Based on B-spline wavelet on the interval (BSWI), two classes of truncated conical shell elements were constructed to solve axisymmetric problems, i.e. BSWI thin truncated conical shell element and BSWI moderately t...Based on B-spline wavelet on the interval (BSWI), two classes of truncated conical shell elements were constructed to solve axisymmetric problems, i.e. BSWI thin truncated conical shell element and BSWI moderately thick truncated conical shell element with independent slopedeformation interpolation. In the construction of wavelet-based element, instead of traditional polynomial interpolation, the scaling functions of BSWI were employed to form the shape functions through the constructed elemental transformation matrix, and then construct BSWI element via the variational principle. Unlike the process of direct wavelets adding in the wavelet Galerkin method, the elemental displacement field represented by the coefficients of wavelets expansion was transformed into edges and internal modes via the constructed transformation matrix. BSWI element combines the accuracy of B-spline function approximation and various wavelet-based elements for structural analysis. Some static and dynamic numerical examples of conical shells were studied to demonstrate the present element with higher efficiency and precision than the traditional element.展开更多
A new wavelet finite element method(WFEM)is constructed in this paper and two elements for bending and free vibration problems of a stiffened plate are analyzed.By means of generalized potential energy function and vi...A new wavelet finite element method(WFEM)is constructed in this paper and two elements for bending and free vibration problems of a stiffened plate are analyzed.By means of generalized potential energy function and virtual work principle,the formulations of the bending and free vibration problems of the stiffened plate are derived separately.Then,the scaling functions of the B-spline wavelet on the interval(BSWI)are introduced to discrete the solving field variables instead of conventional polynomial interpolation.Finally,the corresponding two problems can be resolved following the traditional finite element frame.There are some advantages of the constructed elements in structural analysis.Due to the excellent features of the wavelet,such as multi-scale and localization characteristics,and the excellent numerical approximation property of the BSWI,the precise and efficient analysis can be achieved.Besides,transformation matrix is used to translate the meaningless wavelet coefficients into physical space,thus the resolving process is simplified.In order to verify the superiority of the constructed method in stiffened plate analysis,several numerical examples are given in the end.展开更多
Due to the disturbances of spatters, dusts and strong arc light, it is difficult to detect the molten pool edge and the weld line location in CO_2 welding processes. The median filtering and self-multiplication was em...Due to the disturbances of spatters, dusts and strong arc light, it is difficult to detect the molten pool edge and the weld line location in CO_2 welding processes. The median filtering and self-multiplication was employed to preprocess the image of the CO_2 welding in order to detect effectively the edge of molten pool and the location of weld line. The B-spline wavelet algorithm has been investigated, the influence of different scales and thresholds on the results of the edge detection have been compared and analyzed. The experimental results show that better performance to extract the edge of the molten pool and the location of weld line can be obtained by using the B-spline wavelet transform. The proposed edge detection approach can be further applied to the control of molten depth and the seam tracking.展开更多
The fourth-order B spline wavelet scaling functions are used to solve the two-dimensional unsteady diffusion equation. The calculations from a case history indicate that the method provides high accuracy and the compu...The fourth-order B spline wavelet scaling functions are used to solve the two-dimensional unsteady diffusion equation. The calculations from a case history indicate that the method provides high accuracy and the computational efficiency is enhanced due to the small matrix derived from this method.The respective features of 3-spline wavelet scaling functions,4-spline wavelet scaling functions and quasi-wavelet used to solve the two-dimensional unsteady diffusion equation are compared. The proposed method has potential applications in many fields including marine science.展开更多
A supported framework of a gyroscope's rotor is designed and the B-Spline wavelet finite element model of nonlinear supported magnetic field is worked out. A new finite element space is studied in which the scaling f...A supported framework of a gyroscope's rotor is designed and the B-Spline wavelet finite element model of nonlinear supported magnetic field is worked out. A new finite element space is studied in which the scaling function of the B-spline wavelet is considered as the shape function of a tetrahedton. The magnetic field is spited by an artificial absorbing body which used the condition of field radiating, so the solution is unique. The resolution is improved via the varying gradient of the B-spline function under the condition of unchanging gridding. So there are some advantages in dealing with the focus flux and a high varying gradient result from a nonlinear magnetic field. The result is more practical. Plots of flux and in the space is studied via simulating the supported system model. The results of the study are useful in the research of the supported magnetic system for the gyroscope rotor.展开更多
