期刊文献+
共找到47,323篇文章
< 1 2 250 >
每页显示 20 50 100
Effect of Antibacterial Adhesive on Biological Corrosion Resistance of Mortar in Seawater Environment
1
作者 BAO Qi RONG Hui +6 位作者 LIU De’e WANG Qiang ZHANG Xin HAN Jinyong LIU Xiaomin LIU Zhihua HUANG Keqi 《Journal of Wuhan University of Technology(Materials Science)》 2026年第1期227-233,共7页
The effect of antibacterial adhesive on the biological corrosion resistance of mortar in seawater environment was studied by means of scanning electron microscope,thermogravimetric analysis,X-ray diffraction,Fourier t... The effect of antibacterial adhesive on the biological corrosion resistance of mortar in seawater environment was studied by means of scanning electron microscope,thermogravimetric analysis,X-ray diffraction,Fourier transform infrared spectroscopy,and ultra-depth microscope.The results show that the antibacterial adhesive can effectively inhibit the growth of sulfur-oxidizing bacteria in seawater,hinder their metabolism to produce biological sulfate,and reduce the formation of destructive product gypsum.The mineral composition and thermal analysis showed that the peak value of plaster diffraction peak and the mass loss of plaster dehydration in antibacterial adhesive group were significantly lower than those in blank group(without protective coating group).In addition,the electric flux of chloride ions(>400 C)in the blank group of mortar samples was higher than that in the antibacterial adhesive group(<200 C),indicating that the antibacterial adhesive can effectively reduce the permeability of chloride ions in mortar,and thus hinder the Cl-erosion in seawater. 展开更多
关键词 antibacterial adhesive MORTAR sulfur-oxidizing bacteria sea water macro performance microstructure
原文传递
Combined biochar and wheat-derived endophytic bacteria reduces cadmium uptake in wheat grains in a metal-polluted soil 被引量:1
2
作者 Zhihui Xiong Yaping Wang +2 位作者 Linyan He Qi Sheng Xiafang Sheng 《Journal of Environmental Sciences》 2025年第1期165-178,共14页
In this study,two wheat-derived cadmium(Cd)-immobilizing endophytic Pseudomonas paralactis M14 and Priestia megaterium R27 were evaluated for their effects on wheat tissue Cd uptake under hydroponic conditions.Then,th... In this study,two wheat-derived cadmium(Cd)-immobilizing endophytic Pseudomonas paralactis M14 and Priestia megaterium R27 were evaluated for their effects on wheat tissue Cd uptake under hydroponic conditions.Then,the impacts of the biochar(BC),M14+R27(MR),and BC+MR treatments on wheat Cd uptake and the mechanisms involved were investigated at the jointing,heading,and mature stages of wheat plants under field-plot conditions.A hydroponic experiment showed that the MR treatment significantly decreased the above-ground tissue Cd content compared with theM14 or R27 treatment.The BC+MRtreatment reduced the grain Cd content by 51.5%-67.7%and Cd translocation factor at the mature stage of wheat plants and increased the organic matter-bound Cd content by 31%-75%in the rhizosphere soils compared with the BC or MR treatment.Compared with the BC or MR treatment,the relative abundances of the biomarkers associated with Gemmatimonas,Altererythrobacter,Gammaproteobacteria,Xanthomonadaceae,Phenylobacterium,and Nocardioides in the BC+MR-treated rhizosphere microbiome decreased and negatively correlated with the organic matter-bound Cd contents.In the BC+MR-treated root interior microbiome,the relative abundance of the biomarker belonging to Exiguobacterium increased and negatively correlated with the Cd translocation factor,while the relative abundance of the biomarker belonging to Pseudonocardiaceae decreased and positively correlated with the Cd translocation factor.Our findings suggested that the BC+MR treatment reduced Cd availability and Cd transfer through affecting the abundances of these specific biomarkers in the rhizosphere soil and root interior microbiomes,leading to decreased wheat grain Cd uptake in the contaminated soil. 展开更多
关键词 Cd-immobilizing endophytic bacteria Cd-contaminated soil Biochar+endophytic bacteria Grain Cd uptake Specific biomarkers
原文传递
Rice-fish coculture without phosphorus addition improves phosphorus availability in paddy soil by regulating phosphorus fraction partitioning and alkaline phosphomonoesterase-encoding bacterial community 被引量:1
3
作者 Xing LIU Yuting CHEN +4 位作者 Hongjun ZHENG Daolin SUN Jiaen ZHANG Qi JIA Qi CHEN 《Pedosphere》 2025年第4期715-727,共13页
Rice-fish coculture(RFC)has aroused extensive concern for its contribution to food security and resource conservation,but whether it can improve soil phosphorus(P)availability and affect microbe-mediated P turnover re... Rice-fish coculture(RFC)has aroused extensive concern for its contribution to food security and resource conservation,but whether it can improve soil phosphorus(P)availability and affect microbe-mediated P turnover remains elusive.Herein,we conducted a microcosm experiment to assess the impacts of RFC combined with(50 mg P kg^(-1)as KH2PO4)and without inorganic P addition on P fractions,P availability,and phoD-harboring bacterial community composition.The results revealed that RFC without P addition significantly improved P availability and phosphatase activity in paddy soil,while soil available P(AP),pH,and microbial biomass