Hepatocellular carcinoma presents with three distinct immune phenotypes,including immune-desert,immune-excluded,and immune-inflamed,indicating various treatment responses and prognostic outcomes.The clinical applicati...Hepatocellular carcinoma presents with three distinct immune phenotypes,including immune-desert,immune-excluded,and immune-inflamed,indicating various treatment responses and prognostic outcomes.The clinical application of multi-omics parameters is still restricted by the expensive and less accessible assays,although they accurately reflect immune status.A comprehensive evaluation framework based on“easy-to-obtain”multi-model clinical parameters is urgently required,incorporating clinical features to establish baseline patient profiles and disease staging;routine blood tests assessing systemic metabolic and functional status;immune cell subsets quantifying subcluster dynamics;imaging features delineating tumor morphology,spatial configuration,and perilesional anatomical relationships;immunohistochemical markers positioning qualitative and quantitative detection of tumor antigens from the cellular and molecular level.This integrated phenomic approach aims to improve prognostic stratification and clinical decision-making in hepatocellular carcinoma management conveniently and practically.展开更多
To overcome the limitations of low efficiency and reliance on manual processes in the measurement of geometric parameters for bridge prefabricated components,a method based on deep learning and computer vision is deve...To overcome the limitations of low efficiency and reliance on manual processes in the measurement of geometric parameters for bridge prefabricated components,a method based on deep learning and computer vision is developed to identify the geometric parameters.The study utilizes a common precast element for highway bridges as the research subject.First,edge feature points of the bridge component section are extracted from images of the precast component cross-sections by combining the Canny operator with mathematical morphology.Subsequently,a deep learning model is developed to identify the geometric parameters of the precast components using the extracted edge coordinates from the images as input and the predefined control parameters of the bridge section as output.A dataset is generated by varying the control parameters and noise levels for model training.Finally,field measurements are conducted to validate the accuracy of the developed method.The results indicate that the developed method effectively identifies the geometric parameters of bridge precast components,with an error rate maintained within 5%.展开更多
The seismic data of the Laoshan Uplift in the South Yellow Sea Basin reveal a low signal-tonoise ratio and low refl ection signal energy in the deep Mesozoic–Paleozoic strata.The main reason is that the Mesozoic-Pale...The seismic data of the Laoshan Uplift in the South Yellow Sea Basin reveal a low signal-tonoise ratio and low refl ection signal energy in the deep Mesozoic–Paleozoic strata.The main reason is that the Mesozoic-Paleozoic marine carbonate rock strata are directly covered by the Cenozoic terrestrial clastic rock strata,which form a strong shielding layer.To obtain the reflection signals of the strata below the strong shielding layer,a one-way wave equation bidirectional illumination analysis of the main observation system parameters was conducted by analyzing the mechanism of the strong shielding layer.Low-frequency seismic sources are assumed to have a high illumination intensity on the reflection layer below the strong shielding layer.Accordingly,optimized acquisition parameter suggestions were proposed,and reacquisition was performed at the existing survey line locations in the Laoshan Uplift area.The imaging of the newly acquired data in the middle and deep layers was drastically improved.It revealed the unconformity between the Sinian and Cambrian under the strong shielding layer.The study yielded new insights into the tectonic and sedimentary evolution of the Lower Paleozoic in the South Yellow Sea.展开更多
A conceptual model of intermittent joints is introduced to the cyclic shear test in the laboratory to explore the effects of loading parameters on its shear behavior under cyclic shear loading.The results show that th...A conceptual model of intermittent joints is introduced to the cyclic shear test in the laboratory to explore the effects of loading parameters on its shear behavior under cyclic shear loading.The results show that the loading parameters(initial normal stress,normal stiffness,and shear velocity)determine propagation paths of the wing and secondary cracks in rock bridges during the initial shear cycle,creating different morphologies of macroscopic step-path rupture surfaces and asperities on them.The differences in stress state and rupture surface induce different cyclic shear responses.It shows that high initial normal stress accelerates asperity degradation,raises shear resistance,and promotes compression of intermittent joints.In addition,high normal stiffness provides higher normal stress and shear resistance during the initial cycles and inhibits the dilation and compression of intermittent joints.High shear velocity results in a higher shear resistance,greater dilation,and greater compression.Finally,shear strength is most sensitive to initial normal stress,followed by shear velocity and normal stiffness.Moreover,average dilation angle is most sensitive to initial normal stress,followed by normal stiffness and shear velocity.During the shear cycles,frictional coefficient is affected by asperity degradation,backfilling of rock debris,and frictional area,exhibiting a non-monotonic behavior.展开更多
