期刊文献+
共找到543,497篇文章
< 1 2 250 >
每页显示 20 50 100
PID Steering Control Method of Agricultural Robot Based on Fusion of Particle Swarm Optimization and Genetic Algorithm
1
作者 ZHAO Longlian ZHANG Jiachuang +2 位作者 LI Mei DONG Zhicheng LI Junhui 《农业机械学报》 北大核心 2026年第1期358-367,共10页
Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion... Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion algorithm took advantage of the fast optimization ability of PSO to optimize the population screening link of GA.The Simulink simulation results showed that the convergence of the fitness function of the fusion algorithm was accelerated,the system response adjustment time was reduced,and the overshoot was almost zero.Then the algorithm was applied to the steering test of agricultural robot in various scenes.After modeling the steering system of agricultural robot,the steering test results in the unloaded suspended state showed that the PID control based on fusion algorithm reduced the rise time,response adjustment time and overshoot of the system,and improved the response speed and stability of the system,compared with the artificial trial and error PID control and the PID control based on GA.The actual road steering test results showed that the PID control response rise time based on the fusion algorithm was the shortest,about 4.43 s.When the target pulse number was set to 100,the actual mean value in the steady-state regulation stage was about 102.9,which was the closest to the target value among the three control methods,and the overshoot was reduced at the same time.The steering test results under various scene states showed that the PID control based on the proposed fusion algorithm had good anti-interference ability,it can adapt to the changes of environment and load and improve the performance of the control system.It was effective in the steering control of agricultural robot.This method can provide a reference for the precise steering control of other robots. 展开更多
关键词 agricultural robot steering PID control particle swarm optimization algorithm genetic algorithm
在线阅读 下载PDF
Flood predictions from metrics to classes by multiple machine learning algorithms coupling with clustering-deduced membership degree
2
作者 ZHAI Xiaoyan ZHANG Yongyong +5 位作者 XIA Jun ZHANG Yongqiang TANG Qiuhong SHAO Quanxi CHEN Junxu ZHANG Fan 《Journal of Geographical Sciences》 2026年第1期149-176,共28页
