A distinguished category of operational fluids,known as hybrid nanofluids,occupies a prominent role among various fluid types owing to its superior heat transfer properties.By employing a dovetail fin profile,this wor...A distinguished category of operational fluids,known as hybrid nanofluids,occupies a prominent role among various fluid types owing to its superior heat transfer properties.By employing a dovetail fin profile,this work investigates the thermal reaction of a dynamic fin system to a hybrid nanofluid with shape-based properties,flowing uniformly at a velocity U.The analysis focuses on four distinct types of nanoparticles,i.e.,Al2O3,Ag,carbon nanotube(CNT),and graphene.Specifically,two of these particles exhibit a spherical shape,one possesses a cylindrical form,and the final type adopts a platelet morphology.The investigation delves into the pairing of these nanoparticles.The examination employs a combined approach to assess the constructional and thermal exchange characteristics of the hybrid nanofluid.The fin design,under the specified circumstances,gives rise to the derivation of a differential equation.The given equation is then transformed into a dimensionless form.Notably,the Hermite wavelet method is introduced for the first time to address the challenge posed by a moving fin submerged in a hybrid nanofluid with shape-dependent features.To validate the credibility of this research,the results obtained in this study are systematically compared with the numerical simulations.The examination discloses that the highest heat flux is achieved when combining nanoparticles with spherical and platelet shapes.展开更多
A clock bias data processing method based on interval correlation coefficient wavelet threshold denoising is suggested for minor mistakes in clock bias data in order to increase the efficacy of satellite clock bias pr...A clock bias data processing method based on interval correlation coefficient wavelet threshold denoising is suggested for minor mistakes in clock bias data in order to increase the efficacy of satellite clock bias prediction.Wavelet analysis was first used to break down the satellite clock frequency data into several levels,producing high and low frequency coefficients for each layer.The correlation coefficients of the high and low frequency coefficients in each of the three sub-intervals created by splitting these coefficients were then determined.The major noise region—the sub-interval with the lowest correlation coefficient—was chosen for thresholding treatment and noise threshold computation.The clock frequency data was then processed using wavelet reconstruction and reconverted to clock data.Lastly,three different kinds of satellite clock data—RTS,whu-o,and IGS-F—were used to confirm the produced data.Our method enhanced the stability of the Quadratic Polynomial(QP)model’s predictions for the C16 satellite by about 40%,according to the results.The accuracy and stability of the Auto Regression Integrated Moving Average(ARIMA)model improved up to 41.8%and 14.2%,respectively,whilst the Wavelet Neural Network(WNN)model improved by roughly 27.8%and 63.6%,respectively.Although our method has little effect on forecasting IGS-F series satellites,the experimental findings show that it can improve the accuracy and stability of QP,ARIMA,and WNN model forecasts for RTS and whu-o satellite clock bias.展开更多
A new wavelet finite element method(WFEM)is constructed in this paper and two elements for bending and free vibration problems of a stiffened plate are analyzed.By means of generalized potential energy function and vi...A new wavelet finite element method(WFEM)is constructed in this paper and two elements for bending and free vibration problems of a stiffened plate are analyzed.By means of generalized potential energy function and virtual work principle,the formulations of the bending and free vibration problems of the stiffened plate are derived separately.Then,the scaling functions of the B-spline wavelet on the interval(BSWI)are introduced to discrete the solving field variables instead of conventional polynomial interpolation.Finally,the corresponding two problems can be resolved following the traditional finite element frame.There are some advantages of the constructed elements in structural analysis.Due to the excellent features of the wavelet,such as multi-scale and localization characteristics,and the excellent numerical approximation property of the BSWI,the precise and efficient analysis can be achieved.Besides,transformation matrix is used to translate the meaningless wavelet coefficients into physical space,thus the resolving process is simplified.In order to verify the superiority of the constructed method in stiffened plate analysis,several numerical examples are given in the end.展开更多
A bicubic B-spline finite element method is proposed to solve optimal control problems governed by fourth-order semilinear parabolic partial differential equations.Its key feature is the selection of bicubic B-splines...A bicubic B-spline finite element method is proposed to solve optimal control problems governed by fourth-order semilinear parabolic partial differential equations.Its key feature is the selection of bicubic B-splines as trial functions to approximate the state and costate variables in two space dimensions.A Crank-Nicolson difference scheme is constructed for time discretization.The resulting numerical solutions belong to C2in space,and the order of the coefficient matrix is low.Moreover,the Bogner-Fox-Schmit element is considered for comparison.Two numerical experiments demonstrate the feasibility and effectiveness of the proposed method.展开更多
In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be r...In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be readily extended to special node generation techniques,such as the Shishkin node.Such a wavelet method allows a high degree of local refinement of the nodal distribution to efficiently capture localized steep gradients.All the shape functions possess the Kronecker delta property,making the imposition of boundary conditions as easy as that in the finite element method.Four numerical examples are studied to demonstrate the validity and accuracy of the proposedwavelet method.The results showthat the use ofmodified Shishkin nodes can significantly reduce numerical oscillation near the boundary layer.Compared with many other methods,the proposed method possesses satisfactory accuracy and efficiency.The theoretical and numerical results demonstrate that the order of theε-uniform convergence of this wavelet method can reach 5.展开更多
