According to the necessity of flexible workflow management system, the solution to set up the visualized workflow modelling system based on B/S structure is put forward, which conforms to the relevant specifications o...According to the necessity of flexible workflow management system, the solution to set up the visualized workflow modelling system based on B/S structure is put forward, which conforms to the relevant specifications of WfMC and the workflow process definition meta-model. The design for system structure is presented in detail, and the key technologies for system implementation are also introduced. Additionally, an example is illustrated to demonstrate the validity of system.展开更多
This paper analyzes advantages and disadvantages of the current several popular computer-aided English learning software. combined with modem English teaching philosophy, proposed learning system with synchronization,...This paper analyzes advantages and disadvantages of the current several popular computer-aided English learning software. combined with modem English teaching philosophy, proposed learning system with synchronization, interactivity, intelligence, and incentives in one of the English to students. System uses JavaEE framework to build, each module uses a low coupling between the way facilitate future extensions. The system can help students build confidence and motivate its progress.展开更多
La-Mg-Ni-based hydrogen storage alloys with superlattice structures are the new generation anode material for nickel metal hydride(Ni-MH)batteries owing to the advantages of high capacity and exceptional activation pr...La-Mg-Ni-based hydrogen storage alloys with superlattice structures are the new generation anode material for nickel metal hydride(Ni-MH)batteries owing to the advantages of high capacity and exceptional activation properties.However,the cycling stability is not currently satisfactory enough which plagues its application.Herein,a strategy of partially substituting La with the Y element is proposed to boost the capacity durability of La-Mg-Ni-based alloys.Furthermore,phase structure regulation is implemented simultaneously to obtain the A5 B19-type alloy with good crystal stability specifically.It is found that Y promotes the phase formation of the Pr5 Co19-type phase after annealing at 985℃.The alloy containing Y contributes to the superior rate capability resulting from the promoted hydrogen diffusion rate.Notably,Y substitution enables strengthening the anti-pulverization ability of the alloy in terms of increasing the volume match between[A_(2)B_(4)]and[AB5]subunits,and effectively enhances the anti-corrosion ability of the alloy due to high electronegativity,realizing improved long-term cycling stability of the alloy from 74.2%to 78.5%after cycling 300 times.The work is expected to shed light on the composition and structure design of the La-Mg-Ni-based hydrogen storage alloy for Ni-MH batteries.展开更多
Port structures constitute the main link in the maritime transport chain of coastal countries and therefore contribute to their economic development. But it should be noted that the installation of said works is not w...Port structures constitute the main link in the maritime transport chain of coastal countries and therefore contribute to their economic development. But it should be noted that the installation of said works is not without consequences for the countries concerned. Benin, a country in the Gulf of Guinea, is no exception to this phenomenon because, due to its maritime history, it has a heritage of port structures. These structures, built on its coastline, cause a wide variety of environmental problems such as silting and erosion on either side of them. The general objective of this article is to contribute to the proper functionality of port facilities while minimizing environmental problems that may arise. It aims to provide managers with a tool allowing them to fully understand the state of their assets in order to rationalize maintenance actions. In order to achieve this objective, an assessment of the state of the structure, and then a structural diagnosis are necessary and recommendations can be established to restore the level of service of the latter. As a result, two examples were presented: the wharf of the Sèmè-Podji pipeline project and the maritime piles project of the Wasco de Gama bridge (control project), and recommendations adapted to this objective were established. The comparative analysis of the two examples, both maritime works, revealed an under-sizing at the level of the spans of the wharf bridge of the Sèmè-Podji pipeline project (spans of 7 m in length), while these spans vary on average by 45 m to 62 m for the Wasco da Gama bridge. Bringing the piles closer together at the Sèmè-Podji wharf reduces the energy of the current which promotes the accumulation of sediment. The structure no longer experiences a flow capable of setting in motion the sands accumulated since at least 2022. This element appears to be a fundamental characteristic explaining the erosion observed to the east of the structure.展开更多