P(MBP)contributed to regulating P fractions.Moreover,the phoD-harboring bacterial abundance was linked to phosphatase activity,AP,total carbon(TC),and total P(TP)contents,and the ratios of TC to total nitrogen(TN)and TN to TP.We also found that the keystone taxa of phoD-harboring bacteria contributed to phosphatase production as well as organic P mineralization,thereby improving P availability.Our findings suggest that RFC without P addition is beneficial for promoting the expression of phoD-harboring bacterial functions to improve the capacity of P mineralization.Overall,our study provides insights into the responses of phoD-harboring bacterial functions for P turnover to RFC combined with and without P addition,showing the potential utilization of P resources in agricultural soil and the contribution of phosphatase activity to P acquisition in agriculture ecosystem. 展开更多
关键词 bacterial community composition microbial biomass phosphorus phoD-harboring bacteria phosphatase activity phosphorus mineralization
原文传递
A preliminary study on the community structure of culturable planktonic and attached bacteria in the harbor of Qingdao,China
4
作者 Shide Ma Linlin Zhang +6 位作者 Yimeng Zhang Yu Tai Wen Han Jinfeng Yang Xin Shi Bochao Lu Jizhou Duan 《Acta Oceanologica Sinica》 2025年第8期122-132,共11页
Plate culture counting and strain isolation methods were utilized to assess the species richness and abundance of planktonic and attached bacteria on glass plates in the surface and bottom seawater of Qingdao Middle H... Plate culture counting and strain isolation methods were utilized to assess the species richness and abundance of planktonic and attached bacteria on glass plates in the surface and bottom seawater of Qingdao Middle Harbor over a year,with monthly and quarterly sampling.Both species richness and bacterial numbers exhibited seasonal variations.Specifically,the abundance of attached bacteria and bacterioplankton peaked in June and July,corresponding to higher water temperatures in summer and autumn,while lower abundances were noted in January and December during cooler periods.Throughout the year,the species richness of attached bacteria consistently exceeded that of planktonic bacteria in both shallow and deep waters.Pseudoalteromonas emerged as the most prevalent genus among both planktonic and attached bacteria in surface and bottom seawater samples.Furthermore,the magnitude of changes in species richness and abundance for attached bacteria(0.66×10^(5)-15.85×10^(5)CFU/cm^(2))was greater than that observed for planktonic bacteria(0.58×10^(8)-5.33×10^(8)CFU/L).We propose that the attached bacterial populations,situated in limited microenvironments within the larger seawater ecosystem,exhibit heightened sensitivity to environmental fluctuations,resulting in more rapid shifts in population dynamics and lower ecological stability.The theoretical implications and potential applications of these findings warrant further investigation. 展开更多
关键词 planktonic bacteria attached bacteria community structure ECOLOGY HARBOR
在线阅读 下载PDF
Diversity and plant growth-promoting properties of culturable bacteria associated with three halophytes in an arid land,Northwest China
5
作者 HUANG Yin ZHANG Xiaoye +6 位作者 MA Jinbiao JIAO Haocheng Murad MUHAMMAD Rashidin ABDUGHENI Vyacheslav SHURIGIN Dilfuza EGAMBERDIEVA LI Li 《Journal of Arid Land》 2025年第5期696-713,共18页
Salt-tolerant bacteria associated with halophytes enhance plant resistance and adaptation to environmental stress.The purpose of this study was to investigate the diversity and plant-beneficial traits of bacteria asso... Salt-tolerant bacteria associated with halophytes enhance plant resistance and adaptation to environmental stress.The purpose of this study was to investigate the diversity and plant-beneficial traits of bacteria associated with three halophytes in an arid land,Northwest China.The bacterial strains were isolated from the roots,shoots,rhizosphere,and bulk soil of three halophytes,i.e.,Salicornia europaea L.,Kalidium foliatum(Pall.)Moq.,and Suaeda aralocaspica(Bunge)Freitag&Schütze,collected from the saline soils near to the Wujiaqu City,Xinjiang,Northwest China.A total of 567 strains were isolated and identified from these three halophytes belonging to 4 phyla,6 classes,25 orders,36 families,and 66 genera,including 147 potential novel species.A total of 213 strains exhibited one or more plant growthpromoting properties,while 20 strains demonstrated multiple in vitro plant growth-promoting activities,including phosphate solubilization,nitrogen fixation,siderophore production,and production of hydrolytic enzymes such as protease and cellulase.Our findings showed that halophytes in the arid land harbor diverse bacteria with the potential to enhance plant growth and adaptability under challenging environmental conditions. 展开更多
关键词 HALOPHYTES endophytic bacteria rhizosphere bacteria DIVERSITY functional strains
在线阅读 下载PDF
HClO-responsive dinuclear Ru(Ⅱ)complexes for selective imaging and efficient photo-inactivation of intracellular bacteria
6
作者 Wanpeng Zhou Xuwen Da +8 位作者 Yunli Xu Yatong Peng Xiulian Liu Yao Wu Yu Shi Aifeng Wu Yishan Yao Xuesong Wang Qianxiong Zhou 《Chinese Chemical Letters》 2025年第6期368-373,共6页