Although the classical spectral representation method(SRM)has been widely used in the generation of spatially varying ground motions,there are still challenges in efficient simulation of the non-stationary stochastic ...Although the classical spectral representation method(SRM)has been widely used in the generation of spatially varying ground motions,there are still challenges in efficient simulation of the non-stationary stochastic vector process in practice.The first problem is the inherent limitation and inflexibility of the deterministic time/frequency modulation function.Another difficulty is the estimation of evolutionary power spectral density(EPSD)with quite a few samples.To tackle these problems,the wavelet packet transform(WPT)algorithm is utilized to build a time-varying spectrum of seed recording which describes the energy distribution in the time-frequency domain.The time-varying spectrum is proven to preserve the time and frequency marginal property as theoretical EPSD will do for the stationary process.For the simulation of spatially varying ground motions,the auto-EPSD for all locations is directly estimated using the time-varying spectrum of seed recording rather than matching predefined EPSD models.Then the constructed spectral matrix is incorporated in SRM to simulate spatially varying non-stationary ground motions using efficient Cholesky decomposition techniques.In addition to a good match with the target coherency model,two numerical examples indicate that the generated time histories retain the physical properties of the prescribed seed recording,including waveform,temporal/spectral non-stationarity,normalized energy buildup,and significant duration.展开更多
The challenge of solving nonlinear problems in multi-connected domains with high accuracy has garnered significant interest.In this paper,we propose a unified wavelet solution method for accurately solving nonlinear b...The challenge of solving nonlinear problems in multi-connected domains with high accuracy has garnered significant interest.In this paper,we propose a unified wavelet solution method for accurately solving nonlinear boundary value problems on a two-dimensional(2D)arbitrary multi-connected domain.We apply this method to solve large deflection bending problems of complex plates with holes.Our solution method simplifies the treatment of the 2D multi-connected domain by utilizing a natural discretization approach that divides it into a series of one-dimensional(1D)intervals.This approach establishes a fundamental relationship between the highest-order derivative in the governing equation of the problem and the remaining lower-order derivatives.By combining a wavelet high accuracy integral approximation format on 1D intervals,where the convergence order remains constant regardless of the number of integration folds,with the collocation method,we obtain a system of algebraic equations that only includes discrete point values of the highest order derivative.In this process,the boundary conditions are automatically replaced using integration constants,eliminating the need for additional processing.Error estimation and numerical results demonstrate that the accuracy of this method is unaffected by the degree of nonlinearity of the equations.When solving the bending problem of multi-perforated complex-shaped plates under consideration,it is evident that directly using higher-order derivatives as unknown functions significantly improves the accuracy of stress calculation,even when the stress exhibits large gradient variations.Moreover,compared to the finite element method,the wavelet method requires significantly fewer nodes to achieve the same level of accuracy.Ultimately,the method achieves a sixth-order accuracy and resembles the treatment of one-dimensional problems during the solution process,effectively avoiding the need for the complex 2D meshing process typically required by conventional methods when solving problems with multi-connected domains.展开更多
In mineral exploration, the apparent resistivity and apparent frequency (or apparent polarizability) parameters of induced polarization method are commonly utilized to describe the induced polarization anomaly. When...In mineral exploration, the apparent resistivity and apparent frequency (or apparent polarizability) parameters of induced polarization method are commonly utilized to describe the induced polarization anomaly. When the target geology structure is significantly complicated, these parameters would fail to reflect the nature of the anomaly source, and wrong conclusions may be obtained. A wavelet approach and a metal factor method were used to comprehensively interpret the induced polarization anomaly of complex geologic bodies in the Adi Bladia mine. Db5 wavelet basis was used to conduct two-scale decomposition and reconstruction, which effectively suppress the noise interference of greenschist facies regional metamorphism and magma intrusion, making energy concentrated and boundary problem unobservable. On the basis of that, the ore-induced anomaly was effectively extracted by the metal factor method.展开更多
Based on B-spline wavelet on the interval (BSWI), two classes of truncated conical shell elements were constructed to solve axisymmetric problems, i.e. BSWI thin truncated conical shell element and BSWI moderately t...Based on B-spline wavelet on the interval (BSWI), two classes of truncated conical shell elements were constructed to solve axisymmetric problems, i.e. BSWI thin truncated conical shell element and BSWI moderately thick truncated conical shell element with independent slopedeformation interpolation. In the construction of wavelet-based element, instead of traditional polynomial interpolation, the scaling functions of BSWI were employed to form the shape functions through the constructed elemental transformation matrix, and then construct BSWI element via the variational principle. Unlike the process of direct wavelets adding in the wavelet Galerkin method, the elemental displacement field represented by the coefficients of wavelets expansion was transformed into edges and internal modes via the constructed transformation matrix. BSWI element combines the accuracy of B-spline function approximation and various wavelet-based elements for structural analysis. Some static and dynamic numerical examples of conical shells were studied to demonstrate the present element with higher efficiency and precision than the traditional element.展开更多