Metallic glass matrix composites(BMGCs)with compositions of[(Zr_(0.5)Cu_(0.5))_(0.925)Al_(0.07)Sn_(0.005)]_(100-x)Ta_(x)(atomic fraction,%,x=3,5,7)were successfully prepared via dealloying in metallic melt.The reinfor...Metallic glass matrix composites(BMGCs)with compositions of[(Zr_(0.5)Cu_(0.5))_(0.925)Al_(0.07)Sn_(0.005)]_(100-x)Ta_(x)(atomic fraction,%,x=3,5,7)were successfully prepared via dealloying in metallic melt.The reinforcing phase in these alloys has core-shell hybrid structure with Ta-rich particles as core and B2-CuZr as shell.In this method,the dealloyed Ta from Zr-Ta pre-alloys maintained in solid state and aggregated to form the fine Ta-rich phase in the final products.This effectively decreases the size of Ta-rich phase compared with that prepared via conventional arc-melting,where the Ta-rich phase was formed through dissolving and precipitation.Among the three compositions,[(Zr_(0.5)Cu_(0.5))_(0.925)Al_(0.07)Sn_(0.005)]_(95)Ta_(5) showed the highest plastic strain of 11.2%,much higher than that of the arc-melted counterparts(4.3%).Such improvement in mechanical properties was related with the refined core-shell hybrid reinforcing structure,which could hinder the rapid propagation of main shear band more efficiently and cause them to branch and proliferate at the interface.展开更多
γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the ...γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the Notch family of cell-surface receptors.Mutations inγ-secretase and amyloid precursor protein lead to early-onset familial Alzheimer’s disease.γ-Secretase has thus served as a critical drug target for treating familial Alzheimer’s disease and the more common late-onset Alzheimer’s disease as well.However,critical gaps remain in understanding the mechanisms of processive proteolysis of substrates,the effects of familial Alzheimer’s disease mutations,and allosteric modulation of substrate cleavage byγ-secretase.In this review,we focus on recent studies of structural dynamic mechanisms ofγ-secretase.Different mechanisms,including the“Fit-Stay-Trim,”“Sliding-Unwinding,”and“Tilting-Unwinding,”have been proposed for substrate proteolysis of amyloid precursor protein byγ-secretase based on all-atom molecular dynamics simulations.While an incorrect registry of the Notch1 substrate was identified in the cryo-electron microscopy structure of Notch1-boundγ-secretase,molecular dynamics simulations on a resolved model of Notch1-boundγ-secretase that was reconstructed using the amyloid precursor protein-boundγ-secretase as a template successfully capturedγ-secretase activation for proper cleavages of both wildtype and mutant Notch,being consistent with biochemical experimental findings.The approach could be potentially applied to decipher the processing mechanisms of various substrates byγ-secretase.In addition,controversy over the effects of familial Alzheimer’s disease mutations,particularly the issue of whether they stabilize or destabilizeγ-secretase-substrate complexes,is discussed.Finally,an outlook is provided for future studies ofγ-secretase,including pathways of substrate binding and product release,effects of modulators on familial Alzheimer’s disease mutations of theγ-secretase-substrate complexes.Comprehensive understanding of the functional mechanisms ofγ-secretase will greatly facilitate the rational design of effective drug molecules for treating familial Alzheimer’s disease and perhaps Alzheimer’s disease in general.展开更多
In this study,the casting process is used to fabricate modified polyvinyl alcohol(PVA),starch(S),and carboxymethyl cellulose(CMC)polymer blend films(PVA/S/CMC)loaded with various concentrations of irondoped carbon qua...In this study,the casting process is used to fabricate modified polyvinyl alcohol(PVA),starch(S),and carboxymethyl cellulose(CMC)polymer blend films(PVA/S/CMC)loaded with various concentrations of irondoped carbon quantum dots(Fe-CQDs)and denoted as(PVA/S/CMC@Fe-CQDs).A one-step microwave strategy was employed as a facile method to prepare Fe-CQDs.Through a series of characterization techniques,fourier-transform infrared(FTIR)spectroscopy,x-ray diffraction(XRD)analysis,and scanning electron microscopy(SEM)have been used to show the successful integration of Fe-CQDs into the PVA/S/CMCmatrix.Loading the synthesized Fe-CQDs to the polymeric matrix significantly enhanced the mechanical properties of the films represented in the tensile strength,Young’s modulus,and hardness.However,the elongation decreased noticeably upon increasing the iron-doped carbon dots.The surface wettability was also studied by measuring the contact angle of the prepared films.The findings showed a noticeable elevation in these measurements by increasing the Fe-CQDs content,declaring the role of a hydrophobic character in these nanoparticles when introduced into a hydrophilic polymeric system.The dielectric characteristics of the reinforced polymer composite films were evaluated.These results revealed that the ac-conductivity of the investigated films was boosted with increasing Fe-CQDs’ratio and frequency.The PVA/S/CMC@Fe-CQDs films possess substantial potential for efficient energy storage applications.展开更多
