Insulin resistance is the pathophysiological basis of many diseases.Overcoming early insulin resistance highly significant in prevention diabetes,non-alcoholic fatty liver,and atherosclerosis.The present study aimed a...Insulin resistance is the pathophysiological basis of many diseases.Overcoming early insulin resistance highly significant in prevention diabetes,non-alcoholic fatty liver,and atherosclerosis.The present study aimed at evaluating the therapeutic effects of baicalin on insulin resistance and skeletal muscle ectopic fat storage in high fat diet-induced mice,and exploring the potential molecular mechanisms.Insulin resistance in mice was induced with a high fat diet for 16 weeks.Animals were then treated with three different doses of baicalin(100,200,and 400 mg·kg^(-1)·d^(-1)for 14 weeks.Fasting blood glucose,fasting serum insulin,glucose tolerance test(GTT),insulin tolerance test(ITT),and skeletal muscle lipid deposition were measured.Additionally,the AMP-activated protein kinase/acetyl-CoA carboxylase and protein kinase B/Glycogen synthase kinase 3 beta pathways in skeletal muscle were further evaluated.Baicalin significantly reduced the levels of fasting blood glucose and fasting serum insulin and attenuated high fat diet induced glucose tolerance and insulin tolerance.Moreover,insulin resistance was significantly reversed.Pathological analysis revealed baicalin dose-dependently decreased the degree of the ectopic fat storage in skeletal muscle.The properties of baicalin were mediated,at least in part,by inhibition of the AMPK/ACC pathway,a key regulator of de novo lipogenesis and activation of the Akt/GSK-3β pathway,a key regulator of Glycogen synthesis.These data suggest that baicalin,at dose up to 400 mg·kg^(-1)·d^(-1),is safe and able to attenuate insulin resistance and skeletal muscle ectopic fat storage,through modulating the skeletal muscle AMPK/ACC pathway and Akt/GSK-3β pathway.展开更多
Background:Lung cancer is one of the deadliest cancers worldwide,creating a pressing need to develop novel drugs that inhibit oncogenic signaling pathways.Numerous studies have shown that berberine(BBR)has anti–lung ...Background:Lung cancer is one of the deadliest cancers worldwide,creating a pressing need to develop novel drugs that inhibit oncogenic signaling pathways.Numerous studies have shown that berberine(BBR)has anti–lung cancer potential.We aimed to explore the anti–lung cancer effect of BBR and related mechanisms by targeting the glycogen synthase kinase 3β(GSK3β)/β-catenin pathway.Methods:Lung adenocarcinoma(LUAD)cells A549 and NCI-H1975 were treated with BBR.Results:Our results showed that BBR inhibited cell proliferation by decreasing c-Myc levels and induced cel cycle arrest in the G0/G1 phase by lowering cyclin D1 levels.BBR induced apoptosis by upregulating cleaved caspase 3 levels.BBR inhibited cell migration and invasion by decreasing N-cadherin levels.Furthermore,BBR upregulated the expression of GSK3βprotein and phospho-β-catenin proteins in the cytoplasm,while decreasing the expression ofβ-catenin protein.Next,LUAD cel s were exposed to CHIR-99021(a GSK3βinhibitor).This treatment led to an increase in c-Myc,cyclin D1,andβ-catenin levels at specific concentrations.BBR partially reversed the effects of CHIR-99021.Finally,LUAD cells were treated with CHIR-99021(4μmoL/L)combined with BBR(30 and 60μmoL/L)for 24 h.The expression of programmed death ligand 1(PD-L1)was assessed by Western blot analysis.Jurkat T cells and A549 cel s were cocultured for 24 h to examine the lactate dehydrogenase release rate.Results suggested that BBR suppressed the expression of PD-L1 and heightened the immune lethality of T cells.Conclusions:BBR suppressed the proliferative activity of LUAD cell lines A549 and NCI-H1975 in vitro,induced cell cycle arrest and cancer cel apoptosis in the G0/G1 stage,and repressed the migration and invasion of cancer cells.BBR reduced the PD-L1 protein expression and enhanced T-cell–mediated cytotoxicity.These effects appear to be related to BBR's regulation of the GSK3β/β-catenin pathway.展开更多
基金supported by a grant provided by Southeast University(No.9224007044)
文摘Insulin resistance is the pathophysiological basis of many diseases.Overcoming early insulin resistance highly significant in prevention diabetes,non-alcoholic fatty liver,and atherosclerosis.The present study aimed at evaluating the therapeutic effects of baicalin on insulin resistance and skeletal muscle ectopic fat storage in high fat diet-induced mice,and exploring the potential molecular mechanisms.Insulin resistance in mice was induced with a high fat diet for 16 weeks.Animals were then treated with three different doses of baicalin(100,200,and 400 mg·kg^(-1)·d^(-1)for 14 weeks.Fasting blood glucose,fasting serum insulin,glucose tolerance test(GTT),insulin tolerance test(ITT),and skeletal muscle lipid deposition were measured.Additionally,the AMP-activated protein kinase/acetyl-CoA carboxylase and protein kinase B/Glycogen synthase kinase 3 beta pathways in skeletal muscle were further evaluated.Baicalin significantly reduced the levels of fasting blood glucose and fasting serum insulin and attenuated high fat diet induced glucose tolerance and insulin tolerance.Moreover,insulin resistance was significantly reversed.Pathological analysis revealed baicalin dose-dependently decreased the degree of the ectopic fat storage in skeletal muscle.The properties of baicalin were mediated,at least in part,by inhibition of the AMPK/ACC pathway,a key regulator of de novo lipogenesis and activation of the Akt/GSK-3β pathway,a key regulator of Glycogen synthesis.These data suggest that baicalin,at dose up to 400 mg·kg^(-1)·d^(-1),is safe and able to attenuate insulin resistance and skeletal muscle ectopic fat storage,through modulating the skeletal muscle AMPK/ACC pathway and Akt/GSK-3β pathway.
