Taking the advantage of reduced scattering and low autofluorescence background, the NIR fluorescence probes, such as fluorescence proteins, organic molecules and nanoparticles, not only hold the promise of in vivo ima...Taking the advantage of reduced scattering and low autofluorescence background, the NIR fluorescence probes, such as fluorescence proteins, organic molecules and nanoparticles, not only hold the promise of in vivo imaging of biological processes in physiology and pathology with high signal-to-noise ratio, but also for clinical diagnosis. In this review, we provide an overview of the recent progress on NIR probes,focusing on fundamental mechanisms of NIR dyes and nanoparticles, and protein engineering strategies for NIR proteins.展开更多
基金financially supported by the National Key Research and Development Program of China (No. 2017YFA0700403)National Natural Science Foundation of China (Nos. 31670872, 21874145, 2018M633180, 21905296)+1 种基金Shenzhen Science and Technology Innovation Committee (Nos. KQJSCX20170331161420421, JCYJ20170818163925063, JCYJ20170818164040422, GJHS2017031 4160302802)Chinese Academy of Sciences (No. GJJSTD20180002)
文摘Taking the advantage of reduced scattering and low autofluorescence background, the NIR fluorescence probes, such as fluorescence proteins, organic molecules and nanoparticles, not only hold the promise of in vivo imaging of biological processes in physiology and pathology with high signal-to-noise ratio, but also for clinical diagnosis. In this review, we provide an overview of the recent progress on NIR probes,focusing on fundamental mechanisms of NIR dyes and nanoparticles, and protein engineering strategies for NIR proteins.