Two racemic pairs of new stilbenoid dimers,(±)-heterosmilaxones A(1)and B(2),with unique 6/6/6and 6/5/7 tricyclic core systems,respectively,were isolated from the rhizomes of Heterosmilax yunnanensis.Their struct...Two racemic pairs of new stilbenoid dimers,(±)-heterosmilaxones A(1)and B(2),with unique 6/6/6and 6/5/7 tricyclic core systems,respectively,were isolated from the rhizomes of Heterosmilax yunnanensis.Their structures were elucidated through comprehensive spectroscopic analyses,quantum chemical calculations and X-ray diffraction crystallography.Compound(+)-1,initially reported as syagrusin A with a 1,4,4a,9a-tetrahydrofluoren-9-one skeleton,is now revised to a new structure characteristic with a benzo bicyclo[3.3.1]nonene scaffold.And compound 2 bears an unprecedented carbon skeleton with four continuous chiral centers in the central benzo bicyclo[4.2.1]nonene motif.Biogenetically,both 1 and2 were proposed to derive from 3,3',4,5,5'-pentahydroxy stilbene and could be generated through key inverse-electron-demand[4+2]and[5+2]cycloadditions,respectively.Interestingly,both(±)-1 and(±)-2 showed significant inhibition againstα-glucosidase.(±)-1 and its pure enantiomers could modulate protein tyrosine phosphatase-1B(PTP1B)enzyme activities and increased glucose consumption in HepG2 cells in a dose-dependent manner.展开更多
NLLoc is a nonlinear search positioning method.In this study,we use simulated arrival time data to quantitatively evaluate the NLLoc method from three aspects:arrival time picking accuracy,station distribution,and vel...NLLoc is a nonlinear search positioning method.In this study,we use simulated arrival time data to quantitatively evaluate the NLLoc method from three aspects:arrival time picking accuracy,station distribution,and velocity model.The results show that the NLLoc method exhibits high positioning accuracy and stability in terms of arrival time picking accuracy and station distribution;however,it is sensitive to the velocity model.The positioning accuracy is higher when the velocity model is smaller than the true velocity.We combined absolute and relative positioning methods.First,we use the NLLoc method for absolute positioning of seismic data and then the double difference positioning method for relative positioning to obtain a more accurate relocation result.Furthermore,we used the combined method to locate the earthquake sequence after collecting dense seismic array data on the Luanzhou M_(S)4.3 earthquake that occurred on April 16,2021,in Hebei Province.By fitting the fault plane with the relocated earthquake sequences,the results show that the strike and dip angles of the seismogenic fault of the Luanzhou M_(S)4.3 earthquake are 208.5°and 85.6°,respectively.This indicates a high-dip angle fault with North-North-East strike and North-West dip directions.Furthermore,we infer that the seismogenic fault of the Luanzhou M_(S)4.3 earthquake is the Lulong fault.展开更多
Although refractory high-entropy alloys(RHEAs)possess excellent softening resistance and thermal sta-bility at high temperatures,their practical application is often limited due to room temperature(RT)brit-tleness.In ...Although refractory high-entropy alloys(RHEAs)possess excellent softening resistance and thermal sta-bility at high temperatures,their practical application is often limited due to room temperature(RT)brit-tleness.In this work,we successfully achieved RT plasticization in a brittle(TaMoTi)_(92)Al_(8)RHEA via in situ forming heterogeneous structure(HS)with the doping of Zr.Different from the mainstream design con-cept of“soft solid solution matrices with hard intermetallic phases”proposed in the literature,the newly developed TaMoZrTiAl RHEA is featured by a hard disordered BCC phase embedded into a soft intermetal-lic B2 matrix.Such an HS leads to the remarkable strength-plasticity synergy in this alloy at RT,showing a large plasticity of>20%,associated with a high strength of>2380 MPa.It was found that solid solu-tion strengthening and heterodeformation-induced strengthening caused by dislocation pile-ups at phase boundaries are responsible for the enhancement in the yield strength,while deformation-induced strain partition and the frequent operation of dislocation cross-slip substantially improve the work hardening capacity of alloy,thus enabling the high strength and good RT plasticity.In short,the current work not only reveals the micromechanisms of the influence of heterogeneous dual-phase structure on the RT me-chanical behaviour in RHEAs but also provides a useful strategy for plasticizing brittle RHEAs.展开更多
Studies showed that complexation of polyphenols with milk allergens reduced their immunogenic potential.However,the relationship between structures of polyphenols and their hypoallergenic effects on milk allergens in ...Studies showed that complexation of polyphenols with milk allergens reduced their immunogenic potential.However,the relationship between structures of polyphenols and their hypoallergenic effects on milk allergens in association with physiological and conformational changes of the complexes remain unclear.In this study,polyphenols from eight botanical sources were extracted to prepare non-covalent complexes withβ-lactoglobulin(β-LG),a major allergen in milk.The dominant phenolic compounds bound toβ-LG with a diminished allergenicity were identified to investigate their respective role on the structural and allergenic properties ofβ-LG.Extracts from Vaccinium fruits and black soybeans were found to have great inhibitory effects on the IgE-and IgG-binding abilities ofβ-LG.Among the fourteen structure-related phenolic compounds,flavonoids and tannins with larger MWs and multi-hydroxyl substituents,notably rutin,EGCG,and ellagitannins were more potent to elicit changes on the conformational structures ofβ-LG to decrease the allergenicity of complexedβ-LG.Correlation analysis further demonstrated that a destabilized secondary structure and protein depolymerization caused by polyphenol-binding were closely related to the allergenicity property of formed complexes.This study provides insights into the understanding of structure-allergenicity relationship ofβ-LG-polyphenol interactions and would benefit the development of polyphenol-fortified matrices with hypoallergenic potential.展开更多