The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can caus...The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can cause changes in cutting force/heat,resulting in affecting gear machining precision.Therefore,this paper studies the effect of different process parameters on gear machining precision.A multi-objective optimization model is established for the relationship between process parameters and tooth surface deviations,tooth profile deviations,and tooth lead deviations through the cutting speed,feed rate,and cutting depth of the worm wheel gear grinding machine.The response surface method(RSM)is used for experimental design,and the corresponding experimental results and optimal process parameters are obtained.Subsequently,gray relational analysis-principal component analysis(GRA-PCA),particle swarm optimization(PSO),and genetic algorithm-particle swarm optimization(GA-PSO)methods are used to analyze the experimental results and obtain different optimal process parameters.The results show that optimal process parameters obtained by the GRA-PCA,PSO,and GA-PSO methods improve the gear machining precision.Moreover,the gear machining precision obtained by GA-PSO is superior to other methods.展开更多
In complex systems,there is a kind of parameters having only a minor impact on the outputs in most cases,but their accurate values are still critical for the operation of systems.In this paper,the authors focus on the...In complex systems,there is a kind of parameters having only a minor impact on the outputs in most cases,but their accurate values are still critical for the operation of systems.In this paper,the authors focus on the identification of these weak influence parameters in the complex systems and propose a identification model based on the parameter recursion.As an application,three parameters of the steam generator are identified,that is,the valve opening,the valve CV value,and the reference water level,in which the valve opening and the reference water level are weak influence parameters under most operating conditions.Numerical simulation results show that,in comparison with the multi-layer perceptron(MLP),the identification error rate is decreased.Actually,the average identification error rate for the valve opening decreases by 0.96%,for the valve CV decreases by 0.002%,and for the reference water level decreases by 12%after one recursion.After two recursions,the average identification error rate for the valve opening decreases by 11.07%,for the valve CV decreases by 2.601%,and for the reference water level decreases by 95.79%.This method can help to improve the control of the steam generator.展开更多
To overcome the shortage of complex equipment,large volume,and high energy consumption in space capsule manufacturing,a novel sliding pressure Joule heat fuse additive manufacturing technique with reduced volume and l...To overcome the shortage of complex equipment,large volume,and high energy consumption in space capsule manufacturing,a novel sliding pressure Joule heat fuse additive manufacturing technique with reduced volume and low energy consumption was proposed.But the unreasonable process parameters may lead to the inferior consistency of the forming quality of single-channel multilayer in Joule heat additive manufacturing process,and it is difficult to reach the condition for forming thinwalled parts.Orthogonal experiments were designed to fabricate single-channel multilayer samples with varying numbers of layers,and their forming quality was evaluated.The influence of printing current,forming speed,and contact pressure on the forming quality of the single-channel multilayer was analyzed.The optimal process parameters were obtained and the quality characterization of the experiment results was conducted.Results show that the printing current has the most significant influence on the forming quality of the single-channel multilayer.Under the optimal process parameters,the forming section is well fused and the surface is continuously smooth.The surface roughness of a single-channel 3-layer sample is 0.16μm,and the average Vickers hardness of cross section fusion zone is 317 HV,which lays a foundation for the subsequent use of Joule heat additive manufacturing technique to form thinwall parts.展开更多
The study of the morphometric parameters of the three most abundant species in the lower course of the Kouilou River (Chrysichthys auratus, Liza falcipinnis and Pellonula vorax) was carried out. The standard length of...The study of the morphometric parameters of the three most abundant species in the lower course of the Kouilou River (Chrysichthys auratus, Liza falcipinnis and Pellonula vorax) was carried out. The standard length of Chrysichthys auratus varies between 43.57 and 210 mm, for an average of 96.70 ± 28.63 mm;the weight varies between 2.92 and 140.83 mg, an average of 73.03 ± 21.62 mg. The condition coefficient is equal to 4.42 ± 1.52. Liza falcipinnis has a standard length which varies between 59.9 mm and 158.08 mm for an average of 88.15 ± 29.74 mm;its weight varies between 4.77 and 76.21 mg, an average of 18.61 ± 11.82 mg. The condition coefficient is equal to 2.47 ± 1.57. Pellonula vorax has a standard length which varies between 60.33 mm and 117.72 mm;for an average of 80.48 ± 17.75 mm;the weight varies between 3.61 and 25.17 mg, an average of 9.03 ± 3.61 mg. The condition coefficient is equal to 2.17 ± 0.57. These three species have a minor allometric growth.展开更多