B-Spline wavelet-BEM numerical algorithm is presented. To avoid to treating singular integrals in wavelet-BEM, a method of putting source points out of the domain is used and discussed. Meanwhile, two higher effective...B-Spline wavelet-BEM numerical algorithm is presented. To avoid to treating singular integrals in wavelet-BEM, a method of putting source points out of the domain is used and discussed. Meanwhile, two higher effective numerical quadrature formulae are suggested. Finally, an example in mechanics is given and numerical results show that this method is effective. In addition, this method can be extended to manipulate problems, especially, with singularity.展开更多
In this paper, we discuss the B-spline wavelets introduced by Chui and Wang in [1]. The definition for B-spline wavelet packets is proposed along with the corresponding dual wavelet packets. The properties of B-spline...In this paper, we discuss the B-spline wavelets introduced by Chui and Wang in [1]. The definition for B-spline wavelet packets is proposed along with the corresponding dual wavelet packets. The properties of B-spline wavelet packets are also investigated.展开更多
A high-precision identification method for steam turbine rotor crack is presented. By providing me nrst three measured natural frequencies, contours for the specified natural frequency are plotted in the same coordi- ...A high-precision identification method for steam turbine rotor crack is presented. By providing me nrst three measured natural frequencies, contours for the specified natural frequency are plotted in the same coordi- nate, and the intersection of the three curves predicts the crack location and size. The cracked rotor system is mod- eled using B-spline wavelet on the interval (BSWI) finite element method, and a method based on empirical mode decomposition (EMD) and Laplace wavelet is implemented to improve the identification precision of the first three measured natural frequencies. Compared with the classical nondestructive testing, the presented method shows its effectiveness and reliability. It is feasible to apply this method to the online health monitoring for rotor structure.展开更多
Some construct characteristics and composing material of the new Gyro' s rotor are introduced. Some factors resulting in deformation of the rotor surface are analyzed. Under different loads such as the fo,'ce of def...Some construct characteristics and composing material of the new Gyro' s rotor are introduced. Some factors resulting in deformation of the rotor surface are analyzed. Under different loads such as the fo,'ce of deflecting center, the change of temperature, the fo,ce of pressure and couple factors, the deformation of rotor is analyzed with the wavelet finite element simulation software. The vector distributing map of rotor reformation is given. The deformation resulting from the pressure force of photon is studied. Finally, the influence on Gyro' s performance because of anomalous surface of rotor due to deformation of rotor is researched and the result is useful to forecast the performance of the drift of gyroscope. The disturbing moment resulting from the deformation of rotor can be compensated using the mathematic method, and provides an important reference for both design and optimization of the rotor.展开更多
Plant diseases are a major threat that can severely impact the production of agriculture and forestry.This can lead to the disruption of ecosystem functions and health.With its ability to capture continuous narrow-ban...Plant diseases are a major threat that can severely impact the production of agriculture and forestry.This can lead to the disruption of ecosystem functions and health.With its ability to capture continuous narrow-band spectra,hyperspectral technology has become a crucial tool to monitor crop diseases using remote sensing.However,existing continuous wavelet analysis(CWA)methods suffer from feature redundancy issues,while the continuous wavelet projection algorithm(CWPA),an optimization approach for feature selection,has not been fully validated to monitor plant diseases.This study utilized rice bacterial leaf blight(BLB)as an example by evaluating the performance of four wavelet basis functions-Gaussian2,Mexican hat,Meyer,andMorlet-within theCWAandCWPAframeworks.Additionally,the classification models were constructed using the k-nearest neighbors(KNN),randomforest(RF),and Naïve Bayes(NB)algorithms.The results showed the following:(1)Compared to traditional CWA,CWPA significantly reduced the number of required features.Under the CWPA framework,almost all the model combinations achieved maximum classification accuracy with only one feature.In contrast,the CWA framework required three to seven features.(2)Thechoice of wavelet basis functions markedly affected the performance of themodel.Of the four functions tested,the Meyer wavelet demonstrated the best overall performance in both the CWPA and CWA frameworks.(3)Under theCWPAframework,theMeyer-KNNandMeyer-NBcombinations achieved the highest overall accuracy of 93.75%using just one feature.In contrast,under the CWA framework,the CWA-RF combination achieved comparable accuracy(93.75%)but required six features.This study verified the technical advantages of CWPA for monitoring crop diseases,identified an optimal wavelet basis function selection scheme,and provided reliable technical support to precisely monitor BLB in rice(Oryza sativa).Moreover,the proposed methodological framework offers a scalable approach for the early diagnosis and assessment of plant stress,which can contribute to improved accuracy and timeliness when plant stress is monitored.展开更多
