采用激光粉末床熔融(laser powder bed fusion,LPBF)技术制备K418B高温合金,利用光学显微镜、扫描电镜和硬度仪分析工艺参数激光功率(140~220 W)和扫描速度(600~1400 mm/s)对显微缺陷、致密度、微观组织及硬度的影响。结果表明,激光功...采用激光粉末床熔融(laser powder bed fusion,LPBF)技术制备K418B高温合金,利用光学显微镜、扫描电镜和硬度仪分析工艺参数激光功率(140~220 W)和扫描速度(600~1400 mm/s)对显微缺陷、致密度、微观组织及硬度的影响。结果表明,激光功率和扫描速度均显著影响样品的相对密度与缺陷分布。低能量密度易产生不规则孔洞,高能量密度则易形成球形气孔与凝固裂纹;体积能量密度(volume energy density,VED)过低或过高都会降低致密度和性能。最佳工艺参数为激光功率180 W、扫描速度1400 mm/s,在该条件下样品致密度可达99.95%以上,表面缺陷少,仅有少量凝固裂纹,显微组织呈明显熔池边界和胞状结构,维氏硬度达366.8HV_(0.2)。微观组织观察显示,熔池边界处晶粒较粗大,内部可见细胞状柱状晶,局部连续跨越多个熔池,表现出快速凝固特征。硬度随VED先升后降,与孔隙含量及致密度变化一致。研究揭示热应力是裂纹产生的主要原因,为K418B合金LPBF成形的参数优化提供依据,对提升航空发动机关键部件制造质量具有工程应用价值。展开更多
文摘采用激光粉末床熔融(laser powder bed fusion,LPBF)技术制备K418B高温合金,利用光学显微镜、扫描电镜和硬度仪分析工艺参数激光功率(140~220 W)和扫描速度(600~1400 mm/s)对显微缺陷、致密度、微观组织及硬度的影响。结果表明,激光功率和扫描速度均显著影响样品的相对密度与缺陷分布。低能量密度易产生不规则孔洞,高能量密度则易形成球形气孔与凝固裂纹;体积能量密度(volume energy density,VED)过低或过高都会降低致密度和性能。最佳工艺参数为激光功率180 W、扫描速度1400 mm/s,在该条件下样品致密度可达99.95%以上,表面缺陷少,仅有少量凝固裂纹,显微组织呈明显熔池边界和胞状结构,维氏硬度达366.8HV_(0.2)。微观组织观察显示,熔池边界处晶粒较粗大,内部可见细胞状柱状晶,局部连续跨越多个熔池,表现出快速凝固特征。硬度随VED先升后降,与孔隙含量及致密度变化一致。研究揭示热应力是裂纹产生的主要原因,为K418B合金LPBF成形的参数优化提供依据,对提升航空发动机关键部件制造质量具有工程应用价值。