the estimated TiO_(2) content of CE-5 basalt ranges from 3.7 wt% to 12.7 wt% and the Mg#(molar percentage of Mg/[Mg+Fe])also shows a wide range(26.2-42.4).Preliminary experimental studies have shown that these geochemical characteristics of CE-5 basalt are critical for investigating the crystallization sequence and formation mechanism of its parent magma.This study presents new experimental data on the distribution coefficient of titanium between pyroxene and lunar basaltic magma(D_(Ti)^(Px/melt)).Combining with available literature data,we confirm that D_(Ti)Px/melt is affected by crystallization conditions such as pressure and temperature,but it is mainly controlled by the CaO content of pyroxene.Comparing with previous experimental results under similar conditions,we parameterized the effect as D_(Ti)^(Px/Melt)=D_(Ti)^(Px/Melt)=-0.0005X_(Cao)^(2)+0.0218X_(CaO)+0.0425(R^(2)=0.82),where X_(CaO) is the CaO content in pyroxene in weight percentage.The new experimental results suggest that pyroxene with high TiO_(2) content(>2.5 wt%)in CE-5 basalt is not a product of equilibrium crystallization,and the CaO content in pyroxene is also affected by cooling rate of its parent magma.The TiO_(2) content in the CE-5 parent magma is estimated to be about 5 wt% based on the Mg# of pyroxene and its calculated CaO content,which is consistent with those estimated from olivine grains.
基金funding support from the National Key R&D Program of China(Grant No.2022YFE0115800)the Creative Groups of Natural Science Foundation of Hubei Province(Grant No.2021CFA030)Shanxi Provincial Key Research and Development Project(Grant No.202102090301009).
文摘Global warming has greatly threatened the human living environment and carbon capture and storage(CCS)technology is recognized as a promising way to reduce carbon emissions.Mineral storage is considered a reliable option for long-term carbon storage.Basalt rich in alkaline earth elements facilitates rapid and permanent CO_(2) fixation as carbonates.However,the complex CO_(2)-fluid-basalt interaction poses challenges for assessing carbon storage potential.Under different reaction conditions,the carbonation products and carbonation rates vary.Carbon mineralization reactions also induce petrophysical and mechanical responses,which have potential risks for the long-term injectivity and the carbon storage safety in basalt reservoirs.In this paper,recent advances in carbon mineralization storage in basalt based on laboratory research are comprehensively reviewed.The assessment methods for carbon storage potential are introduced and the carbon trapping mechanisms are investigated with the identification of the controlling factors.Changes in pore structure,permeability and mechanical properties in both static reactions and reactive percolation experiments are also discussed.This study could provide insight into challenges as well as perspectives for future research.
基金supported by the National Natural Science Foundation of China(Nos.41472065 and 42073059).
文摘The experimental results of the reactions between an alkaline basaltic melt and mantle orthopyroxenes under high-temperature and high-pressure conditions of 1300–1400℃ and 2.0–3.0 GPa using a six-anvil apparatus are reported in this paper.The reactions are proposed to simulate the interactions between melts from the asthenospheric mantle and the lithospheric mantle.The starting melt in the experiments was made from the alkaline basalt occurring in Fuxin,Liaoning Province,and the orthopyroxenes were separated from the mantle xenoliths in Damaping,Hebei Province.The results show that clinopyroxenes were formed in all the reactions between the alkaline basaltic melt and orthopyroxenes under the studied P–T conditions.The formation of clinopyroxene in the reaction zone is mainly controlled by dissolution–crystallization,and the chemical compositions of the reacted melt are primarily infl uenced by the diff usion eff ect.Temperature is the most important parameter controlling the reactions between the melt and orthopyroxenes,which has a direct impact on the melting of orthopyroxenes and the diff usion of chemical components in the melt.Temperature also directly controls the chemical compositions of the newly formed clinopyroxenes in the reaction zone and the reacted melt.The formation of clinopyroxenes from the reactions between the alkaline basaltic melt and orthopyroxenes can result in an increase of CaO and Al_(2)O_(3) contents in the rocks containing this mineral.Therefore,the reactions between the alkaline basaltic melt from the asthenospheric mantle and orthopyroxenes from the lithospheric mantle can lead to the evolution of lithospheric mantle in the North China Craton from refractory to fertile with relatively high CaO and Al 2 O 3 contents.In addition,the reacted melts in some runs were transformed from the starting alkaline basaltic into tholeiitic after reactions,indicating that tholeiitic magma could be generated from alkaline basaltic one via reactions between the latter and orthopyroxene.