In the vision transformer(ViT)architecture,image data are transformed into sequential data for processing,which may result in the loss of spatial positional information.While the self-attention mechanism enhances the ...In the vision transformer(ViT)architecture,image data are transformed into sequential data for processing,which may result in the loss of spatial positional information.While the self-attention mechanism enhances the capacity of ViT to capture global features,it compromises the preservation of fine-grained local feature information.To address these challenges,we propose a spatial positional enhancement module and a wavelet transform enhancement module tailored for ViT models.These modules aim to reduce spatial positional information loss during the patch embedding process and enhance the model’s feature extraction capabilities.The spatial positional enhancement module reinforces spatial information in sequential data through convolutional operations and multi-scale feature extraction.Meanwhile,the wavelet transform enhancement module utilizes the multi-scale analysis and frequency decomposition to improve the ViT’s understanding of global and local image structures.This enhancement also improves the ViT’s ability to process complex structures and intricate image details.Experiments on CIFAR-10,CIFAR-100 and ImageNet-1k datasets are done to compare the proposed method with advanced classification methods.The results show that the proposed model achieves a higher classification accuracy,confirming its effectiveness and competitive advantage.展开更多
Atmospheric aerosols are the primary contributors to environmental pollution.As such aerosols are micro-to nanosized particles invisible to the naked eye,it is necessary to utilize LiDAR technology for their detection...Atmospheric aerosols are the primary contributors to environmental pollution.As such aerosols are micro-to nanosized particles invisible to the naked eye,it is necessary to utilize LiDAR technology for their detection.The laser radar echo signal is vulnerable to background light and electronic thermal noise.While single-photon LiDAR can effectively reduce background light interference,electronic thermal noise remains a significant challenge,especially at long distances and in environments with a low signal-to-noise ratio(SNR).However,conventional denoising methods cannot achieve satisfactory results in this case.In this paper,a novel adaptive continuous threshold wavelet denoising algorithm is proposed to filter out the noise.The algorithm features an adaptive threshold and a continuous threshold function.The adaptive threshold is dynamically adjusted according to the wavelet decomposition level,and the continuous threshold function ensures continuity with lower constant error,thus optimizing the denoising process.Simulation results show that the proposed algorithm has excellent performance in improving SNR and reducing root mean square error(RMSE)compared with other algorithms.Experimental results show that denoising of an actual LiDAR echo signal results in a 4.37 dB improvement in SNR and a 39.5%reduction in RMSE.The proposed method significantly enhances the ability of single-photon LiDAR to detect weak signals.展开更多
A distinguished category of operational fluids,known as hybrid nanofluids,occupies a prominent role among various fluid types owing to its superior heat transfer properties.By employing a dovetail fin profile,this wor...A distinguished category of operational fluids,known as hybrid nanofluids,occupies a prominent role among various fluid types owing to its superior heat transfer properties.By employing a dovetail fin profile,this work investigates the thermal reaction of a dynamic fin system to a hybrid nanofluid with shape-based properties,flowing uniformly at a velocity U.The analysis focuses on four distinct types of nanoparticles,i.e.,Al2O3,Ag,carbon nanotube(CNT),and graphene.Specifically,two of these particles exhibit a spherical shape,one possesses a cylindrical form,and the final type adopts a platelet morphology.The investigation delves into the pairing of these nanoparticles.The examination employs a combined approach to assess the constructional and thermal exchange characteristics of the hybrid nanofluid.The fin design,under the specified circumstances,gives rise to the derivation of a differential equation.The given equation is then transformed into a dimensionless form.Notably,the Hermite wavelet method is introduced for the first time to address the challenge posed by a moving fin submerged in a hybrid nanofluid with shape-dependent features.To validate the credibility of this research,the results obtained in this study are systematically compared with the numerical simulations.The examination discloses that the highest heat flux is achieved when combining nanoparticles with spherical and platelet shapes.展开更多
Nonlinear science is a fundamental area of physics research that investigates complex dynamical systems which are often characterized by high sensitivity and nonlinear behaviors.Numerical simulations play a pivotal ro...Nonlinear science is a fundamental area of physics research that investigates complex dynamical systems which are often characterized by high sensitivity and nonlinear behaviors.Numerical simulations play a pivotal role in nonlinear science,serving as a critical tool for revealing the underlying principles governing these systems.In addition,they play a crucial role in accelerating progress across various fields,such as climate modeling,weather forecasting,and fluid dynamics.However,their high computational cost limits their application in high-precision or long-duration simulations.In this study,we propose a novel data-driven approach for simulating complex physical systems,particularly turbulent phenomena.Specifically,we develop an efficient surrogate model based on the wavelet neural operator(WNO).Experimental results demonstrate that the enhanced WNO model can accurately simulate small-scale turbulent flows while using lower computational costs.In simulations of complex physical fields,the improved WNO model outperforms established deep learning models,such as U-Net,Res Net,and the Fourier neural operator(FNO),in terms of accuracy.Notably,the improved WNO model exhibits exceptional generalization capabilities,maintaining stable performance across a wide range of initial conditions and high-resolution scenarios without retraining.This study highlights the significant potential of the enhanced WNO model for simulating complex physical systems,providing strong evidence to support the development of more efficient,scalable,and high-precision simulation techniques.展开更多