A wavelet method for solving strongly nonlinear boundary value problems is described, which has been demonstrated early to have a convergence rate of order 4, almost independent of the nonlinear intensity of the equat...A wavelet method for solving strongly nonlinear boundary value problems is described, which has been demonstrated early to have a convergence rate of order 4, almost independent of the nonlinear intensity of the equations. By using such a method, we study the bending problem of a circular plate with arbitrary large deflection. As the deflection increases, the bending behavior usually exhibits a so-called plate-to-membrane transition. Capturing such a transition has ever frustrated researchers for decades. However, without introducing any addi- tional treatment, we show in this study that the proposed wavelet solutions can naturally cover the plate-membrane transition region as the plate deflection increases. In addition, the high accuracy and efficiency of the wavelet method in solving strongly nonlinear problems is numerically confirmed, and applicable scopes for the linear, the membrane and the yon Karman plate theories are identified with respect to the large deformation bending of circular plates.展开更多
A new numerical manifold (NMM) method is derived on the basis of quartic uniform B-spline interpolation. The analysis shows that the new interpolation function possesses higher-order continuity and polynomial consis...A new numerical manifold (NMM) method is derived on the basis of quartic uniform B-spline interpolation. The analysis shows that the new interpolation function possesses higher-order continuity and polynomial consistency compared with the conven- tional NMM. The stiffness matrix of the new element is well-conditioned. The proposed method is applied for the numerical example of thin plate bending. Based on the prin- ciple of minimum potential energy, the manifold matrices and equilibrium equation are deduced. Numerical results reveal that the NMM has high interpolation accuracy and rapid convergence for the global cover function and its higher-order partial derivatives.展开更多
A sampling approximation for a function defined on a bounded interval is proposed by combining the Coiflet-type wavelet expansion and the boundary extension technique. Based on such a wavelet approximation scheme, a G...A sampling approximation for a function defined on a bounded interval is proposed by combining the Coiflet-type wavelet expansion and the boundary extension technique. Based on such a wavelet approximation scheme, a Galerkin procedure is developed for the spatial discretization of the generalized nonlinear Schr6dinger (NLS) equa- tions, and a system of ordinary differential equations for the time dependent unknowns is obtained. Then, the classical fourth-order explicit Runge-Kutta method is used to solve this semi-discretization system. To justify the present method, several widely considered problems are solved as the test examples, and the results demonstrate that the proposed wavelet algorithm has much better accuracy and a faster convergence rate in space than many existing numerical methods.展开更多
The quasi-Shannon interval wavelet is constructed based on the interpolation wavelet theory, and an adaptive precise integration method, which is based on extrapolation method is presented for nonlinear ordinary diffe...The quasi-Shannon interval wavelet is constructed based on the interpolation wavelet theory, and an adaptive precise integration method, which is based on extrapolation method is presented for nonlinear ordinary differential equations ( ODEs). And then, an adaptive interval wavelet precise integration method (AIWPIM) for nonlinear partial differential equations(PDEs) is proposed. The numerical results show that the computational precision of AIWPIM is higher than that of the method constructed by combining the wavelet and the 4th Runge-Kutta method, and the computational amounts of these two methods are almost equal. For convenience, the Burgers equation is taken as an example in introducing this method, which is also valid for more general cases.展开更多
In this paper, we suggest a method for solving Fredholm integral equation of the first kind based on wavelet basis. The continuous Legendre and Chebyshev wavelets of the first, second, third and fourth kind on [0,1] a...In this paper, we suggest a method for solving Fredholm integral equation of the first kind based on wavelet basis. The continuous Legendre and Chebyshev wavelets of the first, second, third and fourth kind on [0,1] are used and are utilized as a basis in Galerkin method to approximate the solution of integral equations. Then, in some examples the mentioned wavelets are compared with each other.展开更多
The application of Tikhonov regularization method dealing with the ill-conditioned problems in the regional gravity field modeling by Poisson wavelets is studied. In particular, the choices of the regularization matri...The application of Tikhonov regularization method dealing with the ill-conditioned problems in the regional gravity field modeling by Poisson wavelets is studied. In particular, the choices of the regularization matrices as well as the approaches for estimating the regularization parameters are investigated in details. The numerical results show that the regularized solutions derived from the first-order regularization are better than the ones obtained from zero-order regularization. For cross validation, the optimal regularization parameters are estimated from L-curve, variance component estimation(VCE) and minimum standard deviation(MSTD) approach, respectively, and the results show that the derived regularization parameters from different methods are consistent with each other. Together with the firstorder Tikhonov regularization and VCE method, the optimal network of Poisson wavelets is derived, based on which the local gravimetric geoid is computed. The accuracy of the corresponding gravimetric geoid reaches 1.1 cm in Netherlands, which validates the reliability of using Tikhonov regularization method in tackling the ill-conditioned problem for regional gravity field modeling.展开更多
