Pure near-infrared(NIR)phosphorescent materials with emission peak larger than 700 nm are of great significance for the development of optoelectronics and biomedicine.We have designed and synthesized two new B-embedde...Pure near-infrared(NIR)phosphorescent materials with emission peak larger than 700 nm are of great significance for the development of optoelectronics and biomedicine.We have designed and synthesized two new B-embedded pure near-infrared(NIR)-emitting iridium complexes(Ir(Bpiq)2acac and Ir(Bpiq)2dpm)with peaks greater than 720 nm.More importantly,they exhibit very narrow phosphorescent emission with full width at half maximum(FWHM)of only about 50 nm(0.12 e V),resulting in a high NIR content(>90%)in their spectrum.In view of better optical property and solubility,the complex Ir(Bpiq)_(2)dpm was used as the emitting layer of a solution-processed OLED device,and achieved good maximum external quantum efficiency(EQE)(2.8%)peaking at 728 nm.This research provides an important strategy for the design of narrowband NIR-emitting phosphorescent iridium complexes and their optoelectronic applications.展开更多
基金support from the National Natural Science Foundation of China(Nos.22171109,52373195 and 22001097)Natural Science Foundation of Jiangsu Province of China(No.BK20201003)+1 种基金the Postdoctoral Research Foundation of China(No.2021M701657)the Opening Project of Key Laboratory of Optoelectronic Chemical Materials and Devices,Ministry of Education,Jianghan University(No.JDGD-202301)。
文摘Pure near-infrared(NIR)phosphorescent materials with emission peak larger than 700 nm are of great significance for the development of optoelectronics and biomedicine.We have designed and synthesized two new B-embedded pure near-infrared(NIR)-emitting iridium complexes(Ir(Bpiq)2acac and Ir(Bpiq)2dpm)with peaks greater than 720 nm.More importantly,they exhibit very narrow phosphorescent emission with full width at half maximum(FWHM)of only about 50 nm(0.12 e V),resulting in a high NIR content(>90%)in their spectrum.In view of better optical property and solubility,the complex Ir(Bpiq)_(2)dpm was used as the emitting layer of a solution-processed OLED device,and achieved good maximum external quantum efficiency(EQE)(2.8%)peaking at 728 nm.This research provides an important strategy for the design of narrowband NIR-emitting phosphorescent iridium complexes and their optoelectronic applications.