Image watermarking is a powerful tool for media protection and can provide promising results when combined with other defense mechanisms.Image watermarking can be used to protect the copyright of digital media by embe...Image watermarking is a powerful tool for media protection and can provide promising results when combined with other defense mechanisms.Image watermarking can be used to protect the copyright of digital media by embedding a unique identifier that identifies the owner of the content.Image watermarking can also be used to verify the authenticity of digital media,such as images or videos,by ascertaining the watermark information.In this paper,a mathematical chaos-based image watermarking technique is proposed using discrete wavelet transform(DWT),chaotic map,and Laplacian operator.The DWT can be used to decompose the image into its frequency components,chaos is used to provide extra security defense by encrypting the watermark signal,and the Laplacian operator with optimization is applied to the mid-frequency bands to find the sharp areas in the image.These mid-frequency bands are used to embed the watermarks by modifying the coefficients in these bands.The mid-sub-band maintains the invisible property of the watermark,and chaos combined with the second-order derivative Laplacian is vulnerable to attacks.Comprehensive experiments demonstrate that this approach is effective for common signal processing attacks,i.e.,compression,noise addition,and filtering.Moreover,this approach also maintains image quality through peak signal-to-noise ratio(PSNR)and structural similarity index metrics(SSIM).The highest achieved PSNR and SSIM values are 55.4 dB and 1.In the same way,normalized correlation(NC)values are almost 10%–20%higher than comparative research.These results support assistance in copyright protection in multimedia content.展开更多
Plasma spark sources are widely used in high-resolution seismic exploration.However,research on the excitation mechanism and propagation characteristics of plasma spark sources is very limited.In this study,we elabora...Plasma spark sources are widely used in high-resolution seismic exploration.However,research on the excitation mechanism and propagation characteristics of plasma spark sources is very limited.In this study,we elaborated on the excitation process of corona discharge plasma spark source based on indoor experimental data.The electrode spacing has a direct impact on the movement of bubbles.As the spacing between bubbles decreases,they collapsed and fused,thereby suppressing the secondary pulse process.Based on the premise of linear arrangement and equal energy synchronous excitation,the motion equation of multiple bubbles under these conditions was derived,and a calculation method for the near-field wavelet model of plasma spark source was established.We simulated the source signals received in different directions and constructed a spatial wavelet face spectrum.Compared with traditional far-field wavelets,the spatial wavelet facial feature representation method provides a more comprehensive display of the variation characteristics and propagation properties of source wavelets in three-dimensional space.The spatial wavelet variation process of the plasma spark source was analyzed,and the source depth and the virtual reflection path are the main factors affecting the wavelet.The high-frequency properties of plasma electric spark source wavelets lead to their sensitivity to factors such as wave fluctuations,position changes,and environmental noise.Minor changes in collection parameters may result in significant changes in the recorded waveform and final data resolution.So,the facial feature method provides more effective technical support for wavelet evaluation.展开更多
In recent years,variable-order fractional partial differential equations have attracted growing interest due to their enhanced ability tomodel complex physical phenomena withmemory and spatial heterogeneity.However,ex...In recent years,variable-order fractional partial differential equations have attracted growing interest due to their enhanced ability tomodel complex physical phenomena withmemory and spatial heterogeneity.However,existing numerical methods often struggle with the computational challenges posed by such equations,especially in nonlinear,multi-term formulations.This study introduces two hybrid numerical methods—the Linear-Sine and Cosine(L1-CAS)and fast-CAS schemes—for solving linear and nonlinear multi-term Caputo variable-order(CVO)fractional partial differential equations.These methods combine CAS wavelet-based spatial discretization with L1 and fast algorithms in the time domain.A key feature of the approach is its ability to efficiently handle fully coupled spacetime variable-order derivatives and nonlinearities through a second-order interpolation technique.In addition,we derive CAS wavelet operational matrices for variable-order integration and for boundary value problems,forming the foundation of the spatial discretization.Numerical experiments confirm the accuracy,stability,and computational efficiency of the proposed methods.展开更多