Accurate prediction of flood events is important for flood control and risk management.Machine learning techniques contributed greatly to advances in flood predictions,and existing studies mainly focused on predicting... Accurate prediction of flood events is important for flood control and risk management.Machine learning techniques contributed greatly to advances in flood predictions,and existing studies mainly focused on predicting flood resource variables using single or hybrid machine learning techniques.However,class-based flood predictions have rarely been investigated,which can aid in quickly diagnosing comprehensive flood characteristics and proposing targeted management strategies.This study proposed a prediction approach of flood regime metrics and event classes coupling machine learning algorithms with clustering-deduced membership degrees.Five algorithms were adopted for this exploration.Results showed that the class membership degrees accurately determined event classes with class hit rates up to 100%,compared with the four classes clustered from nine regime metrics.The nonlinear algorithms(Multiple Linear Regression,Random Forest,and least squares-Support Vector Machine)outperformed the linear techniques(Multiple Linear Regression and Stepwise Regression)in predicting flood regime metrics.The proposed approach well predicted flood event classes with average class hit rates of 66.0%-85.4%and 47.2%-76.0%in calibration and validation periods,respectively,particularly for the slow and late flood events.The predictive capability of the proposed prediction approach for flood regime metrics and classes was considerably stronger than that of hydrological modeling approach. 展开更多
关键词 flood regime metrics class prediction machine learning algorithms hydrological model
原文传递
Equivalent Modeling with Passive Filter Parameter Clustering for Photovoltaic Power Stations Based on a Particle Swarm Optimization K-Means Algorithm
3
作者 Binjiang Hu Yihua Zhu +3 位作者 Liang Tu Zun Ma Xian Meng Kewei Xu 《Energy Engineering》 2026年第1期431-459,共29页
This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the compl... This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the complexities,simulation time cost and convergence problems of detailed PV power station models.First,the amplitude–frequency curves of different filter parameters are analyzed.Based on the results,a grouping parameter set for characterizing the external filter characteristics is established.These parameters are further defined as clustering parameters.A single PV inverter model is then established as a prerequisite foundation.The proposed equivalent method combines the global search capability of PSO with the rapid convergence of KMC,effectively overcoming the tendency of KMC to become trapped in local optima.This approach enhances both clustering