A method of fairing B spline surfaces by wavelet decomposition is investigated. The wavelet decomposition and reconstruction of quasi uniform bicubic B spline surfaces are described in detail. A method is introduce...A method of fairing B spline surfaces by wavelet decomposition is investigated. The wavelet decomposition and reconstruction of quasi uniform bicubic B spline surfaces are described in detail. A method is introduced to approximate a B spline surface by a quasi uniform one. An error control approach for wavelet based fairing is suggested. Samples are given to show the feasibility of the algorithms presented in this paper. The practice showed that the wavelet based fairing is better than energy based one in case where the number of vertices of the B spline surface is greater than 1000. The quantitative variance of the approximation error in accordance with the change of decomposition levels needs to be further explored.展开更多
Due to the disturbances of spatters, dusts and strong arc light, it is difficult to detect the molten pool edge and the weld line location in CO_2 welding processes. The median filtering and self-multiplication was em...Due to the disturbances of spatters, dusts and strong arc light, it is difficult to detect the molten pool edge and the weld line location in CO_2 welding processes. The median filtering and self-multiplication was employed to preprocess the image of the CO_2 welding in order to detect effectively the edge of molten pool and the location of weld line. The B-spline wavelet algorithm has been investigated, the influence of different scales and thresholds on the results of the edge detection have been compared and analyzed. The experimental results show that better performance to extract the edge of the molten pool and the location of weld line can be obtained by using the B-spline wavelet transform. The proposed edge detection approach can be further applied to the control of molten depth and the seam tracking.展开更多
Based on the generalized variational principle and B-spline wavelet on the interval (BSWI), the multivariable BSWI elements with two kinds of variables (TBSWI) for hyperboloidal shell and open cylindrical shell ar...Based on the generalized variational principle and B-spline wavelet on the interval (BSWI), the multivariable BSWI elements with two kinds of variables (TBSWI) for hyperboloidal shell and open cylindrical shell are constructed in this paper. Different from the traditional method, the present one treats the generalized displacement and stress as independent variables. So differentiation and integration are avoided in calculating generalized stress and thus the precision is improved. Furthermore, compared with commonly used Daubechies wavelet, BSWI has explicit expression and excellent approximation property and thus further guarantee satisfactory results. Finally, the efficiency of the constructed multivariable shell elements is validated through several numerical examples.展开更多
In this paper, we consider numerical simulation of wave propagation in fluidsaturated porous media. A wavelet finite-difference method is proposed to solve the 2-D elastic wave equation. The algorithm combines flexibi...In this paper, we consider numerical simulation of wave propagation in fluidsaturated porous media. A wavelet finite-difference method is proposed to solve the 2-D elastic wave equation. The algorithm combines flexibility and computational efficiency of wavelet multi-resolution method with easy implementation of the finite-difference method. The orthogonal wavelet basis provides a natural framework, which adapt spatial grids to local wavefield properties. Numerical results show usefulness of the approach as an accurate and stable tool for simulation of wave propagation in fluid-saturated porous media.展开更多
Multiresolution analysis of wavelet theory can give an effective way to describe the information at various levels of approximations or different resolutions, based on spline wavelet analysis,so weight function is ort...Multiresolution analysis of wavelet theory can give an effective way to describe the information at various levels of approximations or different resolutions, based on spline wavelet analysis,so weight function is orthonormally projected onto a sequence of closed spline subspaces, and is viewed at various levels of approximations or different resolutions. Now, the useful new way to research weight function is found, and the numerical result is given.展开更多
文摘A distinguished category of operational fluids,known as hybrid nanofluids,occupies a prominent role among various fluid types owing to its superior heat transfer properties.By employing a dovetail fin profile,this work investigates the thermal reaction of a dynamic fin system to a hybrid nanofluid with shape-based properties,flowing uniformly at a velocity U.The analysis focuses on four distinct types of nanoparticles,i.e.,Al2O3,Ag,carbon nanotube(CNT),and graphene.Specifically,two of these particles exhibit a spherical shape,one possesses a cylindrical form,and the final type adopts a platelet morphology.The investigation delves into the pairing of these nanoparticles.The examination employs a combined approach to assess the constructional and thermal exchange characteristics of the hybrid nanofluid.The fin design,under the specified circumstances,gives rise to the derivation of a differential equation.The given equation is then transformed into a dimensionless form.Notably,the Hermite wavelet method is introduced for the first time to address the challenge posed by a moving fin submerged in a hybrid nanofluid with shape-dependent features.To validate the credibility of this research,the results obtained in this study are systematically compared with the numerical simulations.The examination discloses that the highest heat flux is achieved when combining nanoparticles with spherical and platelet shapes.