Biomass‐derived carbon is a promising electrode material in energy storage devices.However,how to improve its low capacity and stability,and slow diffusion kinetics during lithium storage remains a challenge.In this ...Biomass‐derived carbon is a promising electrode material in energy storage devices.However,how to improve its low capacity and stability,and slow diffusion kinetics during lithium storage remains a challenge.In this research,we propose a“self‐assembly‐template”method to prepare B,N codoped porous carbon(BN‐C)with a nanosandwich structure and abundant pyridinic N‐B species.The nanosandwich structure can increase powder density and cycle stability by constructing a stable solid electrolyte interphase film,shortening the Li^(+) diffusion pathway,and accommodating volume expansion during repeated charging/discharging.The abundant pyridinic N‐B species can simultaneously promote the adsorption/desorption of Li^(+)/PF_(6)^(−) and reduce the diffusion barrier.The BN‐C electrode showed a high lithium‐ion storage capacity of above 1140 mAh g^(−1) at 0.05 A g^(−1) and superior stability(96.5% retained after 2000 cycles).Moreover,owing to the synergistic effect of the nanosandwich structure and pyridinic N‐B species,the assembled symmetrical BN‐C//BN‐C full cell shows a high energy density of 234.7Wh kg^(−1),high power density of 39.38 kW kg−1,and excellent cycling stability,superior to most of the other cells reported in the literature.As the density functional theory simulation demonstrated,pyridinic N‐B shows enhanced adsorption activity for Li^(+) and PF_(6)^(−),which promotes an increase in the capacity of the anode and cathode,respectively.Meanwhile,the relatively lower diffusion barrier of pyridinic N‐B promotes Li^(+) migration,resulting in good rate performance.Therefore,this study provides a new approach for the synergistic modulation of a nanostructure and an active site simultaneously to fabricate the carbon electrode material in energy storage devices.展开更多
目的:探讨血清高迁移率族蛋白B1(HMGB1)、S100β联合脑电双频指数(BIS)在脓毒症相关性脑病(SAE)早期诊断中的应用价值。方法:回顾性分析脓毒症病人87例临床资料,根据是否合并SAE,分为SAE组35例和非SAE组52例。比较2组病人相关临床资料...目的:探讨血清高迁移率族蛋白B1(HMGB1)、S100β联合脑电双频指数(BIS)在脓毒症相关性脑病(SAE)早期诊断中的应用价值。方法:回顾性分析脓毒症病人87例临床资料,根据是否合并SAE,分为SAE组35例和非SAE组52例。比较2组病人相关临床资料和血清HMGB1、S100β水平及24 h BIS,分析脓毒症病人发生SAE的影响因素和HMGB1、S100β、BIS联合检测早期诊断SAE的临床价值。结果:SAE组病人APACHEⅡ评分、SOFA评分均明显高于非SAE组(P<0.01);SAE组血清HMGB1、S100β水平均明显高于非SAE组(P<0.01),而BIS明显低于非SAE组(P<0.01)。APACHEⅡ评分、SOFA评分和HMGB1、S100β、BIS均为脓毒症病人发生SAE的独立影响因素(P<0.01)。ROC曲线分析显示,血清HMGB1、S100β联合BIS早期诊断脓毒症病人发生SAE的AUC为0.891,敏感度为91.43%,特异度为84.62%,优于各指标独立诊断。结论:血清HMGB1、S100β联合BIS在SAE早期诊断中具有较好的临床应用价值。展开更多
In order to ameliorate the electrochemical hydrogen storage performance of La-Mg-Ni system A2B7-type electrode alloys, a small amount of Si was added. The La0.8Mg0.2Ni3.3Co0.2Six (x=0-0.2) electrode alloys were prep...In order to ameliorate the electrochemical hydrogen storage performance of La-Mg-Ni system A2B7-type electrode alloys, a small amount of Si was added. The La0.8Mg0.2Ni3.3Co0.2Six (x=0-0.2) electrode alloys were prepared by casting and annealing. The effects of adding Si on the structure and electrochemical hydrogen storage characteristics of the alloys were investigated systematically. The results indicate that the as-cast and annealed alloys hold multiple structures, involving two major phases of (La, Mg)2Ni7 with a Ce2Ni7-type hexagonal structure and LaNi5 with a CaCu5-type hexagonal structure as well as one residual phase LaNi3. The addition of Si results in a decrease in (La, Mg)2Ni7 phase and an increase in LaNi5 phase without changing the phase structure of the alloys. What is more, it brings on an obvious effect on electrochemical hydrogen storage characteristics of the alloys. The discharge capacities of the as-cast and annealed alloys decline with the increase of Si content, but their cycle stabilities clearly grow under the same condition. Furthermore, the measurements of the high rate discharge ability, the limiting current density, hydrogen diffusion coefficient as well as electrochemical impedance spectra all indicate that the electrochemical kinetic properties of the electrode alloys first increase and then decrease with the rising of Si content.展开更多
基金Shanghai Municipal Science Committee key project(061612058,06JC14066,06DZ12001,061111006)Nationalscience and technology supporting project(2006BAF01A46)
文摘According to the necessity of flexible workflow management system, the solution to set up the visualized workflow modelling system based on B/S structure is put forward, which conforms to the relevant specifications of WfMC and the workflow process definition meta-model. The design for system structure is presented in detail, and the key technologies for system implementation are also introduced. Additionally, an example is illustrated to demonstrate the validity of system.