Intracellular bacteria(ICB),cloaked by the protective barriers of host cells,pose a formidable challenge to selective and efficient eradication.The employment of activatable photosensitizers based antibacterial photod... Intracellular bacteria(ICB),cloaked by the protective barriers of host cells,pose a formidable challenge to selective and efficient eradication.The employment of activatable photosensitizers based antibacterial photodynamic therapy(a PDT)holds significant potential for selective imaging and photo-inactivation of ICB while minimizing side effects on normal cells.Drawing inspiration from the elevated hypochlorous acid(HClO)levels in ICB infected phagocytes,herein we firstly designed and synthesized a series of HCl Oresponsive dinuclear Ru(Ⅱ)complexes(Ru1-Ru3)to achieve such a goal.Initially,the luminescence,^(1)O_(2)generation and a PDT activity of these Ru(Ⅱ)complexes were suppressed due to the quenching effect of the azo group,but were recovered after reaction with HCl O in solutions or within ICB infected phagocytes.The detailed results revealed that Ru1 and Ru3 could not only selectively visualize ICB,but also demonstrated remarkable a PDT activity against ICB,surpassing vancomycin both in vitro and in vivo. 展开更多
关键词 Intracellular bacteria HClO-responsive Ru(Ⅱ)complexes Antibacterial photodynamic therapy Selective imaging and photo-inactivation
原文传递
Application of inhibitors targeting the typeⅢsecretion system in phytopathogenic bacteria
7
作者 Lu-Lu He Lan-Tu Xiong +5 位作者 Xin Wang Yu-Zhen Li Jia-Bao Li Yu Shi Xin Deng Zi-Ning Cui 《Chinese Chemical Letters》 2025年第4期65-73,共9页
Plant bacterial diseases have infiicted substantial economic losses in global crop,fruit,and vegetable production.The conventional methods for managing these diseases typically rely on the application of antibiotics.H... Plant bacterial diseases have infiicted substantial economic losses in global crop,fruit,and vegetable production.The conventional methods for managing these diseases typically rely on the application of antibiotics.However,these antibiotics often target the growth factors of the pathogenic bacteria,leading to the accumulation and emergence of drug-resistant strains,which exacerbates antibiotic resistance.Innovative methods are urgently needed to treat and prevent the toxicity caused by these pathogenic bacteria.Targeting virulence mechanisms in pathogens is a globally recognized and effective strategy for mitigating bacterial resistance.TypeⅢsecretion system(T3SS)serves as a crucial virulence determinant in Gram-negative pathogens,and its non-essentials for pathogen growth renders it an ideal target.Targeting the T3SS holds significant potential to alleviate selective pressure for resistance mutations in pathogens.Therefore,targeting T3SS in pathogenic bacteria,while preserving their growth,has emerged as a novel avenue for the development of antimicrobial drugs.In recent years,a multitude of small molecular inhibitors targeting T3SS have been identified.This article offers a comprehensive review of T3SS inhibitors in plant pathogens,while also presenting the latest research advancements in this research direction. 展开更多
关键词 Phytopathogenic bacteria bacterial disease control Virulence factor TypeⅢsecretion system(T3SS) INHIBITORS Agricultural application
原文传递
Bacteria and host: what does this mean for sepsis bottleneck? 被引量:2
8
作者 Azzah S Alharbi Raghad Hassan Sanyi Esam I Azhar 《World Journal of Emergency Medicine》 2025年第1期10-17,共8页
BACKGROUND: Sepsis is a life-threatening inflammatory condition in which the invading pathogen avoids the host's defense mechanisms and continuously stimulates and damages host cells. Consequently, many immune res... BACKGROUND: Sepsis is a life-threatening inflammatory condition in which the invading pathogen avoids the host's defense mechanisms and continuously stimulates and damages host cells. Consequently, many immune responses initially triggered for protection become harmful because of the failure to restore homeostasis, resulting in ongoing hyperinflammation and immunosuppression. METHODS: A literature review was conducted to address bacterial sepsis, describe advances in understanding complex immunological reactions, critically assess diagnostic approaches, and emphasize the importance of studying bacterial bottlenecks in the detection and treatment of sepsis.RESULTS: Diagnosing sepsis via a single laboratory test is not feasible;therefore, multiple key biomarkers are typically monitored, with a focus on trends rather than absolute values. The immediate interpretation of sepsis-associated clinical signs and symptoms, along with the use of specific and sensitive laboratory tests, is crucial for the survival of patients in the early stages. However, long-term mortality associated with sepsis is now recognized, and alongside the progression of this condition, there is an in vivo selection of adapted pathogens.CONCLUSION: Bacterial sepsis remains a significant cause of mortality across all ages and societies. While substantial progress has been made in understanding the immunological mechanisms underlying the inflammatory response, there is growing recognition that the ongoing host-pathogen interactions, including the emergence of adapted virulent strains, shape both the acute and long-term outcomes in sepsis. This underscores the urgent need for novel high-throughput diagnostic methods and a shift toward more pre-emptive, rather than reactive, treatment strategies in sepsis care. 展开更多