基金2023 Liaoning Institute of Science and Technology Doctoral Program Launch fund(No.2307B29).
文摘A clock bias data processing method based on interval correlation coefficient wavelet threshold denoising is suggested for minor mistakes in clock bias data in order to increase the efficacy of satellite clock bias prediction.Wavelet analysis was first used to break down the satellite clock frequency data into several levels,producing high and low frequency coefficients for each layer.The correlation coefficients of the high and low frequency coefficients in each of the three sub-intervals created by splitting these coefficients were then determined.The major noise region—the sub-interval with the lowest correlation coefficient—was chosen for thresholding treatment and noise threshold computation.The clock frequency data was then processed using wavelet reconstruction and reconverted to clock data.Lastly,three different kinds of satellite clock data—RTS,whu-o,and IGS-F—were used to confirm the produced data.Our method enhanced the stability of the Quadratic Polynomial(QP)model’s predictions for the C16 satellite by about 40%,according to the results.The accuracy and stability of the Auto Regression Integrated Moving Average(ARIMA)model improved up to 41.8%and 14.2%,respectively,whilst the Wavelet Neural Network(WNN)model improved by roughly 27.8%and 63.6%,respectively.Although our method has little effect on forecasting IGS-F series satellites,the experimental findings show that it can improve the accuracy and stability of QP,ARIMA,and WNN model forecasts for RTS and whu-o satellite clock bias.
基金This work was supported by the National Natural Science Foundation of China(Nos.51405370&51421004)the National Key Basic Research Program of China(No.2015CB057400)+2 种基金the project supported by Natural Science Basic Plan in Shaanxi Province of China(No.2015JQ5184)the Fundamental Research Funds for the Central Universities(xjj2014014)Shaanxi Province Postdoctoral Research Project.
文摘A new wavelet finite element method(WFEM)is constructed in this paper and two elements for bending and free vibration problems of a stiffened plate are analyzed.By means of generalized potential energy function and virtual work principle,the formulations of the bending and free vibration problems of the stiffened plate are derived separately.Then,the scaling functions of the B-spline wavelet on the interval(BSWI)are introduced to discrete the solving field variables instead of conventional polynomial interpolation.Finally,the corresponding two problems can be resolved following the traditional finite element frame.There are some advantages of the constructed elements in structural analysis.Due to the excellent features of the wavelet,such as multi-scale and localization characteristics,and the excellent numerical approximation property of the BSWI,the precise and efficient analysis can be achieved.Besides,transformation matrix is used to translate the meaningless wavelet coefficients into physical space,thus the resolving process is simplified.In order to verify the superiority of the constructed method in stiffened plate analysis,several numerical examples are given in the end.
基金supported by the National Natural Science Foundation of China(11871312,12131014)the Natural Science Foundation of Shandong Province,China(ZR2023MA086)。
文摘A bicubic B-spline finite element method is proposed to solve optimal control problems governed by fourth-order semilinear parabolic partial differential equations.Its key feature is the selection of bicubic B-splines as trial functions to approximate the state and costate variables in two space dimensions.A Crank-Nicolson difference scheme is constructed for time discretization.The resulting numerical solutions belong to C2in space,and the order of the coefficient matrix is low.Moreover,the Bogner-Fox-Schmit element is considered for comparison.Two numerical experiments demonstrate the feasibility and effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China (No.12172154)the 111 Project (No.B14044)+1 种基金the Natural Science Foundation of Gansu Province (No.23JRRA1035)the Natural Science Foundation of Anhui University of Finance and Economics (No.ACKYC20043).
