Electrochromic(EC)smart windows utilizing a reversible metal electrodeposition device(RMED)offer a compelling alternative for dynamically regulating transmissions of optical and thermal energy.An EC device(ECD)is cons...Electrochromic(EC)smart windows utilizing a reversible metal electrodeposition device(RMED)offer a compelling alternative for dynamically regulating transmissions of optical and thermal energy.An EC device(ECD)is constructed by reversible metal electrodeposition(RME)of Bi/Cu on WO_(3)·xH_(2)O film electrodeposited onto fluorine-doped tin oxide(FTO)transparent conductive glass.The electrolyte consists of CuCl_(2),BiCl_(3),KCl and HCl aqueous solution,supplying necessary components for both electrochemical and electrodeposition processes.The ECD shows ability to rapidly transition between colorless and black states,which achieves a large optical modulation of 77.0%at 570 nm.In the black state,the ECD exhibits a near-zero transmittance in the wavelength range of 400-1100 nm while maintaining 96.6%of its initial optical modulation after coloration/bleaching cycling of 60000 s,exhibiting good cyclic stability.This RMED has relatively high stability under open-circuit voltage and also possesses excellent heat insulation performance.The results offer a solution to overcome the poor cyclic stability of RMEDs and improve the optical modulation of ECDs.展开更多
Developing efficient photocatalysts for CO_(2)conversion under full-spectrum irradiation remains a key challenge for solar-to-chemical energy conversion.In this study,a novel S-scheme heterojunction composed of reduct...Developing efficient photocatalysts for CO_(2)conversion under full-spectrum irradiation remains a key challenge for solar-to-chemical energy conversion.In this study,a novel S-scheme heterojunction composed of reduction Cs_(0.32)WO_(3)(CWO)nanosheets with hexagonal structure and oxidation WO_(3)·2H_(2)O(WO)nanorods with monoclinic structure photocatalyst was successfully constructed via an ultrasound strategy.Under full-spectrum irradiation for 4 h,the optimized 2D/1D of heterostructure CWO/WO-0.8 exhibited superior photocatalytic performance,achieving CO and CH_(3)OH yields of 29.74 and 63.71μmol·g^(-1),respectively.The enhanced activity is primarily ascribed to the formation of an S-scheme charge transfer pathway,which facilitates efficient separation and directional migration of photogenerated charge carriers through the internal electric field at the CWO/WO interface.This process facilitates the electron enrichment on the CWO surface and significantly enhances its CO_(2)reduction ability.Besides,the results of various characterizations show that CWO/WO-0.8 possesses enhanced optical response capability.The results of density functional theory calculations and CO_(2)-temperature programmed desorption analysis confirmed that the CWO/WO heterojunction exhibits stronger CO_(2)adsorption and activation abilities compared to the pristine CWO and WO.The reaction pathway for CH_(3)OH production was elucidated by in-situ diffused reflectance Fourier transformed infrared tests.This work provides new insights into the rational design of S-scheme photocatalysts for efficient and selective CO_(2)conversion.展开更多
Herein,we established a Zn_(3)(OH)_(2)(V_(2)O_(7))(H_(2)O)_(2)/V-Zn(O,S)Z-scheme heterojunction labeled ZnVO/V-Zn(O,S)with a heterovalent V^(4+)/V^(5+)states and oxygen vacancies in both phases via a one-step in-situ ...Herein,we established a Zn_(3)(OH)_(2)(V_(2)O_(7))(H_(2)O)_(2)/V-Zn(O,S)Z-scheme heterojunction labeled ZnVO/V-Zn(O,S)with a heterovalent V^(4+)/V^(5+)states and oxygen vacancies in both phases via a one-step in-situ hydrolysis method.The NaBH_(4) regulated the ZnVO/V-Zn(O,S)-3 with rich Vo and suitable n(V^(4+))/n(V^(5+))ratio achieved an excellent photocatalytic nitrogen fixation activity of 301.7μmol/(g×h)and apparent quantum efficiency of 1.148%at 420 nm without any sacrificial agent,which is 11 times than that of V-Zn(O,S).The Vo acts as the active site to trap and activate N_(2) molecules and to trap and activate H_(2)O to produce the H for N_(2) molecules photocatalytic reduction.The rich Vo defects can also reduce the competitive adsorption of H_(2)O and N_(2) molecules on the surface active site of the catalyst.The heterovalent vanadium states act as the photogenerated electrons,quickly hopping between V^(4+)and V^(5+)to transfer for the photocatalytic N_(2) reduction reaction.Additionally,the Z-scheme heterojunction effectively minimizes photogenerated carrier recombination.These synergistic effects collectively boost the photocatalytic nitrogen fixation activity.This study provides a practical method for designing Z-scheme heterojunctions for efficient photocatalytic N_(2) fixation under mild conditions.展开更多