关键词 SEPSIS bacteria BOTTLENECK INFLAMMATION
暂未订购
Influence of phytoplankton,bacteria and viruses on nutrient supply in tropical waters 被引量:1
9
作者 Zhi Yang Sim Kwan Chien Goh +3 位作者 Nur Hanisah binte Sukarji Feijian Mao Yiliang He Karina Yew-Hoong Gin 《Journal of Environmental Sciences》 2025年第5期174-186,共13页
Diel investigations of water environments are one means to holistically understand the dynamics and functional roles of phytoplankton,bacteria and viruses in these ecosystems.They have the potential to substantially i... Diel investigations of water environments are one means to holistically understand the dynamics and functional roles of phytoplankton,bacteria and viruses in these ecosystems.They have the potential to substantially impact carbon(C),nitrogen(N)and phosphorus(P)biogeochemistry through their respective roles.This study characterizes the phytoplankton,bacteria and virus communities and the elemental composition of various C,N and P nutrients flow over three diel cycles in tropical urban lake.Our results show that ratios of C:N:P fluctuated strongly from the lack of dissolved organic phosphorus(DOP)and PO_(4).Specifically,green algae peaked during day time and exudate dissolved organic matter(DOM)that strongly modulate dissolved organic carbon(DOC):DOP ratio to diel DOP limitation.Multiple linear regression and Stella modelling emphasize the roles of viruses together with Synechococcus as important nutrient recyclers of NH_(4)and PO_(4)in nutrients-limited waters.Respective normalised surface PO_(4)and combined surface and bottom NH_(4)concentration selected both viruses and Synechococcus as important drivers.Process model of N and P biogeochemical cycles can achieve 69%and 57%similar to observed concentration of NH_(4)and PO_(4),respectively.A short latent period of 9 hr was calculated,in addition to the calibrated high infectivity of viruses to Synechococcus.Taken together,the rapid turn-over between Synechococcus and viruses has biogeochemical significance,where the rapid recycling of essential nutrients allows for shortcuts in the N and P cycle,supporting a wide range of microbes. 展开更多
关键词 DIEL PHYTOPLANKTON bacteria Virus NUTRIENTS Element ratios
原文传递
Endophytic bacteria in different tissue compartments of African wild rice(Oryza longistaminata)promote perennial rice growth 被引量:1
10
作者 Rui Tang Qinglin Tian +7 位作者 Shuang Liu Yurui Gong Qingmao Li Rui Chen Linglin Wang Fengyi Hu Liyu Huang Shiwen Qin 《Journal of Integrative Agriculture》 2025年第3期1001-1016,共16页
Oryza longistaminata is an African wild rice species with valuable agronomic traits and the donor parent of perennial rice.Endophytic bacteria play an important role in host health,adaptive evolution and stress tolera... Oryza longistaminata is an African wild rice species with valuable agronomic traits and the donor parent of perennial rice.Endophytic bacteria play an important role in host health,adaptive evolution and stress tolerance.However,endophytic bacterial communities in O.longistaminata and their plant growth-promoting(PGP)effects on the perennial rice of O.longistaminata offspring are poorly understood.In this study,the endophytic bacterial diversity,composition and network structures in the root,stem,and leaf tissues of O.longistaminata were characterized using Illumina sequencing of the 16S rRNA gene.The results suggested that O.longistaminata contains a multitude of niches for different endophytic bacteria,among which the root endosphere is more complex and functionally diverse than the stem and leaf endospheres.Tissue-specific biomarkers were identified,including Paludibaculum,Pseudactinotalea and Roseimarinus and others,for roots,Blautia for stems and Lachnospiraceae NK4A136 for leaves.The endophytic bacterial network of O.longistaminata was reassembled for various functions,including degradation/utilization/assimilation,detoxification,generation of precursor metabolites and energy,glycan pathways,macromolecule modification and metabolism.A total of 163 endophytic bacterial strains with PGP traits of potassium release,phosphate solubilization,nitrogen fixation,siderophore activity,indole-3-acetic acid(IAA)production,and 1-aminocyclopropane-1-carboxylate(ACC)deaminase activity were isolated from O.longistaminata.Eleven strains identified as Enterobacter cloacae,Enterobacter ludwigii,Stenotrophomonas maltophilia,Serratia fonticola,and Bacillus velezensis showed stable colonization abilities and PGP effects on perennial rice seedlings.Inoculated plants generally exhibited an enhanced root system and greater photosynthesis,biomass accumulation and nutrient uptake.Interestingly,two strains of E.cloacae have host genotype-dependent effects on perennial rice growth.The results of this study provide insights into the endophytic bacterial ecosystems of O.longistaminata,which can potentially be used as biofertilizers for sustainable perennial rice productivity. 展开更多
关键词 Oryza longistaminata endophytic bacteria plant growth-promotion perennial rice BIOFERTILIZER
在线阅读 下载PDF