accuracy and numerical stability when determining equivalence for PV inverter units.Using the proposed clustering method,both a detailed PV power station model and an equivalent model are developed and compared.Simulation and hardwarein-loop(HIL)results based on the equivalent model verify that the equivalent method accurately represents the dynamic characteristics of PVpower stations and adapts well to different operating conditions.The proposed equivalent modeling method provides an effective analysis tool for future renewable energy integration research. 展开更多
关键词 Photovoltaic power station multi-machine equivalentmodeling particle swarmoptimization K-means clustering algorithm
在线阅读 下载PDF
温阳益气方通过GAS/CCKBR抑制肠道NHE3活性调节钠吸收治疗慢传输型便秘的作用机制
4
作者 吴本升 何宗琦 +1 位作者 周青 王晓鹏 《辽宁中医杂志》 北大核心 2026年第1期168-173,I0004,I0005,共8页
目的研究温阳益气方(Wenyang Yiqi Formula,WYF)对胃泌素(gastrin,GAS)/胆囊收缩素B受体(cholecystokinin B receptor,CCKBR)及钠氢交换体3(Na^(+)/H^(+)exchanger3,NHE3)的影响,并探讨其治疗慢传输型便秘(slow transit constipation,S... 目的研究温阳益气方(Wenyang Yiqi Formula,WYF)对胃泌素(gastrin,GAS)/胆囊收缩素B受体(cholecystokinin B receptor,CCKBR)及钠氢交换体3(Na^(+)/H^(+)exchanger3,NHE3)的影响,并探讨其治疗慢传输型便秘(slow transit constipation,STC)的机制。方法采用STC大鼠和Caco-2细胞作为体内和体外模型。评估下列指标:肠道转运率(ITR)、结肠组织病理学、粪便特征,从而评价WYF的疗效。此外,检测细胞活力、NHE3活性及表达量和GAS/CCKBR水平。同时检测PI3K/PLC/PKC通路中的关键蛋白表达,并进行PI3K抑制剂实验。结果与正常对照组相比,STC大鼠ITR下降、粪便排出减少并呈干结,结肠组织病理损伤加重,WYF可缓解上述情况;体外实验显示,WYF含药血清可抑制Caco-2细胞NHE3活性及蛋白表达,呈剂量依赖性;高浓度在24-72 h可降低细胞活力。机制方面,GAS上调CCKBR并激活PI3K/PLC/PKC相关信号,同时抑制NHE3活性;LY294002抑制上述信号并上调NHE3活性,而WYF可部分逆转LY294002效应并降低NHE3活性。CCKBR沉默后NHE3活性升高,加入GAS后NHE3活性受抑,提示GAS/CCKBR轴参与NHE3调控。结论WYF可能通过调控GAS-CCKBR及其下游PI3K/PLC/PKC依赖性信号,抑制肠上皮NHE3表达,进而减少NHE3介导的Na^(+)/H^(+)交换与Na^(+)吸收,增加肠腔水分并改善排便表型;其因果关系仍需离子通量及特异性阻断实验进一步验证。 展开更多
关键词 温阳益气方 钠氢交换体3 Na^(+)/H^(+)离子转运 胃泌素 胆囊收缩素b受体 慢传输型便秘
原文传递
Q355B钢在武汉与库尔勒典型土壤环境中的腐蚀行为研究
5
作者 周庆军 李育霖 +2 位作者 宋凤明 陈志坚 周学杰 《材料保护》 2026年第1期95-101,共7页
为了研究常用埋地结构钢在不同土壤环境中的腐蚀差异,为不同地区埋地材料选择提供理论依据,采用失重法、扫描电镜(SEM)、能谱(EDS)及X射线衍射(XRD)对比分析了Q355B钢在武汉与库尔勒典型土壤环境中的腐蚀性能、腐蚀形貌及腐蚀产物,结合... 为了研究常用埋地结构钢在不同土壤环境中的腐蚀差异,为不同地区埋地材料选择提供理论依据,采用失重法、扫描电镜(SEM)、能谱(EDS)及X射线衍射(XRD)对比分析了Q355B钢在武汉与库尔勒典型土壤环境中的腐蚀性能、腐蚀形貌及腐蚀产物,结合电化学分析对比研究了Q355B钢在2种土壤中的腐蚀行为。结果表明:库尔勒土壤环境中Q355B钢为全面腐蚀,腐蚀更加严重,失重量约为武汉土壤的1.65倍;武汉土壤环境中Q355B钢局部点蚀更加严重,平均点蚀深度是库尔勒土壤的1.25倍;2种土壤中Q355B钢腐蚀产物主要为Fe的氧化物,包括α-FeOOH、γ-FeOOH、Fe_(3)O_(4);土壤类型的不同导致了Q355B钢腐蚀产物保护性的不同。 展开更多
关键词 Q355b 土壤腐蚀 腐蚀特性
在线阅读 下载PDF
奥司他韦联合重组人干扰素α1b雾化治疗儿童流行性感冒的疗效分析
6
作者 杜月荷 孙莉莉 +2 位作者 殷爱云 柯群刚 李海朋 《中国实用医药》 2026年第5期92-95,共4页
