Fe2O3@polypyrrole nanotubes (Fe2O3@PPy nanotubes) have been successfully prepared by in-situ polymerization of the pyrrole on the surface of Fe2O3 nanotubes (Fe2O3-NTs), via using L-Lysine as modified surfactant. ...Fe2O3@polypyrrole nanotubes (Fe2O3@PPy nanotubes) have been successfully prepared by in-situ polymerization of the pyrrole on the surface of Fe2O3 nanotubes (Fe2O3-NTs), via using L-Lysine as modified surfactant. Hollow PPy nanotubes were also produced by dissolution of the Fe2O3 core from the core/shell composite nanotubes with 1 mol,L-1 HC1. Scanning electron microscopy(SEM), transmission electron microscope (TEM), selective-area electron diffraction (SAED), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy(FT-IR) confirmed the formation of Fe2O3-NTs and Fe2O3@PPy core/shell nanotubes. Its catalytic properties were investigated under the ultrasound. The results of UV-vis spectroscopy (UV) demonstrated Rhodamine B (RhB) can be efficiently degraded by Fe2O3 @PPy nanotubes.展开更多
CuO-Fe2O3 composite material with strongmagnetism and a large surface area is prepared by the co-precipitate method. Its adsorption properties towards Acid Red B (ARB) and the regeneration by catalytic com-bustion of ...CuO-Fe2O3 composite material with strongmagnetism and a large surface area is prepared by the co-precipitate method. Its adsorption properties towards Acid Red B (ARB) and the regeneration by catalytic com-bustion of organic compounds have been studied. The results show that the prepared CuO-Fe2O3 composite is an excellent adsorbent for ARB adsorption at acid condition. The pres-ence of Cl- has no effect on ARB adsorption. But the 24SO-can inhibit ARB adsorption. After being recovered by the magnetic separation method, the adsorbent can be regener-ated by catalytic oxidation of absorbate at 300℃ in air at-mosphere. The combustion reactions of ARB in the presence or absence of CuO-Fe2O3 are studied by in situ diffuse reflec-tion FTIR. The results indicate that, in the presence ofCuO-Fe2O3, the degradation temperature is significantlylowered by the catalysis of CuO-Fe2O3, and ARB can be oxi-dized completely without volatile organic compound by-product; in comparison, in the absence of CuO-Fe2O3, the temperature needed for oxidation of ARB is higher and the reaction is incomplete with some N-containing harmfulcompounds produced. The reusability of CuO-Fe2O3 is also studied in successive seven adsorption-regeneration cycles.展开更多
利用水热法和共沉淀法制备了微纳米氧化铁光催化剂,表征了氧化铁的微观形貌和晶体结构,并以罗丹明B溶液作为目标污染物,研究了氧化铁催化剂的可见光催化性能.结果表明:共沉淀法制备的氧化铁为有所团聚的微米块状,水热法所制备的氧化铁...利用水热法和共沉淀法制备了微纳米氧化铁光催化剂,表征了氧化铁的微观形貌和晶体结构,并以罗丹明B溶液作为目标污染物,研究了氧化铁催化剂的可见光催化性能.结果表明:共沉淀法制备的氧化铁为有所团聚的微米块状,水热法所制备的氧化铁微观形貌为直径约400 nm的纳米球形.催化剂的制备方法、催化剂的投加量及H2O2的加入对污染物溶液的光催化降解效果均有影响.以0.03 g水热法制备的氧化铁为催化剂,加入0.1 mL H2O2,光催化降解50 mL 20 mg/L罗丹明B溶液,30 min后降解率能够达到100%.展开更多
文摘Fe2O3@polypyrrole nanotubes (Fe2O3@PPy nanotubes) have been successfully prepared by in-situ polymerization of the pyrrole on the surface of Fe2O3 nanotubes (Fe2O3-NTs), via using L-Lysine as modified surfactant. Hollow PPy nanotubes were also produced by dissolution of the Fe2O3 core from the core/shell composite nanotubes with 1 mol,L-1 HC1. Scanning electron microscopy(SEM), transmission electron microscope (TEM), selective-area electron diffraction (SAED), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy(FT-IR) confirmed the formation of Fe2O3-NTs and Fe2O3@PPy core/shell nanotubes. Its catalytic properties were investigated under the ultrasound. The results of UV-vis spectroscopy (UV) demonstrated Rhodamine B (RhB) can be efficiently degraded by Fe2O3 @PPy nanotubes.
基金supported by the National Science Fund for Distinguished Young Scholars(Grant No.50225824)the Knowledge Innovation Project of the Chinese Academy of Sciences(Grant No.KZCX2-409).
文摘CuO-Fe2O3 composite material with strongmagnetism and a large surface area is prepared by the co-precipitate method. Its adsorption properties towards Acid Red B (ARB) and the regeneration by catalytic com-bustion of organic compounds have been studied. The results show that the prepared CuO-Fe2O3 composite is an excellent adsorbent for ARB adsorption at acid condition. The pres-ence of Cl- has no effect on ARB adsorption. But the 24SO-can inhibit ARB adsorption. After being recovered by the magnetic separation method, the adsorbent can be regener-ated by catalytic oxidation of absorbate at 300℃ in air at-mosphere. The combustion reactions of ARB in the presence or absence of CuO-Fe2O3 are studied by in situ diffuse reflec-tion FTIR. The results indicate that, in the presence ofCuO-Fe2O3, the degradation temperature is significantlylowered by the catalysis of CuO-Fe2O3, and ARB can be oxi-dized completely without volatile organic compound by-product; in comparison, in the absence of CuO-Fe2O3, the temperature needed for oxidation of ARB is higher and the reaction is incomplete with some N-containing harmfulcompounds produced. The reusability of CuO-Fe2O3 is also studied in successive seven adsorption-regeneration cycles.
文摘利用水热法和共沉淀法制备了微纳米氧化铁光催化剂,表征了氧化铁的微观形貌和晶体结构,并以罗丹明B溶液作为目标污染物,研究了氧化铁催化剂的可见光催化性能.结果表明:共沉淀法制备的氧化铁为有所团聚的微米块状,水热法所制备的氧化铁微观形貌为直径约400 nm的纳米球形.催化剂的制备方法、催化剂的投加量及H2O2的加入对污染物溶液的光催化降解效果均有影响.以0.03 g水热法制备的氧化铁为催化剂,加入0.1 mL H2O2,光催化降解50 mL 20 mg/L罗丹明B溶液,30 min后降解率能够达到100%.