This paper presents CW-HRNet,a high-resolution,lightweight crack segmentation network designed to address challenges in complex scenes with slender,deformable,and blurred crack structures.The model incorporates two ke...This paper presents CW-HRNet,a high-resolution,lightweight crack segmentation network designed to address challenges in complex scenes with slender,deformable,and blurred crack structures.The model incorporates two key modules:Constrained Deformable Convolution(CDC),which stabilizes geometric alignment by applying a tanh limiter and learnable scaling factor to the predicted offsets,and the Wavelet Frequency Enhancement Module(WFEM),which decomposes features using Haar wavelets to preserve low-frequency structures while enhancing high-frequency boundaries and textures.Evaluations on the CrackSeg9k benchmark demonstrate CW-HRNet’s superior performance,achieving 82.39%mIoU with only 7.49M parameters and 10.34 GFLOPs,outperforming HrSegNet-B48 by 1.83% in segmentation accuracy with minimal complexity overhead.The model also shows strong cross-dataset generalization,achieving 60.01%mIoU and 66.22%F1 on Asphalt3k without fine-tuning.These results highlight CW-HRNet’s favorable accuracyefficiency trade-off for real-world crack segmentation tasks.展开更多
基金Project supported by the National Natural Science Foundation of China (Nos. 50335030, 50505033 and 50575171)National Basic Research Program of China (No. 2005CB724106)Doctoral Program Foundation of University of China(No. 20040698026)
文摘Based on B-spline wavelet on the interval (BSWI), two classes of truncated conical shell elements were constructed to solve axisymmetric problems, i.e. BSWI thin truncated conical shell element and BSWI moderately thick truncated conical shell element with independent slopedeformation interpolation. In the construction of wavelet-based element, instead of traditional polynomial interpolation, the scaling functions of BSWI were employed to form the shape functions through the constructed elemental transformation matrix, and then construct BSWI element via the variational principle. Unlike the process of direct wavelets adding in the wavelet Galerkin method, the elemental displacement field represented by the coefficients of wavelets expansion was transformed into edges and internal modes via the constructed transformation matrix. BSWI element combines the accuracy of B-spline function approximation and various wavelet-based elements for structural analysis. Some static and dynamic numerical examples of conical shells were studied to demonstrate the present element with higher efficiency and precision than the traditional element.
基金This work was supported by the National Natural Science Foundation of China(Nos.51405370&51421004)the National Key Basic Research Program of China(No.2015CB057400)+2 种基金the project supported by Natural Science Basic Plan in Shaanxi Province of China(No.2015JQ5184)the Fundamental Research Funds for the Central Universities(xjj2014014)Shaanxi Province Postdoctoral Research Project.
文摘A new wavelet finite element method(WFEM)is constructed in this paper and two elements for bending and free vibration problems of a stiffened plate are analyzed.By means of generalized potential energy function and virtual work principle,the formulations of the bending and free vibration problems of the stiffened plate are derived separately.Then,the scaling functions of the B-spline wavelet on the interval(BSWI)are introduced to discrete the solving field variables instead of conventional polynomial interpolation.Finally,the corresponding two problems can be resolved following the traditional finite element frame.There are some advantages of the constructed elements in structural analysis.Due to the excellent features of the wavelet,such as multi-scale and localization characteristics,and the excellent numerical approximation property of the BSWI,the precise and efficient analysis can be achieved.Besides,transformation matrix is used to translate the meaningless wavelet coefficients into physical space,thus the resolving process is simplified.In order to verify the superiority of the constructed method in stiffened plate analysis,several numerical examples are given in the end.
文摘Due to the disturbances of spatters, dusts and strong arc light, it is difficult to detect the molten pool edge and the weld line location in CO_2 welding processes. The median filtering and self-multiplication was employed to preprocess the image of the CO_2 welding in order to detect effectively the edge of molten pool and the location of weld line. The B-spline wavelet algorithm has been investigated, the influence of different scales and thresholds on the results of the edge detection have been compared and analyzed. The experimental results show that better performance to extract the edge of the molten pool and the location of weld line can be obtained by using the B-spline wavelet transform. The proposed edge detection approach can be further applied to the control of molten depth and the seam tracking.
文摘The fourth-order B spline wavelet scaling functions are used to solve the two-dimensional unsteady diffusion equation. The calculations from a case history indicate that the method provides high accuracy and the computational efficiency is enhanced due to the small matrix derived from this method.The respective features of 3-spline wavelet scaling functions,4-spline wavelet scaling functions and quasi-wavelet used to solve the two-dimensional unsteady diffusion equation are compared. The proposed method has potential applications in many fields including marine science.
文摘A supported framework of a gyroscope's rotor is designed and the B-Spline wavelet finite element model of nonlinear supported magnetic field is worked out. A new finite element space is studied in which the scaling function of the B-spline wavelet is considered as the shape function of a tetrahedton. The magnetic field is spited by an artificial absorbing body which used the condition of field radiating, so the solution is unique. The resolution is improved via the varying gradient of the B-spline function under the condition of unchanging gridding. So there are some advantages in dealing with the focus flux and a high varying gradient result from a nonlinear magnetic field. The result is more practical. Plots of flux and in the space is studied via simulating the supported system model. The results of the study are useful in the research of the supported magnetic system for the gyroscope rotor.