文摘This paper analyzes advantages and disadvantages of the current several popular computer-aided English learning software. combined with modem English teaching philosophy, proposed learning system with synchronization, interactivity, intelligence, and incentives in one of the English to students. System uses JavaEE framework to build, each module uses a low coupling between the way facilitate future extensions. The system can help students build confidence and motivate its progress.
基金the financial support by the National Nat-ural Science Foundation of China(Nos.52201282,52071281,52371239)the China Postdoctoral Science Foundation(No.2023M742945)+4 种基金Hebei Provincial Postdoctoral Science Foundation(No.B2023003023)the Science Research Project of Hebei Education Department(No.BJK2022033)the Natural Science Foundation of Hebei Province(No.C2022203003)the Inner Mongolia Science and Technology Major Project(No.2020ZD0012)the Baotou Science and Technology Planning Project(No.XM2022BT09).
文摘La-Mg-Ni-based hydrogen storage alloys with superlattice structures are the new generation anode material for nickel metal hydride(Ni-MH)batteries owing to the advantages of high capacity and exceptional activation properties.However,the cycling stability is not currently satisfactory enough which plagues its application.Herein,a strategy of partially substituting La with the Y element is proposed to boost the capacity durability of La-Mg-Ni-based alloys.Furthermore,phase structure regulation is implemented simultaneously to obtain the A5 B19-type alloy with good crystal stability specifically.It is found that Y promotes the phase formation of the Pr5 Co19-type phase after annealing at 985℃.The alloy containing Y contributes to the superior rate capability resulting from the promoted hydrogen diffusion rate.Notably,Y substitution enables strengthening the anti-pulverization ability of the alloy in terms of increasing the volume match between[A_(2)B_(4)]and[AB5]subunits,and effectively enhances the anti-corrosion ability of the alloy due to high electronegativity,realizing improved long-term cycling stability of the alloy from 74.2%to 78.5%after cycling 300 times.The work is expected to shed light on the composition and structure design of the La-Mg-Ni-based hydrogen storage alloy for Ni-MH batteries.
文摘Port structures constitute the main link in the maritime transport chain of coastal countries and therefore contribute to their economic development. But it should be noted that the installation of said works is not without consequences for the countries concerned. Benin, a country in the Gulf of Guinea, is no exception to this phenomenon because, due to its maritime history, it has a heritage of port structures. These structures, built on its coastline, cause a wide variety of environmental problems such as silting and erosion on either side of them. The general objective of this article is to contribute to the proper functionality of port facilities while minimizing environmental problems that may arise. It aims to provide managers with a tool allowing them to fully understand the state of their assets in order to rationalize maintenance actions. In order to achieve this objective, an assessment of the state of the structure, and then a structural diagnosis are necessary and recommendations can be established to restore the level of service of the latter. As a result, two examples were presented: the wharf of the Sèmè-Podji pipeline project and the maritime piles project of the Wasco de Gama bridge (control project), and recommendations adapted to this objective were established. The comparative analysis of the two examples, both maritime works, revealed an under-sizing at the level of the spans of the wharf bridge of the Sèmè-Podji pipeline project (spans of 7 m in length), while these spans vary on average by 45 m to 62 m for the Wasco da Gama bridge. Bringing the piles closer together at the Sèmè-Podji wharf reduces the energy of the current which promotes the accumulation of sediment. The structure no longer experiences a flow capable of setting in motion the sands accumulated since at least 2022. This element appears to be a fundamental characteristic explaining the erosion observed to the east of the structure.
基金supported by the National Natural Science Foundation of China(Nos.52101138,52201075)Natural Science Foundation of Hubei Province,China(Nos.2023AFB798,2022CFB614)+3 种基金Shenzhen Science and Technology Program,China(No.JCYJ20220530160813032)State Key Laboratory of Solidification Processing in NWPU,China(Nos.SKLSP202309,SKLSP202308)Guangdong Basic and Applied Basic Research Foundation,China(No.2022A1515011227)State Key Laboratory of Powder Metallurgy of Central South University,China(No.Sklpm-KF-05).
文摘Metallic glass matrix composites(BMGCs)with compositions of[(Zr_(0.5)Cu_(0.5))_(0.925)Al_(0.07)Sn_(0.005)]_(100-x)Ta_(x)(atomic fraction,%,x=3,5,7)were successfully prepared via dealloying in metallic melt.The reinforcing phase in these alloys has core-shell hybrid structure with Ta-rich particles as core and B2-CuZr as shell.In this method,the dealloyed Ta from Zr-Ta pre-alloys maintained in solid state and aggregated to form the fine Ta-rich phase in the final products.This effectively decreases the size of Ta-rich phase compared with that prepared via conventional arc-melting,where the Ta-rich phase was formed through dissolving and precipitation.Among the three compositions,[(Zr_(0.5)Cu_(0.5))_(0.925)Al_(0.07)Sn_(0.005)]_(95)Ta_(5) showed the highest plastic strain of 11.2%,much higher than that of the arc-melted counterparts(4.3%).Such improvement in mechanical properties was related with the refined core-shell hybrid reinforcing structure,which could hinder the rapid propagation of main shear band more efficiently and cause them to branch and proliferate at the interface.