目的研究奥司他韦联合重组人干扰素α1b雾化治疗儿童流行性感冒(流感)的效果及安全性。方法选取流感患儿80例为研究对象,采用随机数字表法将患儿分成对照组(n=40,应用磷酸奥司他韦口服治疗)和观察组(n=40,在对照组的基础上予以重组人干... 目的研究奥司他韦联合重组人干扰素α1b雾化治疗儿童流行性感冒(流感)的效果及安全性。方法选取流感患儿80例为研究对象,采用随机数字表法将患儿分成对照组(n=40,应用磷酸奥司他韦口服治疗)和观察组(n=40,在对照组的基础上予以重组人干扰素α1b注射液雾化吸入治疗)。比较两组的治疗效果、临床症状缓解时间、血清炎性因子[血清白细胞介素-6(IL-6)、白细胞介素-8(IL-8)、干扰素γ(IFN-γ)以及肿瘤坏死因子-α(TNF-α)]水平、不良反应发生率。结果两组的总有效率比较,观察组(95.00%)高于对照组(75.00%)(P<0.05)。两组患儿的退烧时间、咳嗽缓解时间、鼻塞缓解时间以及肌肉酸痛缓解时间比较,观察组的(1.93±0.29)、(3.81±0.37)、(3.49±0.33)、(2.78±0.31)d均比对照组的(3.17±0.34)、(4.64±0.45)、(4.88±0.54)、(3.58±0.39)d短(P<0.05)。两组患儿治疗5 d后的血清IL-6、IL-8、IFN-γ、TNF-α水平均较治疗前有一定程度的降低,且观察组治疗5 d后的血清IL-6(13.67±1.66)pg/ml、IL-8(22.39±2.39)ng/ml、IFN-γ(14.38±1.21)pg/ml、TNF-α(9.54±1.02)ng/L均低于对照组的(20.17±2.01)pg/ml、(31.28±2.94)ng/ml、(21.23±1.87)pg/ml、(14.39±1.45)ng/L(P<0.05)。两组不良反应发生率比较差异无统计学意义(χ2=0.157,P=0.692>0.05)。结论磷酸奥司他韦颗粒口服联合重组人干扰素α1b注射液雾化吸入应用在儿童流感治疗中有助于促进临床症状缓解,控制炎症反应,且用药安全性较高。 展开更多
关键词 儿童流行性感冒 磷酸奥司他韦 重组人干扰素Α1b 炎性因子
暂未订购
基于B/S架构的资产管理系统设计与实现方法
7
作者 张媛 《电脑编程技巧与维护》 2026年第1期76-78,共3页
为提升资产管理效率,提出了一种基于B/S架构的资产管理系统设计与实现方法,涉及较完整的分析、设计、搭建与主要功能模块的实现。在设计实现过程中,使用Java语言、采用B/S架构、通过MySQL数据库实现数据访问,前端技术采用HTML、CSS、JS... 为提升资产管理效率,提出了一种基于B/S架构的资产管理系统设计与实现方法,涉及较完整的分析、设计、搭建与主要功能模块的实现。在设计实现过程中,使用Java语言、采用B/S架构、通过MySQL数据库实现数据访问,前端技术采用HTML、CSS、JS、JQuery等。经测试,系统具有较好的稳定性和安全性,且在处理大量数据时能够保持较快的响应速度。 展开更多
关键词 资产管理 b/S架构 系统框架搭建 SPRING框架
在线阅读 下载PDF
UP主合作视频信息传播效果的影响因素研究——基于B站的实证分析
8
作者 肖志雄 郑巧凤 《大学图书情报学刊》 2026年第1期36-46,共11页
探究B站up主合作视频信息传播效果的影响因素,对提升视频内容传播效果和推动平台高质量发展具有重要意义。基于协同理论,将up主联合创作视频视为协同内容生产,以B站六大分区的68位up主的789条合作视频数据为样本,通过多元线性回归方法,... 探究B站up主合作视频信息传播效果的影响因素,对提升视频内容传播效果和推动平台高质量发展具有重要意义。基于协同理论,将up主联合创作视频视为协同内容生产,以B站六大分区的68位up主的789条合作视频数据为样本,通过多元线性回归方法,从up主特征、合作特征、视频特征三个维度考察合作视频信息传播效果的影响因素。研究发现,up主所属分区、up主粉丝量、合作up主平均粉丝量、是否跨区合作、合作模式、视频内容垂直度、视频时长等7个变量对于视频信息的传播效果均有显著影响,合作人数的作用不显著。 展开更多
关键词 合作视频 信息传播 影响因素 up主 传播效果 b
在线阅读 下载PDF
海藻玉壶汤调节磷酯酰肌醇3-激酶/蛋白激酶B信号通路对甲状腺癌细胞上皮间质转化和糖代谢的影响
9
作者 刘英 孙建 +4 位作者 詹维 杨小兰 徐敏 蒋崔楠 刘虹 《河北中医》 2026年第1期75-79,86,共6页
目的探讨海藻玉壶汤调节磷酯酰肌醇3-激酶/蛋白激酶B(PI3K/Akt)信号通路对甲状腺癌细胞上皮间质转化(EMT)和糖代谢的影响。方法体外培养甲状腺癌TCP-1细胞,将TCP-1细胞接种于BALB/c裸鼠,再将荷瘤成功的40只裸鼠分为模型组、海藻玉壶汤... 目的探讨海藻玉壶汤调节磷酯酰肌醇3-激酶/蛋白激酶B(PI3K/Akt)信号通路对甲状腺癌细胞上皮间质转化(EMT)和糖代谢的影响。方法体外培养甲状腺癌TCP-1细胞,将TCP-1细胞接种于BALB/c裸鼠,再将荷瘤成功的40只裸鼠分为模型组、海藻玉壶汤低剂量组、海藻玉壶汤高剂量组、海藻玉壶汤高剂量+740Y-P组,每组10只,另选10只正常裸鼠为对照组。海藻玉壶汤低、高剂量组分别予200、400 mg/kg的海藻玉壶汤灌胃,海藻玉壶汤高剂量+740Y-P组灌胃予400 mg/kg的海藻玉壶汤灌胃再腹腔注射10 mg/kg的740Y-P,对照组和模型组予等容积0.9%氯化钠注射液灌胃。均持续灌胃21 d后,比较各组裸鼠血清乳酸脱氢酶(LDH)水平,裸鼠肿瘤体积、质量情况,苏木精-伊红(HE)染色观察肿瘤病理形态,实时荧光定量反转录聚合酶链反应(qRT-PCR)检测各组肿瘤组织中PI3K、Akt基因表达水平,蛋白免疫印迹法(Western blot)检测肿瘤组织中p-PI3K、PI3K、p-Akt、Akt、缺氧诱导因子-1ɑ(HIF-1ɑ)、葡萄糖转运蛋白1(GLUT1)、E-钙黏蛋白(E-cadherin)、N-cadherin、波形蛋白(Vimentin)表达水平。结果与对照组比较,模型组裸鼠肿瘤细胞排列致密,血清LDH水平、肿瘤质量、肿瘤体积、PI3K mRNA、Akt mRNA、N-cadherin、vimentin、p-PI3K/PI3K、p-Akt/Akt、HIF-1ɑ、GLUT1水平均显著升高(P<0.05),E-cadherin水平显著降低(P<0.05)。与模型组比较,海藻玉壶汤低、高剂量组裸鼠肿瘤细胞排列分散,血清LDH、肿瘤质量、肿瘤体积、PI3K mRNA、Akt mRNA、N-cadherin、vimentin、p-PI3K/PI3K、p-Akt/Akt、HIF-1ɑ、GLUT1水平均显著降低,E-cadherin水平显著升高(P<0.05)。与海藻玉壶汤高剂量组比较,海藻玉壶汤高剂量+740Y-P组能逆转海藻玉壶汤高剂量组对上述指标的改善作用。结论海藻玉壶汤可通过阻断PI3K/Akt信号通路抑制甲状腺癌细胞EMT和糖代谢过程,进而抑制肿瘤生长。 展开更多