文摘B-Spline wavelet-BEM numerical algorithm is presented. To avoid to treating singular integrals in wavelet-BEM, a method of putting source points out of the domain is used and discussed. Meanwhile, two higher effective numerical quadrature formulae are suggested. Finally, an example in mechanics is given and numerical results show that this method is effective. In addition, this method can be extended to manipulate problems, especially, with singularity.
文摘In this paper, we discuss the B-spline wavelets introduced by Chui and Wang in [1]. The definition for B-spline wavelet packets is proposed along with the corresponding dual wavelet packets. The properties of B-spline wavelet packets are also investigated.
基金National Natural Science Foundation of China(No.51225501No.51035007)Program for Changjiang Scholars and Innovative Research Team in University
文摘A high-precision identification method for steam turbine rotor crack is presented. By providing me nrst three measured natural frequencies, contours for the specified natural frequency are plotted in the same coordi- nate, and the intersection of the three curves predicts the crack location and size. The cracked rotor system is mod- eled using B-spline wavelet on the interval (BSWI) finite element method, and a method based on empirical mode decomposition (EMD) and Laplace wavelet is implemented to improve the identification precision of the first three measured natural frequencies. Compared with the classical nondestructive testing, the presented method shows its effectiveness and reliability. It is feasible to apply this method to the online health monitoring for rotor structure.
文摘Some construct characteristics and composing material of the new Gyro' s rotor are introduced. Some factors resulting in deformation of the rotor surface are analyzed. Under different loads such as the fo,'ce of deflecting center, the change of temperature, the fo,ce of pressure and couple factors, the deformation of rotor is analyzed with the wavelet finite element simulation software. The vector distributing map of rotor reformation is given. The deformation resulting from the pressure force of photon is studied. Finally, the influence on Gyro' s performance because of anomalous surface of rotor due to deformation of rotor is researched and the result is useful to forecast the performance of the drift of gyroscope. The disturbing moment resulting from the deformation of rotor can be compensated using the mathematic method, and provides an important reference for both design and optimization of the rotor.
基金supported by the‘Pioneer’and‘Leading Goose’R&D Program of Zhejiang(Grant No.2023C02018)Zhejiang Provincial Natural Science Foundation of China(Grant No.LTGN23D010002)+2 种基金National Natural Science Foundation of China(Grant No.42371385)Funds of the Natural Science Foundation of Hangzhou(Grant No.2024SZRYBD010001)Nanxun Scholars Program of ZJWEU(Grant No.RC2022010755).
文摘Plant diseases are a major threat that can severely impact the production of agriculture and forestry.This can lead to the disruption of ecosystem functions and health.With its ability to capture continuous narrow-band spectra,hyperspectral technology has become a crucial tool to monitor crop diseases using remote sensing.However,existing continuous wavelet analysis(CWA)methods suffer from feature redundancy issues,while the continuous wavelet projection algorithm(CWPA),an optimization approach for feature selection,has not been fully validated to monitor plant diseases.This study utilized rice bacterial leaf blight(BLB)as an example by evaluating the performance of four wavelet basis functions-Gaussian2,Mexican hat,Meyer,andMorlet-within theCWAandCWPAframeworks.Additionally,the classification models were constructed using the k-nearest neighbors(KNN),randomforest(RF),and Naïve Bayes(NB)algorithms.The results showed the following:(1)Compared to traditional CWA,CWPA significantly reduced the number of required features.Under the CWPA framework,almost all the model combinations achieved maximum classification accuracy with only one feature.In contrast,the CWA framework required three to seven features.(2)Thechoice of wavelet basis functions markedly affected the performance of themodel.Of the four functions tested,the Meyer wavelet demonstrated the best overall performance in both the CWPA and CWA frameworks.(3)Under theCWPAframework,theMeyer-KNNandMeyer-NBcombinations achieved the highest overall accuracy of 93.75%using just one feature.In contrast,under the CWA framework,the CWA-RF combination achieved comparable accuracy(93.75%)but required six features.This study verified the technical advantages of CWPA for monitoring crop diseases,identified an optimal wavelet basis function selection scheme,and provided reliable technical support to precisely monitor BLB in rice(Oryza sativa).Moreover,the proposed methodological framework offers a scalable approach for the early diagnosis and assessment of plant stress,which can contribute to improved accuracy and timeliness when plant stress is monitored.