基金supported in part by Award 2121063 from National Science Foundation(to YM)AG66986 from the National Institutes of Health(to MSW).
文摘γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the Notch family of cell-surface receptors.Mutations inγ-secretase and amyloid precursor protein lead to early-onset familial Alzheimer’s disease.γ-Secretase has thus served as a critical drug target for treating familial Alzheimer’s disease and the more common late-onset Alzheimer’s disease as well.However,critical gaps remain in understanding the mechanisms of processive proteolysis of substrates,the effects of familial Alzheimer’s disease mutations,and allosteric modulation of substrate cleavage byγ-secretase.In this review,we focus on recent studies of structural dynamic mechanisms ofγ-secretase.Different mechanisms,including the“Fit-Stay-Trim,”“Sliding-Unwinding,”and“Tilting-Unwinding,”have been proposed for substrate proteolysis of amyloid precursor protein byγ-secretase based on all-atom molecular dynamics simulations.While an incorrect registry of the Notch1 substrate was identified in the cryo-electron microscopy structure of Notch1-boundγ-secretase,molecular dynamics simulations on a resolved model of Notch1-boundγ-secretase that was reconstructed using the amyloid precursor protein-boundγ-secretase as a template successfully capturedγ-secretase activation for proper cleavages of both wildtype and mutant Notch,being consistent with biochemical experimental findings.The approach could be potentially applied to decipher the processing mechanisms of various substrates byγ-secretase.In addition,controversy over the effects of familial Alzheimer’s disease mutations,particularly the issue of whether they stabilize or destabilizeγ-secretase-substrate complexes,is discussed.Finally,an outlook is provided for future studies ofγ-secretase,including pathways of substrate binding and product release,effects of modulators on familial Alzheimer’s disease mutations of theγ-secretase-substrate complexes.Comprehensive understanding of the functional mechanisms ofγ-secretase will greatly facilitate the rational design of effective drug molecules for treating familial Alzheimer’s disease and perhaps Alzheimer’s disease in general.
文摘In this study,the casting process is used to fabricate modified polyvinyl alcohol(PVA),starch(S),and carboxymethyl cellulose(CMC)polymer blend films(PVA/S/CMC)loaded with various concentrations of irondoped carbon quantum dots(Fe-CQDs)and denoted as(PVA/S/CMC@Fe-CQDs).A one-step microwave strategy was employed as a facile method to prepare Fe-CQDs.Through a series of characterization techniques,fourier-transform infrared(FTIR)spectroscopy,x-ray diffraction(XRD)analysis,and scanning electron microscopy(SEM)have been used to show the successful integration of Fe-CQDs into the PVA/S/CMCmatrix.Loading the synthesized Fe-CQDs to the polymeric matrix significantly enhanced the mechanical properties of the films represented in the tensile strength,Young’s modulus,and hardness.However,the elongation decreased noticeably upon increasing the iron-doped carbon dots.The surface wettability was also studied by measuring the contact angle of the prepared films.The findings showed a noticeable elevation in these measurements by increasing the Fe-CQDs content,declaring the role of a hydrophobic character in these nanoparticles when introduced into a hydrophilic polymeric system.The dielectric characteristics of the reinforced polymer composite films were evaluated.These results revealed that the ac-conductivity of the investigated films was boosted with increasing Fe-CQDs’ratio and frequency.The PVA/S/CMC@Fe-CQDs films possess substantial potential for efficient energy storage applications.
基金financially supported by the CAMS Innovation Fund for Medical Sciences(CIFMS,No.2021-I2M-1-028)。
文摘Two racemic pairs of new stilbenoid dimers,(±)-heterosmilaxones A(1)and B(2),with unique 6/6/6and 6/5/7 tricyclic core systems,respectively,were isolated from the rhizomes of Heterosmilax yunnanensis.Their structures were elucidated through comprehensive spectroscopic analyses,quantum chemical calculations and X-ray diffraction crystallography.Compound(+)-1,initially reported as syagrusin A with a 1,4,4a,9a-tetrahydrofluoren-9-one skeleton,is now revised to a new structure characteristic with a benzo bicyclo[3.3.1]nonene scaffold.And compound 2 bears an unprecedented carbon skeleton with four continuous chiral centers in the central benzo bicyclo[4.2.1]nonene motif.Biogenetically,both 1 and2 were proposed to derive from 3,3',4,5,5'-pentahydroxy stilbene and could be generated through key inverse-electron-demand[4+2]and[5+2]cycloadditions,respectively.Interestingly,both(±)-1 and(±)-2 showed significant inhibition againstα-glucosidase.(±)-1 and its pure enantiomers could modulate protein tyrosine phosphatase-1B(PTP1B)enzyme activities and increased glucose consumption in HepG2 cells in a dose-dependent manner.