Rapid enrichment and SERS differentiation of various bacteria in skin interstitial fluid by 4-MPBA-AuNPs-functionalized hydrogel microneedles 被引量:1
11
作者 Ying Yang Xingyu Wang +8 位作者 Yexin Hu Zhongyao Liu Xiao Ma Feng Feng Feng Zheng Xinlin Guo Wenyuan Liu Wenting Liao Lingfei Han 《Journal of Pharmaceutical Analysis》 2025年第3期564-576,共13页
Bacterial infection is a major threat to global public health,and can cause serious diseases such as bacterial skin infection and foodborne diseases.It is essential to develop a new method to rapidly diagnose clinical... Bacterial infection is a major threat to global public health,and can cause serious diseases such as bacterial skin infection and foodborne diseases.It is essential to develop a new method to rapidly diagnose clinical multiple bacterial infections and monitor food microbial contamination in production sites in real-time.In this work,we developed a 4-mercaptophenylboronic acid gold nanoparticles(4-MPBA-AuNPs)-functionalized hydrogel microneedle(MPBA-H-MN)for bacteria detection in skin interstitial fluid.MPBA-H-MN could conveniently capture and enrich a variety of bacteria within 5 min.Surface enhanced Raman spectroscopy(SERS)detection was then performed and combined with machine learning technology to distinguish and identify a variety of bacteria.Overall,the capture efficiency of this method exceeded 50%.In the concentration range of 1×10_(7) to 1×10^(10) colony-forming units/mL(CFU/mL),the corresponding SERS intensity showed a certain linear relationship with the bacterial concentration.Using random forest(RF)-based machine learning,bacteria were effectively distinguished with an accuracy of 97.87%.In addition,the harmless disposal of used MNs by photothermal ablation was convenient,environmentally friendly,and inexpensive.This technique provided a potential method for rapid and real-time diagnosis of multiple clinical bacterial infections and for monitoring microbial contamination of food in production sites. 展开更多
关键词 Hydrogel microneedle SERS Broad-spectrum bacteria detection Skin interstitial fluid Machine learning
在线阅读 下载PDF
Interactive effects of bacteria-loaded biochar on the physiological responses of Brassica rapa var.chinensis in the Pb and Zn contaminated soil 被引量:1
12
作者 LI Xue ZHU Xiao-li +3 位作者 ZHU Feng LI Xing ZHANG Zi-ye XUE Sheng-guo 《Journal of Central South University》 2025年第1期149-159,共11页
Lead(Pb)and zinc(Zn)are widely recognized as common environmental contaminants,contributing to soil degradation and posing risks to environmental health.Combining functional carbon-based materials with microorganisms ... Lead(Pb)and zinc(Zn)are widely recognized as common environmental contaminants,contributing to soil degradation and posing risks to environmental health.Combining functional carbon-based materials with microorganisms has been considered as an effective and environmentally friendly strategy for remediating Pb/Zn-contaminated soil.However,there is still a lack of understanding the connection between heavy metal immobilization and plant responses,which hampers practical applications.Here,a 90-day pot experiment was conducted to investigate the integrated effects of biochar(WS700)and microorganisms including inorganic phosphate-solubilizing bacteria(IPSB)and sulfate reducing bacteria(SRB)on Pb and Zn synchronous immobilization and the physiological responses of Brassica rapa var.chinensis(Brassica).Compared with CK,bacteria-loaded biochar treatment declined the exchangeable Pb and Zn fraction by 94.69%−98.37%and 94.55%−99.52%,while increasing the residual state Pb and Zn by 75.50%−208.58%and 96.71%−110.85%,respectively.Three amendments enhanced Brassica growth by improving total chlorophyll content and superoxide dismutase(SOD)and peroxidase(POD)activities.The bacteria-loaded biochar treatment effectively regulated stomatal conductance and reduced intercellular CO_(2) concentration.Moreover,compared with CK,three amendments reduced MDA content by 28.84%,28.30%and 41.60%,respectively,under the high concentration of Pb and Zn.The findings demonstrated the significant role of bacterial-biochar consortia in immobilizing Pb and Zn and mitigating Pb and Zn-induced stress in plants by regulating photosynthetic characteristics and antioxidant enzyme activities. 展开更多
关键词 BIOCHAR immobilized bacteria consortia photosynthetic properties Pb and Zn immobilization antioxidant enzymes
在线阅读 下载PDF
The photo-based treatment technology simultaneously removes resistant bacteria and resistant genes from wastewater 被引量:1
13
作者 Zicong Guo Xiang Tang +8 位作者 Wenjun Wang Zhangxiong Luo Yuxi Zeng Nan Zhou Zhigang Yu Dongbo Wang Biao Song Chengyun Zhou Weiping Xiong 《Journal of Environmental Sciences》 2025年第2期243-262,共20页