关键词 甲状腺癌 动物实验 海藻玉壶汤 磷酯酰肌醇3-激酶 蛋白激酶b
暂未订购
基于CSDBO-BP的TC4钛合金铣削预测模型及多目标优化
10
作者 张春 蒋政泉 +3 位作者 郗琳 郎广辉 赵俊花 李丽 《西南大学学报(自然科学版)》 北大核心 2026年第1期250-265,共16页
为降低钛合金铣削加工过程中的加工能耗和铣削负载,以加工能耗和铣削合力最小为目标构建预测模型并开展多目标优化研究。首先,设计单因素实验分析了钛合金铣削加工过程中切削参数的影响规律;其次,将纵横交叉策略改进的蜣螂算法(Dung Bee... 为降低钛合金铣削加工过程中的加工能耗和铣削负载,以加工能耗和铣削合力最小为目标构建预测模型并开展多目标优化研究。首先,设计单因素实验分析了钛合金铣削加工过程中切削参数的影响规律;其次,将纵横交叉策略改进的蜣螂算法(Dung Beetle Optimization Algorithm Incorporating Criss-cross Strategies)与BP(Back Propagation)神经网络相结合,建立CSDBO-BP神经网络预测模型;最后,将预测模型与遗传算法相结合寻找切削参数的最优组合。实验结果表明:CSDBO-BP神经网络预测模型的预测精度达97%以上;多目标优化可使钛合金铣削过程中的加工能耗减少18.31%,铣削合力减少34.16%。 展开更多
关键词 钛合金 预测模型 多目标优化 混合算法
原文传递
Method for Estimating the State of Health of Lithium-ion Batteries Based on Differential Thermal Voltammetry and Sparrow Search Algorithm-Elman Neural Network 被引量:1
11
作者 Yu Zhang Daoyu Zhang TiezhouWu 《Energy Engineering》 EI 2025年第1期203-220,共18页
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr... Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%. 展开更多
关键词 Lithium-ion battery state of health differential thermal voltammetry Sparrow Search algorithm
在线阅读 下载PDF
Robustness Optimization Algorithm with Multi-Granularity Integration for Scale-Free Networks Against Malicious Attacks 被引量:1
12
作者 ZHANG Yiheng LI Jinhai 《昆明理工大学学报(自然科学版)》 北大核心 2025年第1期54-71,共18页
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently... Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms. 展开更多
关键词 complex network model MULTI-GRANULARITY scale-free networks RObUSTNESS algorithm integration
原文传递
Short-TermWind Power Forecast Based on STL-IAOA-iTransformer Algorithm:A Case Study in Northwest China 被引量:2
13
作者 Zhaowei Yang Bo Yang +5 位作者 Wenqi Liu Miwei Li Jiarong Wang Lin Jiang Yiyan Sang Zhenning Pan 《Energy Engineering》 2025年第2期405-430,共26页
Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,th... Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy. 展开更多
关键词 Short-termwind power forecast improved arithmetic optimization algorithm iTransformer algorithm SimuNPS
在线阅读 下载PDF
基于CS-BP-PID算法的烟叶密集烤房温度控制系统
14
作者 沈少君 闫九福 +4 位作者 卢雨 林晓路 杜超凡 朱荣光 孟令峰 《农机化研究》 北大核心 2026年第4期95-102,共8页
烟叶烘烤作为决定烟叶品质的核心环节,其温湿度控制的精准性至关重要。针对当前密集烤房多阶段温度控制精度差、波动范围大、响应时间长等直接影响烟叶色泽、香气、化学成分、经济价值等问题,设计了一种基于布谷鸟算法(CS)优化的BP神经... 烟叶烘烤作为决定烟叶品质的核心环节,其温湿度控制的精准性至关重要。针对当前密集烤房多阶段温度控制精度差、波动范围大、响应时间长等直接影响烟叶色泽、香气、化学成分、经济价值等问题,设计了一种基于布谷鸟算法(CS)优化的BP神经网络PID控制器。通过模拟布谷鸟的寄生行为和莱维飞行特性,对BP神经网络的初始权重进行优化,加快了BP神经网络的自学习速度,以实现密集烤房温度的快速精准调控,降低了超调量,提高了响应速度。同时,基于树莓派4B搭建了密集烤房温湿度控制试验平台,并对控制器性能进行了验证。结果表明:CS-BP-PID控制器上升时间为79.35 s,峰值时间为180.00 s,调节时间为249.38 s,最大超调量为3.25%,相比常规PID控制器缩短了38.18%,调节时间缩短了47.05%,峰值时间和最大超调量减少了50%以上,满足系统温度控制需求。通过多阶段烟叶烘烤试验,上等烟比例提高了14.45%,经济效益得到了显著提升。该控制器综合性能优良,达到了精准控温控湿的效果。 展开更多