基金Supported by the Foundation:This research project is jointly supported by Hebei Provincial Science and Technology Program(No.22375406D)The Earthquake Science and Technology Program of Hebei Province(No.DZ2023120500009,DZ2024120500001).
文摘NLLoc is a nonlinear search positioning method.In this study,we use simulated arrival time data to quantitatively evaluate the NLLoc method from three aspects:arrival time picking accuracy,station distribution,and velocity model.The results show that the NLLoc method exhibits high positioning accuracy and stability in terms of arrival time picking accuracy and station distribution;however,it is sensitive to the velocity model.The positioning accuracy is higher when the velocity model is smaller than the true velocity.We combined absolute and relative positioning methods.First,we use the NLLoc method for absolute positioning of seismic data and then the double difference positioning method for relative positioning to obtain a more accurate relocation result.Furthermore,we used the combined method to locate the earthquake sequence after collecting dense seismic array data on the Luanzhou M_(S)4.3 earthquake that occurred on April 16,2021,in Hebei Province.By fitting the fault plane with the relocated earthquake sequences,the results show that the strike and dip angles of the seismogenic fault of the Luanzhou M_(S)4.3 earthquake are 208.5°and 85.6°,respectively.This indicates a high-dip angle fault with North-North-East strike and North-West dip directions.Furthermore,we infer that the seismogenic fault of the Luanzhou M_(S)4.3 earthquake is the Lulong fault.
基金supported by the National Key Research&De-velopment Program of China(No.2022YFF0609002)the National Natural Science Foundation of China(Nos.U1908219,52171163,and 52271157)+4 种基金the Key Research Program of the Chinese Academy of Sciences(No.ZDRW-CN-2021-2-2)the key Research&Devel-opment Plan of Jiangxi Province(No.20192ACB80001)the Natu-ral Science Foundation of Liaoning Province(No.2022-BS-001)the China Postdoctoral Science Foundation(No.2022M713210)the Shenyang National Laboratory for Materials Science.
文摘Although refractory high-entropy alloys(RHEAs)possess excellent softening resistance and thermal sta-bility at high temperatures,their practical application is often limited due to room temperature(RT)brit-tleness.In this work,we successfully achieved RT plasticization in a brittle(TaMoTi)_(92)Al_(8)RHEA via in situ forming heterogeneous structure(HS)with the doping of Zr.Different from the mainstream design con-cept of“soft solid solution matrices with hard intermetallic phases”proposed in the literature,the newly developed TaMoZrTiAl RHEA is featured by a hard disordered BCC phase embedded into a soft intermetal-lic B2 matrix.Such an HS leads to the remarkable strength-plasticity synergy in this alloy at RT,showing a large plasticity of>20%,associated with a high strength of>2380 MPa.It was found that solid solu-tion strengthening and heterodeformation-induced strengthening caused by dislocation pile-ups at phase boundaries are responsible for the enhancement in the yield strength,while deformation-induced strain partition and the frequent operation of dislocation cross-slip substantially improve the work hardening capacity of alloy,thus enabling the high strength and good RT plasticity.In short,the current work not only reveals the micromechanisms of the influence of heterogeneous dual-phase structure on the RT me-chanical behaviour in RHEAs but also provides a useful strategy for plasticizing brittle RHEAs.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(LGN22C200027 and LZ23C200001).
文摘Studies showed that complexation of polyphenols with milk allergens reduced their immunogenic potential.However,the relationship between structures of polyphenols and their hypoallergenic effects on milk allergens in association with physiological and conformational changes of the complexes remain unclear.In this study,polyphenols from eight botanical sources were extracted to prepare non-covalent complexes withβ-lactoglobulin(β-LG),a major allergen in milk.The dominant phenolic compounds bound toβ-LG with a diminished allergenicity were identified to investigate their respective role on the structural and allergenic properties ofβ-LG.Extracts from Vaccinium fruits and black soybeans were found to have great inhibitory effects on the IgE-and IgG-binding abilities ofβ-LG.Among the fourteen structure-related phenolic compounds,flavonoids and tannins with larger MWs and multi-hydroxyl substituents,notably rutin,EGCG,and ellagitannins were more potent to elicit changes on the conformational structures ofβ-LG to decrease the allergenicity of complexedβ-LG.Correlation analysis further demonstrated that a destabilized secondary structure and protein depolymerization caused by polyphenol-binding were closely related to the allergenicity property of formed complexes.This study provides insights into the understanding of structure-allergenicity relationship ofβ-LG-polyphenol interactions and would benefit the development of polyphenol-fortified matrices with hypoallergenic potential.