Because of the recent widespread usage of antibiotics,the acquisition and dissemination of antibiotic-resistance genes(ARGs)were prevalent in the majority of habitats.Generally,the biological wastewater treatment proc... Because of the recent widespread usage of antibiotics,the acquisition and dissemination of antibiotic-resistance genes(ARGs)were prevalent in the majority of habitats.Generally,the biological wastewater treatment processes used in wastewater treatment plants have a limited efficiencies of antibiotics resistant bacteria(ARB)disinfection and ARGs degradation and even promote the proliferation of ARGs.Problematically,ARB and ARGs in effluent pose potential risks if they are not further treated.Photocatalytic oxidation is considered a promising disinfection technology,where the photocatalytic process generates many free radicals that enhance the interaction between light and deoxyribonucleic acid(DNA)for ARB elimination and subsequent degradation of ARGs.This reviewaims to illustrate the progress of photocatalytic oxidation technology for removing antibiotics resistant(AR)from wastewater in recent years.We discuss the sources and transfer of ARGs in wastewater.The overall removal efficiencies of ultraviolet radiation(UV)/chlorination,UV/ozone,UV/H_(2)O_(2),and UV/sulfate-radical based system for ARB and ARGs,as well as the experimental parameters and removal mechanisms,are systematically discussed.The contribution of photocatalytic materials based on TiO_(2) and g-C_(3)N_(4) to the inactivation of ARB and degradation of ARGs is highlighted,producingmany free radicals to attack ARB and ARGs while effectively limiting the horizontal gene transfer(HGT)in wastewater.Finally,based on the reviewed studies,future research directions are proposed to realize specific photocatalytic oxidation technology applications and overcome current challenges. 展开更多
关键词 Antibiotics resistant genes Antibiotics resistant bacteria Photocatalytic oxidation
原文传递
Virus-inspired nanoparticles as versatile antibacterial carriers for antibiotic delivery against Gram-negative and Gram-positive bacteria
14
作者 Kefurong Deng Yachao Li +3 位作者 Xiaoyu Liang Cheng Shen Zenan Zeng Xianghui Xu 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第3期1619-1622,共4页
Infectious diseases become one of the leading causes of human death.Traditional treatment based on classical antibiotics could not provide enough antibacterial activity to combat bacterial infections due to low bioava... Infectious diseases become one of the leading causes of human death.Traditional treatment based on classical antibiotics could not provide enough antibacterial activity to combat bacterial infections due to low bioavailability,even leading to antibiotic resistance.In recent years,biomimetic delivery systems have been developed to improve drug therapy for various diseases,such as malignant tumor and cardiovascular disease.In this work,we designed virus-inspired nanodrugs(VNDs)through co-assembly of amphiphilic lipopeptide dendrons and poly(lactic-co-glycolic acid)polymers for high-efficiency antibiotic delivery.These VNDs had well-defined and stable nanostructures for tetracycline encapsulation and delivery.The VNDs were capable of promoting antibiotic internalization and enhancing their antibacterial effects against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus.Additionally,no obvious cytotoxicity of VNDs was observed to human cell lines.This work successfully demonstrated the virus-mimetic nanoparticles served as promising and applicable antibiotic delivery platform for antibacterial treatment. 展开更多
关键词 Virus-inspired nanoparticles bacterial intracellular drug delivery Antibacterial treatment Gram-positive bacteria Gram-negative bacteria
原文传递
Screening of Antagonistic Bacteria against Phytophthora infestans and Its Inhibition Effect 被引量:4
15
作者 李丽艳 蒋继志 郭文 《Plant Diseases and Pests》 CAS 2011年第3期49-51,55,共4页
[ Objective ] The paper was to screen bacterial strain with significant antagonistic effect against Phytophthora infestans, so as to provide basis for further development and utilization of antagonistic bacteria to in... [ Objective ] The paper was to screen bacterial strain with significant antagonistic effect against Phytophthora infestans, so as to provide basis for further development and utilization of antagonistic bacteria to inhibit P. infestans and control potato late bright. [ Method] Plate dual culture and filter paper method were used to determine the inhibition effect of strains in vivo, fermentation broth and bacterial liquid of 61 strains against P. infestans and the resistance-induction effect of SR13-2 strain. [ Result] The inhibition rate of 24 strains among 61 tested strains against mycelial growth of P. infestans was greater than 60%, and the inhibi- tion effect of HT-6 strain was the strongest with the inhibition rate of 89.92%. However, fermentation broth of all tested strains had no significant inhibition effect against P. infestans, while the inhibition effect of bacterial liquid of most strains was significantly higher than strain in vivo; the inhibition effect of $34-1 strain was the strongest with inhibition rate of 91.50%. The bacterial liquid of SR13-2 strain was found to have significant resistance-induction effect with protective rate of 60%. [ Conclusion] The inhibition effect of strains in vivo and fermentation broth of antagonistic strains S34-1 and SR13-2 had no relationship with each other, while bacterial liquid had great application potential in controlling potato late bright. 展开更多
关键词 Phytophthora infestarts Antagonistic bacteria Strains in v/vo bacterial liquid Resistance-induction China
在线阅读 下载PDF
Effects of Acetic Acid Bacteria (Gluconacetobacter hansenii GK-1) on Fatigue Induced by Temporary Mental Stress: A Randomized, Double-Blind, Placebo-Controlled Study
16