文摘Electrochromic(EC)smart windows utilizing a reversible metal electrodeposition device(RMED)offer a compelling alternative for dynamically regulating transmissions of optical and thermal energy.An EC device(ECD)is constructed by reversible metal electrodeposition(RME)of Bi/Cu on WO_(3)·xH_(2)O film electrodeposited onto fluorine-doped tin oxide(FTO)transparent conductive glass.The electrolyte consists of CuCl_(2),BiCl_(3),KCl and HCl aqueous solution,supplying necessary components for both electrochemical and electrodeposition processes.The ECD shows ability to rapidly transition between colorless and black states,which achieves a large optical modulation of 77.0%at 570 nm.In the black state,the ECD exhibits a near-zero transmittance in the wavelength range of 400-1100 nm while maintaining 96.6%of its initial optical modulation after coloration/bleaching cycling of 60000 s,exhibiting good cyclic stability.This RMED has relatively high stability under open-circuit voltage and also possesses excellent heat insulation performance.The results offer a solution to overcome the poor cyclic stability of RMEDs and improve the optical modulation of ECDs.
文摘Developing efficient photocatalysts for CO_(2)conversion under full-spectrum irradiation remains a key challenge for solar-to-chemical energy conversion.In this study,a novel S-scheme heterojunction composed of reduction Cs_(0.32)WO_(3)(CWO)nanosheets with hexagonal structure and oxidation WO_(3)·2H_(2)O(WO)nanorods with monoclinic structure photocatalyst was successfully constructed via an ultrasound strategy.Under full-spectrum irradiation for 4 h,the optimized 2D/1D of heterostructure CWO/WO-0.8 exhibited superior photocatalytic performance,achieving CO and CH_(3)OH yields of 29.74 and 63.71μmol·g^(-1),respectively.The enhanced activity is primarily ascribed to the formation of an S-scheme charge transfer pathway,which facilitates efficient separation and directional migration of photogenerated charge carriers through the internal electric field at the CWO/WO interface.This process facilitates the electron enrichment on the CWO surface and significantly enhances its CO_(2)reduction ability.Besides,the results of various characterizations show that CWO/WO-0.8 possesses enhanced optical response capability.The results of density functional theory calculations and CO_(2)-temperature programmed desorption analysis confirmed that the CWO/WO heterojunction exhibits stronger CO_(2)adsorption and activation abilities compared to the pristine CWO and WO.The reaction pathway for CH_(3)OH production was elucidated by in-situ diffused reflectance Fourier transformed infrared tests.This work provides new insights into the rational design of S-scheme photocatalysts for efficient and selective CO_(2)conversion.
文摘Herein,we established a Zn_(3)(OH)_(2)(V_(2)O_(7))(H_(2)O)_(2)/V-Zn(O,S)Z-scheme heterojunction labeled ZnVO/V-Zn(O,S)with a heterovalent V^(4+)/V^(5+)states and oxygen vacancies in both phases via a one-step in-situ hydrolysis method.The NaBH_(4) regulated the ZnVO/V-Zn(O,S)-3 with rich Vo and suitable n(V^(4+))/n(V^(5+))ratio achieved an excellent photocatalytic nitrogen fixation activity of 301.7μmol/(g×h)and apparent quantum efficiency of 1.148%at 420 nm without any sacrificial agent,which is 11 times than that of V-Zn(O,S).The Vo acts as the active site to trap and activate N_(2) molecules and to trap and activate H_(2)O to produce the H for N_(2) molecules photocatalytic reduction.The rich Vo defects can also reduce the competitive adsorption of H_(2)O and N_(2) molecules on the surface active site of the catalyst.The heterovalent vanadium states act as the photogenerated electrons,quickly hopping between V^(4+)and V^(5+)to transfer for the photocatalytic N_(2) reduction reaction.Additionally,the Z-scheme heterojunction effectively minimizes photogenerated carrier recombination.These synergistic effects collectively boost the photocatalytic nitrogen fixation activity.This study provides a practical method for designing Z-scheme heterojunctions for efficient photocatalytic N_(2) fixation under mild conditions.