基金National Natural Science Foundation of China(No.62176052)。
文摘In the vision transformer(ViT)architecture,image data are transformed into sequential data for processing,which may result in the loss of spatial positional information.While the self-attention mechanism enhances the capacity of ViT to capture global features,it compromises the preservation of fine-grained local feature information.To address these challenges,we propose a spatial positional enhancement module and a wavelet transform enhancement module tailored for ViT models.These modules aim to reduce spatial positional information loss during the patch embedding process and enhance the model’s feature extraction capabilities.The spatial positional enhancement module reinforces spatial information in sequential data through convolutional operations and multi-scale feature extraction.Meanwhile,the wavelet transform enhancement module utilizes the multi-scale analysis and frequency decomposition to improve the ViT’s understanding of global and local image structures.This enhancement also improves the ViT’s ability to process complex structures and intricate image details.Experiments on CIFAR-10,CIFAR-100 and ImageNet-1k datasets are done to compare the proposed method with advanced classification methods.The results show that the proposed model achieves a higher classification accuracy,confirming its effectiveness and competitive advantage.
基金funded by the National Key R&D Program of China(Grant No.2022YFC3300705)the National Natural Science Foundation of China(Grant Nos.62203056,12202048,and 62201056).
文摘Atmospheric aerosols are the primary contributors to environmental pollution.As such aerosols are micro-to nanosized particles invisible to the naked eye,it is necessary to utilize LiDAR technology for their detection.The laser radar echo signal is vulnerable to background light and electronic thermal noise.While single-photon LiDAR can effectively reduce background light interference,electronic thermal noise remains a significant challenge,especially at long distances and in environments with a low signal-to-noise ratio(SNR).However,conventional denoising methods cannot achieve satisfactory results in this case.In this paper,a novel adaptive continuous threshold wavelet denoising algorithm is proposed to filter out the noise.The algorithm features an adaptive threshold and a continuous threshold function.The adaptive threshold is dynamically adjusted according to the wavelet decomposition level,and the continuous threshold function ensures continuity with lower constant error,thus optimizing the denoising process.Simulation results show that the proposed algorithm has excellent performance in improving SNR and reducing root mean square error(RMSE)compared with other algorithms.Experimental results show that denoising of an actual LiDAR echo signal results in a 4.37 dB improvement in SNR and a 39.5%reduction in RMSE.The proposed method significantly enhances the ability of single-photon LiDAR to detect weak signals.
文摘A distinguished category of operational fluids,known as hybrid nanofluids,occupies a prominent role among various fluid types owing to its superior heat transfer properties.By employing a dovetail fin profile,this work investigates the thermal reaction of a dynamic fin system to a hybrid nanofluid with shape-based properties,flowing uniformly at a velocity U.The analysis focuses on four distinct types of nanoparticles,i.e.,Al2O3,Ag,carbon nanotube(CNT),and graphene.Specifically,two of these particles exhibit a spherical shape,one possesses a cylindrical form,and the final type adopts a platelet morphology.The investigation delves into the pairing of these nanoparticles.The examination employs a combined approach to assess the constructional and thermal exchange characteristics of the hybrid nanofluid.The fin design,under the specified circumstances,gives rise to the derivation of a differential equation.The given equation is then transformed into a dimensionless form.Notably,the Hermite wavelet method is introduced for the first time to address the challenge posed by a moving fin submerged in a hybrid nanofluid with shape-dependent features.To validate the credibility of this research,the results obtained in this study are systematically compared with the numerical simulations.The examination discloses that the highest heat flux is achieved when combining nanoparticles with spherical and platelet shapes.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.42005003 and 41475094)。
文摘Nonlinear science is a fundamental area of physics research that investigates complex dynamical systems which are often characterized by high sensitivity and nonlinear behaviors.Numerical simulations play a pivotal role in nonlinear science,serving as a critical tool for revealing the underlying principles governing these systems.In addition,they play a crucial role in accelerating progress across various fields,such as climate modeling,weather forecasting,and fluid dynamics.However,their high computational cost limits their application in high-precision or long-duration simulations.In this study,we propose a novel data-driven approach for simulating complex physical systems,particularly turbulent phenomena.Specifically,we develop an efficient surrogate model based on the wavelet neural operator(WNO).Experimental results demonstrate that the enhanced WNO model can accurately simulate small-scale turbulent flows while using lower computational costs.In simulations of complex physical fields,the improved WNO model outperforms established deep learning models,such as U-Net,Res Net,and the Fourier neural operator(FNO),in terms of accuracy.Notably,the improved WNO model exhibits exceptional generalization capabilities,maintaining stable performance across a wide range of initial conditions and high-resolution scenarios without retraining.This study highlights the significant potential of the enhanced WNO model for simulating complex physical systems,providing strong evidence to support the development of more efficient,scalable,and high-precision simulation techniques.
基金supported by the researcher supporting Project number(RSPD2025R636),King Saud University,Riyadh,Saudi Arabia.