文摘In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be readily extended to special node generation techniques,such as the Shishkin node.Such a wavelet method allows a high degree of local refinement of the nodal distribution to efficiently capture localized steep gradients.All the shape functions possess the Kronecker delta property,making the imposition of boundary conditions as easy as that in the finite element method.Four numerical examples are studied to demonstrate the validity and accuracy of the proposedwavelet method.The results showthat the use ofmodified Shishkin nodes can significantly reduce numerical oscillation near the boundary layer.Compared with many other methods,the proposed method possesses satisfactory accuracy and efficiency.The theoretical and numerical results demonstrate that the order of theε-uniform convergence of this wavelet method can reach 5.
基金National Key Research and Development Program of China under Grant No.2023YFE0102900National Natural Science Foundation of China under Grant Nos.52378506 and 52208164。
文摘Although the classical spectral representation method(SRM)has been widely used in the generation of spatially varying ground motions,there are still challenges in efficient simulation of the non-stationary stochastic vector process in practice.The first problem is the inherent limitation and inflexibility of the deterministic time/frequency modulation function.Another difficulty is the estimation of evolutionary power spectral density(EPSD)with quite a few samples.To tackle these problems,the wavelet packet transform(WPT)algorithm is utilized to build a time-varying spectrum of seed recording which describes the energy distribution in the time-frequency domain.The time-varying spectrum is proven to preserve the time and frequency marginal property as theoretical EPSD will do for the stationary process.For the simulation of spatially varying ground motions,the auto-EPSD for all locations is directly estimated using the time-varying spectrum of seed recording rather than matching predefined EPSD models.Then the constructed spectral matrix is incorporated in SRM to simulate spatially varying non-stationary ground motions using efficient Cholesky decomposition techniques.In addition to a good match with the target coherency model,two numerical examples indicate that the generated time histories retain the physical properties of the prescribed seed recording,including waveform,temporal/spectral non-stationarity,normalized energy buildup,and significant duration.
基金supported by the National Natural Science Foundation of China(Grant No.11925204).
文摘The challenge of solving nonlinear problems in multi-connected domains with high accuracy has garnered significant interest.In this paper,we propose a unified wavelet solution method for accurately solving nonlinear boundary value problems on a two-dimensional(2D)arbitrary multi-connected domain.We apply this method to solve large deflection bending problems of complex plates with holes.Our solution method simplifies the treatment of the 2D multi-connected domain by utilizing a natural discretization approach that divides it into a series of one-dimensional(1D)intervals.This approach establishes a fundamental relationship between the highest-order derivative in the governing equation of the problem and the remaining lower-order derivatives.By combining a wavelet high accuracy integral approximation format on 1D intervals,where the convergence order remains constant regardless of the number of integration folds,with the collocation method,we obtain a system of algebraic equations that only includes discrete point values of the highest order derivative.In this process,the boundary conditions are automatically replaced using integration constants,eliminating the need for additional processing.Error estimation and numerical results demonstrate that the accuracy of this method is unaffected by the degree of nonlinearity of the equations.When solving the bending problem of multi-perforated complex-shaped plates under consideration,it is evident that directly using higher-order derivatives as unknown functions significantly improves the accuracy of stress calculation,even when the stress exhibits large gradient variations.Moreover,compared to the finite element method,the wavelet method requires significantly fewer nodes to achieve the same level of accuracy.Ultimately,the method achieves a sixth-order accuracy and resembles the treatment of one-dimensional problems during the solution process,effectively avoiding the need for the complex 2D meshing process typically required by conventional methods when solving problems with multi-connected domains.
基金Project(41174103)supported by the National Natural Science Foundation of ChinaProject(2010-211)supported by the Foreign Mineral Resources Venture Exploration Special Fund of China
文摘In mineral exploration, the apparent resistivity and apparent frequency (or apparent polarizability) parameters of induced polarization method are commonly utilized to describe the induced polarization anomaly. When the target geology structure is significantly complicated, these parameters would fail to reflect the nature of the anomaly source, and wrong conclusions may be obtained. A wavelet approach and a metal factor method were used to comprehensively interpret the induced polarization anomaly of complex geologic bodies in the Adi Bladia mine. Db5 wavelet basis was used to conduct two-scale decomposition and reconstruction, which effectively suppress the noise interference of greenschist facies regional metamorphism and magma intrusion, making energy concentrated and boundary problem unobservable. On the basis of that, the ore-induced anomaly was effectively extracted by the metal factor method.