关键词 烟叶密集烤房 温度控制系统 CS-bP-PID算法
在线阅读 下载PDF
A LODBO algorithm for multi-UAV search and rescue path planning in disaster areas 被引量:1
15
作者 Liman Yang Xiangyu Zhang +2 位作者 Zhiping Li Lei Li Yan Shi 《Chinese Journal of Aeronautics》 2025年第2期200-213,共14页
In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms... In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms to solve the problem of multi-UAV path planning.The Dung Beetle Optimization(DBO)algorithm has been widely applied due to its diverse search patterns in the above algorithms.However,the update strategies for the rolling and thieving dung beetles of the DBO algorithm are overly simplistic,potentially leading to an inability to fully explore the search space and a tendency to converge to local optima,thereby not guaranteeing the discovery of the optimal path.To address these issues,we propose an improved DBO algorithm guided by the Landmark Operator(LODBO).Specifically,we first use tent mapping to update the population strategy,which enables the algorithm to generate initial solutions with enhanced diversity within the search space.Second,we expand the search range of the rolling ball dung beetle by using the landmark factor.Finally,by using the adaptive factor that changes with the number of iterations.,we improve the global search ability of the stealing dung beetle,making it more likely to escape from local optima.To verify the effectiveness of the proposed method,extensive simulation experiments are conducted,and the result shows that the LODBO algorithm can obtain the optimal path using the shortest time compared with the Genetic Algorithm(GA),the Gray Wolf Optimizer(GWO),the Whale Optimization Algorithm(WOA)and the original DBO algorithm in the disaster search and rescue task set. 展开更多
关键词 Unmanned aerial vehicle Path planning Meta heuristic algorithm DbO algorithm NP-hard problems
原文传递
Bearing capacity prediction of open caissons in two-layered clays using five tree-based machine learning algorithms 被引量:2
16
作者 Rungroad Suppakul Kongtawan Sangjinda +3 位作者 Wittaya Jitchaijaroen Natakorn Phuksuksakul Suraparb Keawsawasvong Peem Nuaklong 《Intelligent Geoengineering》 2025年第2期55-65,共11页
Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered so... Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered soils remains a complex challenge.This study presents a novel application of five ensemble machine(ML)algorithms-random forest(RF),gradient boosting machine(GBM),extreme gradient boosting(XGBoost),adaptive boosting(AdaBoost),and categorical boosting(CatBoost)-to predict the undrained bearing capacity factor(Nc)of circular open caissons embedded in two-layered clay on the basis of results from finite element limit analysis(FELA).The input dataset consists of 1188 numerical simulations using the Tresca failure criterion,varying in geometrical and soil parameters.The FELA was performed via OptumG2 software with adaptive meshing techniques and verified against existing benchmark studies.The ML models were trained on 70% of the dataset and tested on the remaining 30%.Their performance was evaluated using six statistical metrics:coefficient of determination(R²),mean absolute error(MAE),root mean squared error(RMSE),index of scatter(IOS),RMSE-to-standard deviation ratio(RSR),and variance explained factor(VAF).The results indicate that all the models achieved high accuracy,with R²values exceeding 97.6%and RMSE values below 0.02.Among them,AdaBoost and CatBoost consistently outperformed the other methods across both the training and testing datasets,demonstrating superior generalizability and robustness.The proposed ML framework offers an efficient,accurate,and data-driven alternative to traditional methods for estimating caisson capacity in stratified soils.This approach can aid in reducing computational costs while improving reliability in the early stages of foundation design. 展开更多
关键词 Two-layered clay Open caisson Tree-based algorithms FELA Machine learning
在线阅读 下载PDF
BOPPPS-B-PBL教学法在内分泌科临床见习教学中的应用
17
作者 杨丽娟 周炜玮 陶红 《安徽医药》 2026年第1期205-208,共4页
目的探讨课程导入-学习目标-课前测验-参与式学习-课后测验-总结(bridge-objective-pre-assessment-participationpost-assessment-summary,beside problem-based learning,BOPPPS-B-PBL)教学法在内分泌科临床见习教学中的应用效果。方... 目的探讨课程导入-学习目标-课前测验-参与式学习-课后测验-总结(bridge-objective-pre-assessment-participationpost-assessment-summary,beside problem-based learning,BOPPPS-B-PBL)教学法在内分泌科临床见习教学中的应用效果。方法选择2023年11月至2024年6月在首都医科大学附属北京安贞医院临床见习的临床医疗专业、精神专业和预防专业本科学生共152名,按照实习组别使用随机数字表法分为对照组(B-PBL模式教学)和研究组(BOPPPS-B-PBL模式教学)进行临床见习,每组76人,并通过双向问卷评分评估教学效果。结果学生问卷评分中,研究组在“课堂导入效果”“学习目标明确”“学生参与度、归纳总结[(8.99±1.01)分比(8.50±1.47)分]”“巩固知识和技能”“获得临床实践技能”“促进今后提升”方面评分均显著高于对照组(P<0.05)。教师评分中,在“积极参与互动”“病史采集和查体”“选择治疗方案”“医患沟通”“总结归纳能力”方面,研究组的评分显著高于对照组(P<0.05)。结论BOPPPS-B-PBL教学法应用于内分泌科的临床见习教学中,能够更有效地提高学生学习参与度,更有助于理解记忆抽象的理论知识并获得临床实践技能,值得推广。 展开更多
关键词 教育 医学 bOPPPS教学 基于问题的床旁教学法 内分泌学 临床见习 教学模式
在线阅读 下载PDF
DDoS Attack Autonomous Detection Model Based on Multi-Strategy Integrate Zebra Optimization Algorithm