文摘The importance of this study is to identify the newly reordered and recognized basaltic intrusion for the first time in Maasser El Chouf in Lebanon. The recorded basaltic intrusion cut the Jurassic-Lower Cretaceous rock in this area. Necessary field inspection, geology, mineralogy and chemical tests were carried out on 8 basalt samples to determine their mineralogy, petrography and chemical composition. Representative samples have been tested with polarizing microscope, X-ray diffraction (XRD) and X-ray fluorescence (XRF). Petrographic and mineralogical studies show that the basalt is characterized by presence mainly of calcic-plagioclase feldspar, pyroxene-augite and olivine minerals. Secondary minerals of iron oxides also present (ilmenite and magnetite). The most appeared property is the alteration of olivine mineral to iddingsite that indicated highly weathered process. The composition of the basaltic samples reflects ultrabasic-basic type (Basanite-Tholeiitic basalt). The existence of volcanic activity occurred mostly with Pliocene age (< 2 Ma) as indicated by previous studies for similar basalt in Lebanon. Possibly, these boulders have been carried up from some deeper intrusive magmatic body under very active tension zones. Volcanism of Lebanon basalts belong to the alkaline olivine basalt, suite generally associated with tension, rifting and block faulting movements of the continental crust. Most of the volcanisms in Lebanon and in Harrat Ash Shaam Basalt from Syria and Palestine through Jordan to Saudi Arabia are related and connected to the opening of the Red Sea Rift System, making the area with tremendous volcanic tectonic activities.
基金Funded by the National Natural Science Foundation of China(No.52378213)the Technology Development Project(No.20201902977180010) of CABR Technology Co.,Ltd。
文摘To promote the production and application of artificial aggregates,save natural sand resources and protect the ecological environment,we evaluated the feasibility of using spherical porous functional aggregates(SPFAs) formed by basalt saw mud under autoclave curing in ordinary structural concrete.In our work,two types of prewetted functional aggregates were taken as replacements for natural aggregates with different volume substitution rates(0%,5%,10%,15%,20%,25%,and 30%) in the preparation of ordinary structural concrete with water-to-binder ratios(W/B) of 0.48 and 0.33.The effects of the functional aggregate properties and content,W/B,and curing age on the fluidity,density,mechanical properties and autogenous shrinkage of ordinary concrete were analyzed.The experimental results showed that the density of concrete declined at a rate of not more than 5%,and the 28 d compressive strength could reach 31.0-68.2 MPa.Low W/B,long curing age and high-quality functional aggregates were conducive to enhancing the mechanical properties of SPFAs concrete.Through the rolling effects,SPFAs can optimize the particle gradation of aggregate systems and improve the fluidity of concrete,and the water stored inside SPFAs provides an internal curing effect,which prolongs the cement hydration process and considerably reduces the autogenous shrinkage of concrete.SPFAs exhibits high strength and high density,as well as being more cost-effective and ecological,and is expected to be widely employed in ordinary structural concrete.
基金funded by the National Natural Science Foundation of China(Nos.42320104003 and 42107163)the Funda mental Research Funds for the Central Universities.Derek Elsworth acknowledges support from the G.Albert Shoemaker endowment.
文摘Basalt is a major component of the earth and moon crust.Mineral composition and temperature influence frictional instability and thus the potential for seismicity on basaltic faults.We performed velocitystepping shear experiments on basalt gouges at a confining pressure of 100 MPa,temperatures in the range of 100-400℃ and with varied obsidian mass fractions of 0-100%under wet/dry conditions to investigate the frictional strength and stability of basaltic faults.We observe a transition from velocity-neutral to velocity-weakening behaviors with increasing obsidian content.The frictional stability response of the mixed obsidian/basalt gouges is characterized by a transition from velocitystrengthening to velocity-weakening at 200℃ and another transition to velocity-strengthening at temperatures>300℃.Conversely,frictional strengths of the obsidian-bearing gouges are insensitive to temperature and wet/dry conditions.These results suggest that obsidian content dominates the potential seismic response of basaltic faults with the effect of temperature controlling the range of seismogenic depths.Thus,shallow moonquakes tend to occur in the lower lunar crust due to the corresponding anticipated higher glass content and a projected temperature range conducive to velocity-weakening behavior.These observations contribute to a better understanding of the nucleation mechanism of shallow seismicity in basaltic faults.