基金Project supported by the National Natural Science Foundation of China (Nos. 50335030, 50505033 and 50575171)National Basic Research Program of China (No. 2005CB724106)Doctoral Program Foundation of University of China(No. 20040698026)
文摘Based on B-spline wavelet on the interval (BSWI), two classes of truncated conical shell elements were constructed to solve axisymmetric problems, i.e. BSWI thin truncated conical shell element and BSWI moderately thick truncated conical shell element with independent slopedeformation interpolation. In the construction of wavelet-based element, instead of traditional polynomial interpolation, the scaling functions of BSWI were employed to form the shape functions through the constructed elemental transformation matrix, and then construct BSWI element via the variational principle. Unlike the process of direct wavelets adding in the wavelet Galerkin method, the elemental displacement field represented by the coefficients of wavelets expansion was transformed into edges and internal modes via the constructed transformation matrix. BSWI element combines the accuracy of B-spline function approximation and various wavelet-based elements for structural analysis. Some static and dynamic numerical examples of conical shells were studied to demonstrate the present element with higher efficiency and precision than the traditional element.
基金Project supported by the National Natural Science Foundation of China(Nos.11472119,11032006 and 11121202)the National Key Project of Magneto-Constrained Fusion Energy Development Program(No.2013GB110002)the Scientific and Technological Self-innovation Foundation of Huazhong Agricultural University(No.52902-0900206074)
文摘A wavelet method for solving strongly nonlinear boundary value problems is described, which has been demonstrated early to have a convergence rate of order 4, almost independent of the nonlinear intensity of the equations. By using such a method, we study the bending problem of a circular plate with arbitrary large deflection. As the deflection increases, the bending behavior usually exhibits a so-called plate-to-membrane transition. Capturing such a transition has ever frustrated researchers for decades. However, without introducing any addi- tional treatment, we show in this study that the proposed wavelet solutions can naturally cover the plate-membrane transition region as the plate deflection increases. In addition, the high accuracy and efficiency of the wavelet method in solving strongly nonlinear problems is numerically confirmed, and applicable scopes for the linear, the membrane and the yon Karman plate theories are identified with respect to the large deformation bending of circular plates.
基金supported by the Fund of National Engineering and Research Center for Highways in Mountain Area(No.gsgzj-2012-05)the Fundamental Research Funds for the Central Universities of China(No.CDJXS12240003)the Scientific Research Foundation of State Key Laboratory of Coal Mine Disaster Dynamics and Control(No.2011DA105287-MS201213)
文摘A new numerical manifold (NMM) method is derived on the basis of quartic uniform B-spline interpolation. The analysis shows that the new interpolation function possesses higher-order continuity and polynomial consistency compared with the conven- tional NMM. The stiffness matrix of the new element is well-conditioned. The proposed method is applied for the numerical example of thin plate bending. Based on the prin- ciple of minimum potential energy, the manifold matrices and equilibrium equation are deduced. Numerical results reveal that the NMM has high interpolation accuracy and rapid convergence for the global cover function and its higher-order partial derivatives.
基金supported by the National Natural Science Foundation of China(Nos.11502103 and11421062)the Open Fund of State Key Laboratory of Structural Analysis for Industrial Equipment of China(No.GZ15115)
文摘A sampling approximation for a function defined on a bounded interval is proposed by combining the Coiflet-type wavelet expansion and the boundary extension technique. Based on such a wavelet approximation scheme, a Galerkin procedure is developed for the spatial discretization of the generalized nonlinear Schr6dinger (NLS) equa- tions, and a system of ordinary differential equations for the time dependent unknowns is obtained. Then, the classical fourth-order explicit Runge-Kutta method is used to solve this semi-discretization system. To justify the present method, several widely considered problems are solved as the test examples, and the results demonstrate that the proposed wavelet algorithm has much better accuracy and a faster convergence rate in space than many existing numerical methods.
文摘The quasi-Shannon interval wavelet is constructed based on the interpolation wavelet theory, and an adaptive precise integration method, which is based on extrapolation method is presented for nonlinear ordinary differential equations ( ODEs). And then, an adaptive interval wavelet precise integration method (AIWPIM) for nonlinear partial differential equations(PDEs) is proposed. The numerical results show that the computational precision of AIWPIM is higher than that of the method constructed by combining the wavelet and the 4th Runge-Kutta method, and the computational amounts of these two methods are almost equal. For convenience, the Burgers equation is taken as an example in introducing this method, which is also valid for more general cases.