作者 Wei Wang Mariko Oe +6 位作者 Mengwei Yuan Keiko Kuriyama Yumi Takeda Mamoru Kimura Ryosuke Matsuoka Kiichi Sugiyama Naoki Miura 《Food and Nutrition Sciences》 2025年第1期44-54,共11页
Objective: This study assessed the effects of consuming acetic acid bacteria (Gluconacetobacter hansenii GK-1) for 12 weeks on fatigue induced by temporary mental stress. Methods: This randomized, double-blind, placeb... Objective: This study assessed the effects of consuming acetic acid bacteria (Gluconacetobacter hansenii GK-1) for 12 weeks on fatigue induced by temporary mental stress. Methods: This randomized, double-blind, placebo-controlled, parallel-group study included 100 healthy male and female adults aged 20 - 64 years. Participants consumed either the G. hansenii GK-1 supplement (9 × 10⁹ cells/day) or a placebo daily for 12 weeks. The impact of temporary mental stress on fatigue in G. hansenii GK-1 was assessed using a Visual Analog Scale (VAS) before the study began and after 12 weeks of supplementation. Results: Subjective fatigue measured by Visual Analog Scale (VAS) showed a significant decrease in fatigue induced by temporary mental stress after 12 weeks of consumption in the G. hansenii GK-1 group compared with the placebo group. No adverse events were attributed to G. hansenii GK-1. These findings confirm that continuous oral ingestion of G. hansenii GK-1 by healthy Japanese adults reduces feelings of fatigue caused by temporary mental stress. 展开更多
关键词 Acetic Acid bacteria Gluconacetobacter hansenii GK-1 FATIGUE Temporary Mental Stress Double-Blind Study
在线阅读 下载PDF
Breed‑specific responses to coccidiosis in chickens:identification of intestinal bacteria linked to disease resistance
17
作者 Chace Broadwater Jiaqing Guo +5 位作者 Jing Liu Isabel Tobin Melanie A.Whitmore Michael G.Kaiser Susan J.Lamont Guolong Zhang 《Journal of Animal Science and Biotechnology》 2025年第5期2106-2119,共14页
Background Coccidiosis,caused by Eimeria parasites,is a major enteric disease in poultry,significantly impacting animal health,production performance,and welfare.This disease imposes a substantial economic burden,cost... Background Coccidiosis,caused by Eimeria parasites,is a major enteric disease in poultry,significantly impacting animal health,production performance,and welfare.This disease imposes a substantial economic burden,costing the global poultry industry up to$13 billion annually.However,effective mitigation strategies for coccidiosis remain elusive.While different chicken breeds exhibit varying resistance to coccidiosis,no commensal bacteria have been directly linked to this resistance.Methods To assess relative resistance of different breeds to coccidiosis,10-day-old Fayoumi M5.1,Leghorn Ghs6,and Cobb chickens were challenged with 50,000 sporulated Eimeria maxima oocysts or mock-infected.Body weight changes,small intestinal lesions,and fecal oocyst shedding were evaluated on d 17.Ileal and cecal digesta were collected from individual animals on d 17 and subjected to microbiome analysis using 16S rRNA gene sequencing.Results Fayoumi M5.1 chickens showed the lowest growth retardation,intestinal lesion score,fecal oocyst shedding,and pathobiont proliferation compared to Ghs6 and Cobb chickens.The intestinal microbiota of M5.1 chickens also differed markedly from the other two breeds under both healthy and coccidiosis conditions.Notably,group A Lactobacillus and Ligilactobacillus salivarius were the least prevalent in both the ileum and cecum of healthy M5.1 chickens,but became highly enriched and comparable to Ghs6 and Cobb chickens in response to coccidiosis.Conversely,Weissella,Staphylococcus gallinarum,and Enterococcus durans/hirae were more abundant in the ileum of healthy M5.1 chickens than in the other two breeds.Despite being reduced by Eimeria,these bacteria retained higher abundance in M5.1 chickens compared to the other breeds.Conclusions Fayoumi M5.1 chickens exhibit greater resistance to coccidiosis than Leghorn Ghs6 layers and Cobb broilers.Several commensal bacteria,including group A Lactobacillus,L.salivarius,Weissella,S.gallinarum,and E.durans/hirae,are differentially enriched in Fayoumi M5.1 chickens with strong correlation with coccidiosis resistance.These bacteria hold potential as probiotics for coccidiosis mitigation. 展开更多
关键词 COCCIDIOSIS EIMERIA ENTEROCOCCUS Fayoumi Lactic acid bacteria Lactobacillus Microbiota Probiotics STAPHYLOCOCCUS WEISSELLA
在线阅读 下载PDF
Biochar immobilization of cold-resistant bacteria enhances ammonium nitrogen removal from domestic wastewater
18
作者 MIAO Yuanying WANG Jijie +3 位作者 XIE Xiuhong HE Debo YANG Jingyu DONG Zhixin 《Journal of Mountain Science》 2025年第11期4024-4036,共13页