基金Jiangsu Key Lab of Biomass Energy and Material,Grant/Award Number:JSBEMS‐202101National Natural Science Foundation of China,Grant/Award Numbers:51902162,51902162+4 种基金National Key R&D Program of China,Grant/Award Number:2022YFB4201904Foundation of Jiangsu Key Lab of Biomass Energy and Material,Grant/Award Number:JSBEM‐S‐202101National Key R&D Program,Grant/Award Number:2022YFB4201904Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources,the International Innovation Center for Forest Chemicals and Materialsanjing Forestry University。
文摘Biomass‐derived carbon is a promising electrode material in energy storage devices.However,how to improve its low capacity and stability,and slow diffusion kinetics during lithium storage remains a challenge.In this research,we propose a“self‐assembly‐template”method to prepare B,N codoped porous carbon(BN‐C)with a nanosandwich structure and abundant pyridinic N‐B species.The nanosandwich structure can increase powder density and cycle stability by constructing a stable solid electrolyte interphase film,shortening the Li^(+) diffusion pathway,and accommodating volume expansion during repeated charging/discharging.The abundant pyridinic N‐B species can simultaneously promote the adsorption/desorption of Li^(+)/PF_(6)^(−) and reduce the diffusion barrier.The BN‐C electrode showed a high lithium‐ion storage capacity of above 1140 mAh g^(−1) at 0.05 A g^(−1) and superior stability(96.5% retained after 2000 cycles).Moreover,owing to the synergistic effect of the nanosandwich structure and pyridinic N‐B species,the assembled symmetrical BN‐C//BN‐C full cell shows a high energy density of 234.7Wh kg^(−1),high power density of 39.38 kW kg−1,and excellent cycling stability,superior to most of the other cells reported in the literature.As the density functional theory simulation demonstrated,pyridinic N‐B shows enhanced adsorption activity for Li^(+) and PF_(6)^(−),which promotes an increase in the capacity of the anode and cathode,respectively.Meanwhile,the relatively lower diffusion barrier of pyridinic N‐B promotes Li^(+) migration,resulting in good rate performance.Therefore,this study provides a new approach for the synergistic modulation of a nanostructure and an active site simultaneously to fabricate the carbon electrode material in energy storage devices.
文摘目的:探讨血清高迁移率族蛋白B1(HMGB1)、S100β联合脑电双频指数(BIS)在脓毒症相关性脑病(SAE)早期诊断中的应用价值。方法:回顾性分析脓毒症病人87例临床资料,根据是否合并SAE,分为SAE组35例和非SAE组52例。比较2组病人相关临床资料和血清HMGB1、S100β水平及24 h BIS,分析脓毒症病人发生SAE的影响因素和HMGB1、S100β、BIS联合检测早期诊断SAE的临床价值。结果:SAE组病人APACHEⅡ评分、SOFA评分均明显高于非SAE组(P<0.01);SAE组血清HMGB1、S100β水平均明显高于非SAE组(P<0.01),而BIS明显低于非SAE组(P<0.01)。APACHEⅡ评分、SOFA评分和HMGB1、S100β、BIS均为脓毒症病人发生SAE的独立影响因素(P<0.01)。ROC曲线分析显示,血清HMGB1、S100β联合BIS早期诊断脓毒症病人发生SAE的AUC为0.891,敏感度为91.43%,特异度为84.62%,优于各指标独立诊断。结论:血清HMGB1、S100β联合BIS在SAE早期诊断中具有较好的临床应用价值。
基金Projects(50961009,51161015)supported by the National Natural Science Foundation of ChinaProject(2011AA03A408)supported by the High-tech Research and Development Program of ChinaProjects(2011ZD10,2010ZD05)supported by the Natural Science Foundation of Inner Mongolia,China
文摘In order to ameliorate the electrochemical hydrogen storage performance of La-Mg-Ni system A2B7-type electrode alloys, a small amount of Si was added. The La0.8Mg0.2Ni3.3Co0.2Six (x=0-0.2) electrode alloys were prepared by casting and annealing. The effects of adding Si on the structure and electrochemical hydrogen storage characteristics of the alloys were investigated systematically. The results indicate that the as-cast and annealed alloys hold multiple structures, involving two major phases of (La, Mg)2Ni7 with a Ce2Ni7-type hexagonal structure and LaNi5 with a CaCu5-type hexagonal structure as well as one residual phase LaNi3. The addition of Si results in a decrease in (La, Mg)2Ni7 phase and an increase in LaNi5 phase without changing the phase structure of the alloys. What is more, it brings on an obvious effect on electrochemical hydrogen storage characteristics of the alloys. The discharge capacities of the as-cast and annealed alloys decline with the increase of Si content, but their cycle stabilities clearly grow under the same condition. Furthermore, the measurements of the high rate discharge ability, the limiting current density, hydrogen diffusion coefficient as well as electrochemical impedance spectra all indicate that the electrochemical kinetic properties of the electrode alloys first increase and then decrease with the rising of Si content.