文摘Image watermarking is a powerful tool for media protection and can provide promising results when combined with other defense mechanisms.Image watermarking can be used to protect the copyright of digital media by embedding a unique identifier that identifies the owner of the content.Image watermarking can also be used to verify the authenticity of digital media,such as images or videos,by ascertaining the watermark information.In this paper,a mathematical chaos-based image watermarking technique is proposed using discrete wavelet transform(DWT),chaotic map,and Laplacian operator.The DWT can be used to decompose the image into its frequency components,chaos is used to provide extra security defense by encrypting the watermark signal,and the Laplacian operator with optimization is applied to the mid-frequency bands to find the sharp areas in the image.These mid-frequency bands are used to embed the watermarks by modifying the coefficients in these bands.The mid-sub-band maintains the invisible property of the watermark,and chaos combined with the second-order derivative Laplacian is vulnerable to attacks.Comprehensive experiments demonstrate that this approach is effective for common signal processing attacks,i.e.,compression,noise addition,and filtering.Moreover,this approach also maintains image quality through peak signal-to-noise ratio(PSNR)and structural similarity index metrics(SSIM).The highest achieved PSNR and SSIM values are 55.4 dB and 1.In the same way,normalized correlation(NC)values are almost 10%–20%higher than comparative research.These results support assistance in copyright protection in multimedia content.
基金supported by the Key Laboratory of Marine Mineral Resources,Ministry of Natural and Resources,Guangzhou(No.KLMMR-20220K02)the Marine Geological Survey Program of China Geological Survey(No.DD20191003)。
文摘Plasma spark sources are widely used in high-resolution seismic exploration.However,research on the excitation mechanism and propagation characteristics of plasma spark sources is very limited.In this study,we elaborated on the excitation process of corona discharge plasma spark source based on indoor experimental data.The electrode spacing has a direct impact on the movement of bubbles.As the spacing between bubbles decreases,they collapsed and fused,thereby suppressing the secondary pulse process.Based on the premise of linear arrangement and equal energy synchronous excitation,the motion equation of multiple bubbles under these conditions was derived,and a calculation method for the near-field wavelet model of plasma spark source was established.We simulated the source signals received in different directions and constructed a spatial wavelet face spectrum.Compared with traditional far-field wavelets,the spatial wavelet facial feature representation method provides a more comprehensive display of the variation characteristics and propagation properties of source wavelets in three-dimensional space.The spatial wavelet variation process of the plasma spark source was analyzed,and the source depth and the virtual reflection path are the main factors affecting the wavelet.The high-frequency properties of plasma electric spark source wavelets lead to their sensitivity to factors such as wave fluctuations,position changes,and environmental noise.Minor changes in collection parameters may result in significant changes in the recorded waveform and final data resolution.So,the facial feature method provides more effective technical support for wavelet evaluation.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(NRF-2021R1A2C1011817)the BK21 Program(Next Generation Education Program for Mathematical Sciences,4299990414089)funded by the Ministry of Education(MOE,Republic of Korea).
文摘In recent years,variable-order fractional partial differential equations have attracted growing interest due to their enhanced ability tomodel complex physical phenomena withmemory and spatial heterogeneity.However,existing numerical methods often struggle with the computational challenges posed by such equations,especially in nonlinear,multi-term formulations.This study introduces two hybrid numerical methods—the Linear-Sine and Cosine(L1-CAS)and fast-CAS schemes—for solving linear and nonlinear multi-term Caputo variable-order(CVO)fractional partial differential equations.These methods combine CAS wavelet-based spatial discretization with L1 and fast algorithms in the time domain.A key feature of the approach is its ability to efficiently handle fully coupled spacetime variable-order derivatives and nonlinearities through a second-order interpolation technique.In addition,we derive CAS wavelet operational matrices for variable-order integration and for boundary value problems,forming the foundation of the spatial discretization.Numerical experiments confirm the accuracy,stability,and computational efficiency of the proposed methods.
文摘This paper presents CW-HRNet,a high-resolution,lightweight crack segmentation network designed to address challenges in complex scenes with slender,deformable,and blurred crack structures.The model incorporates two key modules:Constrained Deformable Convolution(CDC),which stabilizes geometric alignment by applying a tanh limiter and learnable scaling factor to the predicted offsets,and the Wavelet Frequency Enhancement Module(WFEM),which decomposes features using Haar wavelets to preserve low-frequency structures while enhancing high-frequency boundaries and textures.Evaluations on the CrackSeg9k benchmark demonstrate CW-HRNet’s superior performance,achieving 82.39%mIoU with only 7.49M parameters and 10.34 GFLOPs,outperforming HrSegNet-B48 by 1.83% in segmentation accuracy with minimal complexity overhead.The model also shows strong cross-dataset generalization,achieving 60.01%mIoU and 66.22%F1 on Asphalt3k without fine-tuning.These results highlight CW-HRNet’s favorable accuracyefficiency trade-off for real-world crack segmentation tasks.