Bioremediation is an efficient and popular approach for domestic wastewater treatment while the pollutant discharge standards are difficult to achieve under low-temperature conditions. The application of cold-resistan... Bioremediation is an efficient and popular approach for domestic wastewater treatment while the pollutant discharge standards are difficult to achieve under low-temperature conditions. The application of cold-resistant bacteria has gained increasing attention, but direct introduction to sewage leads to poor environmental adaptability and low microbial activity. Biochar was used as a carrier to immobilize the bacteria to improve microbial survival and activity in this study. The basic physicochemical properties of bacteria immobilized by biochar and ammonium nitrogen removal efficiency were analyzed. The process mechanism of ammonium nitrogen removal was further explored using kinetic fitting and molecular simulation calculations. The results showed that biochar immobilization of cold-resistant bacteria achieved a significantly higher ammonium nitrogen removal rate of 0.88 mg/(L·h) compared to free mixed bacteria(0.74 mg/(L·h)) and biochar alone(0.22 mg/(L·h)). It also exhibited a removal efficiency of 96.56%, which was 15.02% and 72.58% higher than that of free mixed bacteria and biochar, respectively. Adsorption kinetics further revealed that the pseudosecond-order kinetic equation was a better fit for characterizing ammonia-nitrogen removal by biocharimmobilized cold-resistant bacteria. Combining microscopic morphology analysis and molecular simulations demonstrated that enriching functional groups on biochar enhanced its NH_(4)^(+) adsorption capacity by increasing surface activity and polarity, as well as the biodegradation ability of NH_(4)^(+) by improving the interactions between biochar and active enzymes. These findings provide valuable insights into developing more effective ways to improve wastewater treatment efficiency under low temperatures. 展开更多
关键词 Bioremediation Wastewater treatment BIOCHAR Cold resistant bacteria Bioadsorption DENITRIFICATION
原文传递
Effect of sterilization methods on quality and storage characteristics of tofu fermented by lactic acid bacteria
19
作者 Yang Liu Huifang Liu +3 位作者 Jiangting Hao Xueting Li Liang Li Xiaoyu Yang 《Grain & Oil Science and Technology》 2025年第1期32-42,共11页
This study examined the effects of pasteurization(PAS),ultrasonic sterilization(ULS),and microwave sterilization(MWS)on the quality and storage characteristics of brine-fermented tofu(BFT)and fermented tofu(FT).Compar... This study examined the effects of pasteurization(PAS),ultrasonic sterilization(ULS),and microwave sterilization(MWS)on the quality and storage characteristics of brine-fermented tofu(BFT)and fermented tofu(FT).Comparative analysis revealed that MWS had a negligible detrimental effect on the structural integrity and organoleptic properties of BFT and FT,while effectively maintaining its water-holding capacity(WHC)and exhibiting the least impact on its texture.In contrast,PAS and ULS increased hardness and chewiness significantly(P<0.05),but ULS also enhanced the brightness of tofu.Throughout the storage period,the WHC,elasticity,and sensory properties of tofu generally decreased,whereas the hardness and chewiness increased.PAS-BFT and MWS-FT maintained sensory quality for the longest periods of 14 and 12 days respectively,and could be decomposed to more small molecule peptides within 0–8 days and 0–6 days,which are more easily to be absorbed by the body.The findings discovered that MWS is the most suitable method for sterilization of tofu,with superior capability in maintaining the quality,extending shelf life,and improving digestibility of tofu. 展开更多
关键词 Lactic acid bacteria Fermented tofu STERILIZATION QUALITY Storage characteristics
在线阅读 下载PDF
Non-specific/specific SERS spectra concatenation for precise bacteria classifications with few samples using a residual neural network
20
作者 Feihu Wu Gengwen Chen +10 位作者 Kaitao Lai Shiqing Zhang Yingchao Liu Ruijian Luo Xiaocong Wang Pinzhi Cao Yi Ye Jiarong Lian Junle Qu Zhigang Yang Xiaojun Peng 《Chinese Chemical Letters》 2025年第1期484-490,共7页
Deep learning neural network incorporating surface enhancement Raman scattering technique(SERS)is becoming as a powerful tool for the precise classifications and diagnosis of bacterial infections.However,the large amo... Deep learning neural network incorporating surface enhancement Raman scattering technique(SERS)is becoming as a powerful tool for the precise classifications and diagnosis of bacterial infections.However,the large amount of sample requirement and time-consuming sample collection severely hinder its applications.We herein propose a spectral concatenation strategy for residual neural network using nonspecific and specific SERS spectra for the training data augmentation,which is accessible to acquiring larger training dataset with same number of SERS spectra or same size of training dataset with fewer SERS spectra,compared with pure non-specific SERS spectra.With this strategy,the training loss exhibit rapid convergence,and an average accuracy up to 100%in bacteria classifications was achieved with50 SERS spectra for each kind of bacterium;even reduced to 20 SERS spectra per kind of bacterium,classification accuracy is still>95%,demonstrating marked advantage over the results without spectra concatenation.This method can markedly improve the classification accuracy under fewer samples and reduce the data collection workload,and can evidently enhance the performance when used in different machine learning models with high generalization ability.Therefore,this strategy is beneficial for rapid and accurate bacteria classifications with residual neural network. 展开更多
关键词 SERS Deep learning Resnet bacteria classification Spectra concatenation
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部