基金Supported by a grant from the National Natural Science Foundation of China(no.82174457)。
文摘Background:Lung cancer is one of the deadliest cancers worldwide,creating a pressing need to develop novel drugs that inhibit oncogenic signaling pathways.Numerous studies have shown that berberine(BBR)has anti–lung cancer potential.We aimed to explore the anti–lung cancer effect of BBR and related mechanisms by targeting the glycogen synthase kinase 3β(GSK3β)/β-catenin pathway.Methods:Lung adenocarcinoma(LUAD)cells A549 and NCI-H1975 were treated with BBR.Results:Our results showed that BBR inhibited cell proliferation by decreasing c-Myc levels and induced cel cycle arrest in the G0/G1 phase by lowering cyclin D1 levels.BBR induced apoptosis by upregulating cleaved caspase 3 levels.BBR inhibited cell migration and invasion by decreasing N-cadherin levels.Furthermore,BBR upregulated the expression of GSK3βprotein and phospho-β-catenin proteins in the cytoplasm,while decreasing the expression ofβ-catenin protein.Next,LUAD cel s were exposed to CHIR-99021(a GSK3βinhibitor).This treatment led to an increase in c-Myc,cyclin D1,andβ-catenin levels at specific concentrations.BBR partially reversed the effects of CHIR-99021.Finally,LUAD cells were treated with CHIR-99021(4μmoL/L)combined with BBR(30 and 60μmoL/L)for 24 h.The expression of programmed death ligand 1(PD-L1)was assessed by Western blot analysis.Jurkat T cells and A549 cel s were cocultured for 24 h to examine the lactate dehydrogenase release rate.Results suggested that BBR suppressed the expression of PD-L1 and heightened the immune lethality of T cells.Conclusions:BBR suppressed the proliferative activity of LUAD cell lines A549 and NCI-H1975 in vitro,induced cell cycle arrest and cancer cel apoptosis in the G0/G1 stage,and repressed the migration and invasion of cancer cells.BBR reduced the PD-L1 protein expression and enhanced T-cell–mediated cytotoxicity.These effects appear to be related to BBR's regulation of the GSK3β/β-catenin pathway.
文摘目的了解终末期肾病维持性血透(maintained hemodialysis,MHD)患者血浆B型利钠肽(B-type natriuretic peptide,BNP)水平以及营养状况与BNP水平的关系。方法采用横断面研究,纳入符合观察条件的MHD患者116例。测量身高、体质量、上臂围、小腿围、握力等,免疫发光法检测血浆BNP水平,生物电阻抗分析法测量骨骼肌质量指数(skeletal muscle mass index,SMI),多元线性回归分析血浆BNP水平的影响因素。结果MHD患者中位血浆BNP水平为250.5(107.3,491.5)pg/mL。血浆BNP水平与年龄呈正相关(P<0.05);与细胞内水分、体质量指数(body mass index,BMI)、上臂围、小腿围、握力、骨骼肌质量指数、血红蛋白、血清总胆固醇呈负相关(P<0.05)。多元线性回归分析显示,BMI、血红蛋白、年龄、血清总胆固醇水平是MHD患者血浆BNP水平的独立影响因素(β=-0.299,P<0.001;β=-0.283,P=0.001;β=0.242,P=0.005;β=-0.187,P=0.030)。结论MHD患者血浆BNP水平高于普通人群,较低的BMI、血红蛋白和血清总胆固醇水平与较高的血浆BNP水平有关。