基金Supported by National Key Research and Development Project of China (Grant Nos.2018YFA0703300,52105300)National Natural Science Foundation of China (Grant No.52075215)+2 种基金Science and Technology Development Plan Project of Jilin Province of China (Grant No.20200201061JC)Science and Technology Research Project of Jilin Provincial Education Department of China (Grant No.JJKH20221021KJ)Changchun Municipal Key Research and Development Program of China (Grant No.21ZGN22)。
文摘Fibre reinforced polymer composites have become a new generation of structural materials due to their unique advantages such as high specific strength,designability,good dimensional stability and ease of large-area monolithic forming.However,the problem of interfacial bonding between the resin matrix and the fibres limits the direct use of reinforcing fibres and has become a central difficulty in the development of basalt fibre-epoxy composites.This paper proposes a solution for enhancing the strength of the fibre-resin interface using maize starch nanocrystals,which are highly yield and eco-friendly.Firstly,in this paper,corn starch nanocrystals(SNC)were prepared by hydrolysis,and were deposited on the surface of basalt fibers by electrostatic adsorption.After that,in order to maximize the modification effect of nano-starch crystals on the interface,the basalt fiber-epoxy resin composite samples were prepared by mixing in a pressureless molding method.The test results shown that the addition of basalt fibers alone led to a reduction in the strength of the sample.Deposition of 0.1 wt%SNC on the surface of basalt fibers can make the strength consistent with pure epoxy resin.When the adsorption amount of SNC reached 0.5 wt%,the tensile strength of the samples was 23.7%higher than that of pure epoxy resin.This is due to the formation of ether bond homopolymers between the SNC at the fibre-epoxy interface and the epoxy resin,which distorts the originally smooth interface,leading to increased stress concentration and the development of cracks.This enhances the binding of basalt fibers.The conclusions of this paper can provide an effective,simple,low-cost and non-polluting method of interfacial enhancement modification.
基金supported financially by the National Natural Science Foundation of China(Nos.42002238 and 41872057)。
文摘The basalts within the greenstone belt worldwide serve as an ideal target to decipher the nature of Archean mantle sources and further to extend the understanding of the early stages of Earth's evolution.To provide important insights into the issues,we carried out a detailed investigation of whole-rock geochemistry and Sm-Nd isotopes,and zircon U-Pb-Hf isotopes for the Late Neoarchean metamorphosed basalts in eastern Hebei,North China Craton.U-Pb isotopic dating using the LA-ICPMS on zircons reveals that the basalts in eastern Hebei erupted at ca.2.48-2.51 Ga and subsequently experienced multiple regional metamorphic events at 2477 and 1798 Ma,respectively.The metamorphosed basalts are featured by low SiO_(2),MgO,K_(2)O+Na_(2)O,and high Fe O contents,endowed with the subalkaline and high-Fe tholeiitic affinities.The radiogenic initial Nd and Hf isotope values and correlations among V,Ni and Cr contents strongly imply that the basalts experienced significant clinopyroxene and olivine fractionation and minor crustal contamination during magma evolution.They are also characterized by the relatively low total REE contents and exhibit significant depletions to moderate enrichments in the LREE contents,indicating the derivation from a deep mantle source in an Archean proto-mantle plume setting.
基金funded by the National Natural Science Foundation of China (U1901217)Guangdong Basic and Applied Basic Research Foundation (2021A1515011298)+1 种基金the National Key R&D Program of China (2021YFF0501202)Special Fund of South China Sea Institute of Oceanology of the Chinese Academy of Sciences (SCSIO2023QY06)。
文摘Mineral carbonation, which precipitates dissolved carbon dioxide(CO_(2)) as carbonate minerals in basaltic groundwater environments, is a potential technique for negative emissions. The Leizhou Peninsula in southwest Guangdong province has extensive basalt, indicating a promising potential for CO_(2) storage through rapid mineralization. However, understanding of the basic geological setting, potential, and mechanisms of CO_(2) mineralization in the basalts of the Leizhou Peninsula is still limited. The mineralization processes associated with CO_(2)storage at two candidate sites in the area are investigated in this paper: Yongshi Farm and Tianyang Basin(of the dried maar lake). Petrography,rock geochemistry, basalt petrophysical properties, and groundwater hydrochemistry analyses are included in the study. Numerical simulation is used to examine the reaction process and its effects. The results show that basalts in the study areas mainly comprise plagioclase, pyroxene, and Fe–Ti oxides, revealing a total volume fraction exceeding 85%. Additionally, small amounts of quartz and fayalite are available, with volume fractions of 5.1% and 1.0%, respectively. The basalts are rich in divalent metal cations, which can form carbonate minerals, with an average of approximately 6.2 moles of metal cations per 1 kg of rock. The groundwater samples have a pH of 7.5–8.2 and are dominated by the Mg–Ca–HCO3 type. The basalts demonstrate a porosity range of 10.9% to 28.8%, with over 70% of interconnected pores. A 20-year geochemical simulation revealed that CO_(2) injection dissolves primary minerals, including anorthite, albite, and diopside, while CO_(2)mineralization dissolves precipitation secondary minerals, such as calcite, siderite, and dolomite. Furthermore, a substantial rise in pH from 7.6to 10.6 is observed in the vicinity of the injected well, accompanied by a slight reduction in porosity from 20% to 19.8%. Additionally, 36.8% of the injected CO_(2) underwent complete mineralization within five years, revealing an increasing percentage of 66.1% if the experimental period is extended to 20 years. The presence of abundant divalent metal cations in basalts and water-bearing permeable rocks in the Leizhou Peninsula supports the potential for mineral carbonation in basalts, as indicated by the geochemical simulation results. Additional research is necessary to identify the factors that influence the CO_(2) mineralization, storage, and sensitivity analysis of basalt in the Leizhou Peninsula.