文摘In this paper, we suggest a method for solving Fredholm integral equation of the first kind based on wavelet basis. The continuous Legendre and Chebyshev wavelets of the first, second, third and fourth kind on [0,1] are used and are utilized as a basis in Galerkin method to approximate the solution of integral equations. Then, in some examples the mentioned wavelets are compared with each other.
基金supported by the National Natural Science Foundation of China (Nos.41374023,41131067,41474019)the National 973 Project of China (No.2013CB733302)+2 种基金the China Postdoctoral Science Foundation (No.2016M602301)the Key Laboratory of Geospace Envi-ronment and Geodesy,Ministry of Education,Wuhan University (No.15-02-08)the State Scholarship Fund from Chinese Scholarship Council (No.201306270014)
文摘The application of Tikhonov regularization method dealing with the ill-conditioned problems in the regional gravity field modeling by Poisson wavelets is studied. In particular, the choices of the regularization matrices as well as the approaches for estimating the regularization parameters are investigated in details. The numerical results show that the regularized solutions derived from the first-order regularization are better than the ones obtained from zero-order regularization. For cross validation, the optimal regularization parameters are estimated from L-curve, variance component estimation(VCE) and minimum standard deviation(MSTD) approach, respectively, and the results show that the derived regularization parameters from different methods are consistent with each other. Together with the firstorder Tikhonov regularization and VCE method, the optimal network of Poisson wavelets is derived, based on which the local gravimetric geoid is computed. The accuracy of the corresponding gravimetric geoid reaches 1.1 cm in Netherlands, which validates the reliability of using Tikhonov regularization method in tackling the ill-conditioned problem for regional gravity field modeling.
文摘A method of fairing B spline surfaces by wavelet decomposition is investigated. The wavelet decomposition and reconstruction of quasi uniform bicubic B spline surfaces are described in detail. A method is introduced to approximate a B spline surface by a quasi uniform one. An error control approach for wavelet based fairing is suggested. Samples are given to show the feasibility of the algorithms presented in this paper. The practice showed that the wavelet based fairing is better than energy based one in case where the number of vertices of the B spline surface is greater than 1000. The quantitative variance of the approximation error in accordance with the change of decomposition levels needs to be further explored.
文摘Due to the disturbances of spatters, dusts and strong arc light, it is difficult to detect the molten pool edge and the weld line location in CO_2 welding processes. The median filtering and self-multiplication was employed to preprocess the image of the CO_2 welding in order to detect effectively the edge of molten pool and the location of weld line. The B-spline wavelet algorithm has been investigated, the influence of different scales and thresholds on the results of the edge detection have been compared and analyzed. The experimental results show that better performance to extract the edge of the molten pool and the location of weld line can be obtained by using the B-spline wavelet transform. The proposed edge detection approach can be further applied to the control of molten depth and the seam tracking.
基金supported by the National Natural Science Foundation of China (No. 50875195)the Foundation for the Author of National Excellent Doctoral Dissertation of China (No. 2007B33)the Key Project of the National Natural Science Foundation of China (No. 51035007)
文摘Based on the generalized variational principle and B-spline wavelet on the interval (BSWI), the multivariable BSWI elements with two kinds of variables (TBSWI) for hyperboloidal shell and open cylindrical shell are constructed in this paper. Different from the traditional method, the present one treats the generalized displacement and stress as independent variables. So differentiation and integration are avoided in calculating generalized stress and thus the precision is improved. Furthermore, compared with commonly used Daubechies wavelet, BSWI has explicit expression and excellent approximation property and thus further guarantee satisfactory results. Finally, the efficiency of the constructed multivariable shell elements is validated through several numerical examples.
基金the National Natural Science Foundation of China(No.40774056)Program of Excellent Team in Harbin Institute of Technology
文摘In this paper, we consider numerical simulation of wave propagation in fluidsaturated porous media. A wavelet finite-difference method is proposed to solve the 2-D elastic wave equation. The algorithm combines flexibility and computational efficiency of wavelet multi-resolution method with easy implementation of the finite-difference method. The orthogonal wavelet basis provides a natural framework, which adapt spatial grids to local wavefield properties. Numerical results show usefulness of the approach as an accurate and stable tool for simulation of wave propagation in fluid-saturated porous media.
基金theNationalNaturalScienceFoundationofChina (No .50 40 90 0 8)
文摘Multiresolution analysis of wavelet theory can give an effective way to describe the information at various levels of approximations or different resolutions, based on spline wavelet analysis,so weight function is orthonormally projected onto a sequence of closed spline subspaces, and is viewed at various levels of approximations or different resolutions. Now, the useful new way to research weight function is found, and the numerical result is given.