18
作者 Chunhui Li Xiaoying Wang +2 位作者 Qingjie Zhang Jiaye Liang Aijing Zhang 《Computers, Materials & Continua》 SCIE EI 2025年第1期645-674,共30页
Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convol... Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score. 展开更多
关键词 Distributed denial of service attack intrusion detection deep learning zebra optimization algorithm multi-strategy integrated zebra optimization algorithm
在线阅读 下载PDF
弥漫性大B细胞淋巴瘤细胞条件培养液对人骨髓间充质干细胞增殖、凋亡的影响
19
作者 袁小霜 杨姁 +6 位作者 杨波 陈晓旭 田婷 王飞清 李艳菊 刘洋 杨文秀 《中国组织工程研究》 北大核心 2026年第7期1632-1640,共9页
背景:骨髓微环境与弥漫性大B细胞淋巴瘤生长、存活和耐药性之间的关系是近些年的研究热点,而弥漫性大B细胞淋巴瘤细胞条件培养液对骨髓间充质干细胞的影响未见报道。目的:探讨弥漫性大B细胞淋巴瘤细胞条件培养液对骨髓间充质干细胞增殖... 背景:骨髓微环境与弥漫性大B细胞淋巴瘤生长、存活和耐药性之间的关系是近些年的研究热点,而弥漫性大B细胞淋巴瘤细胞条件培养液对骨髓间充质干细胞的影响未见报道。目的:探讨弥漫性大B细胞淋巴瘤细胞条件培养液对骨髓间充质干细胞增殖和凋亡的影响。方法:采用Ficoll密度梯度离心法从健康供者骨髓血中分离骨髓间充质干细胞,并通过贴壁法进行纯化;使用SU-DHL-2和OCI-LY3两种弥漫性大B细胞淋巴瘤细胞培养上清液制备条件培养液。按培养基的不同进行细胞分组:对照组骨髓间充质干细胞仅用L-DMEM完全培养液培养,CM-SU-DHL-2组、CM-OCI-LY3组骨髓间充质干细胞用20%SU-DHL-2细胞条件培养液或20%OCI-LY3细胞条件培养液和80%L-DMEM完全培养液培养。通过CCK-8、EDU、结晶紫染色观察骨髓间充质干细胞的增殖情况,划痕实验评估骨髓间充质干细胞的迁移情况,流式细胞术检测骨髓间充质干细胞的细胞周期、凋亡情况,Real-time PCR和Western blot检测骨髓间充质干细胞中P21、P16、Bcl-2、BTK mRNA和蛋白表达水平。结果与结论:①与对照组相比,SU-DHL-2和OCI-LY3细胞条件培养液显著促进骨髓间充质干细胞的增殖(P<0.05),可能与P21和P16蛋白低表达密切相关(P<0.05);②与对照组相比,SU-DHL-2和OCI-LY3细胞条件培养液显著促进骨髓间充质干细胞的迁移(P<0.05);③与对照组相比,SU-DHL-2和OCI-LY3细胞条件培养液抑制骨髓间充质干细胞的凋亡(P<0.05),可能与Bcl-2、BTK mRNA和蛋白高表达密切相关(P<0.05)。研究结果表明,弥漫性大B细胞淋巴瘤细胞条件培养液可促进骨髓间充质干细胞的增殖并抑制凋亡。 展开更多
关键词 弥漫性大b细胞淋巴瘤 骨髓间充质干细胞 条件培养液 增殖 凋亡 工程化干细胞
暂未订购
Path Planning for Thermal Power Plant Fan Inspection Robot Based on Improved A^(*)Algorithm 被引量:1
20
作者 Wei Zhang Tingfeng Zhang 《Journal of Electronic Research and Application》 2025年第1期233-239,共7页
To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The... To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The inspection robot utilizes multiple sensors to monitor key parameters of the fans,such as vibration,noise,and bearing temperature,and upload the data to the monitoring center.The robot’s inspection path employs the improved A^(*)algorithm,incorporating obstacle penalty terms,path reconstruction,and smoothing optimization techniques,thereby achieving optimal path planning for the inspection robot in complex environments.Simulation results demonstrate that the improved A^(*)algorithm significantly outperforms the traditional A^(*)algorithm in terms of total path distance,smoothness,and detour rate,effectively improving the execution efficiency of inspection tasks. 展开更多
关键词 Power plant fans Inspection robot Path planning Improved A^(*)algorithm
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部