The lattice parameter,measured with sufficient accuracy,can be utilized to evaluate the quality of single crystals and to determine the equation of state for materials.We propose an iterative method for obtaining more...The lattice parameter,measured with sufficient accuracy,can be utilized to evaluate the quality of single crystals and to determine the equation of state for materials.We propose an iterative method for obtaining more precise lattice parameters using the interaction points for the pseudo-Kossel pattern obtained from laser-induced X-ray diffraction(XRD).This method has been validated by the analysis of an XRD experiment conducted on iron single crystals.Furthermore,the method was used to calculate the compression ratio and rotated angle of an LiF sample under high pressure loading.This technique provides a robust tool for in-situ characterization of structural changes in single crystals under extreme conditions.It has significant implications for studying the equation of state and phase transitions.展开更多
In the field of antenna engineering parameter calibration for indoor communication base stations,traditional methods suffer from issues such as low efficiency,poor accuracy,and limited applicability to indoor scenario...In the field of antenna engineering parameter calibration for indoor communication base stations,traditional methods suffer from issues such as low efficiency,poor accuracy,and limited applicability to indoor scenarios.To address these problems,a high-precision and high-efficiency indoor base station parameter calibration method based on laser measurement is proposed.We use a high-precision laser tracker to measure and determine the coordinate system transformation relationship,and further obtain the coordinates and attitude of the base station.In addition,we propose a simple calibration method based on point cloud fitting for specific scenes.Simulation results show that using common commercial laser trackers,we can achieve a coordinate correction accuracy of 1 cm and an angle correction accuracy of 0.25°,which is sufficient to meet the needs of wireless positioning.展开更多
The high-speed winding spindle employs a flexible support system incorporating rubber O-rings.By precisely configuring the structural parameters and the number of the O-rings,the spindle can stably surpass its critica...The high-speed winding spindle employs a flexible support system incorporating rubber O-rings.By precisely configuring the structural parameters and the number of the O-rings,the spindle can stably surpass its critical speed points and maintain operational stability across the entire working speed range.However,the support stiffness and damping of rubber O-rings exhibit significant nonlinear frequency dependence.Conventional experimental methods for deriving equivalent stiffness and damping,based on the principle of the forced non-resonance method,require fabricating custom setups for each O-ring specification and conducting vibration tests at varying frequencies,resulting in low efficiency and high costs.This study proposes a hybrid simulation-experimental method for dynamic parameter identification.Firstly,the frequency-dependent dynamic parameters of a specific O-ring support system are experimentally obtained.Subsequently,a corresponding parametric finite element model is established to simulate and solve the equivalent elastic modulus and equivalent stiffness-damping coefficient of this O-ring support system.Ultimately,after iterative simulation,the simulated and experimental results achieve a 99.7%agreement.The parametric finite element model developed herein can directly simulate and inversely estimate frequency-dependent dynamic parameters for O-rings of different specifications but identical elastic modulus.展开更多
The research on ocean dynamics information plays a crucial role in understanding ocean phenomena, assessing marine environmental impacts, and guiding engineering designs. The Doppler information observed by radars ref...The research on ocean dynamics information plays a crucial role in understanding ocean phenomena, assessing marine environmental impacts, and guiding engineering designs. The Doppler information observed by radars reflects sea surface dynamics, to which ocean waves make important contributions. Low-incidence-angle real aperture radar(RAR)demonstrates great potential for independently observing vectorial Doppler information on the ocean surface. To systematically characterize and accurately estimate the wave-induced Doppler frequency shift(WVF) from lowincidence-angle RAR, this study conducts comprehensive influencing factor analysis and establishes sea-stateparameterized WVF models. First, a simulated WVF dataset is generated under a rotating low-incidence-angle RAR.The feature parameters of WVF are then determined by analysing contributing factors including wind waves, swells,and sea state parameters. Furthermore, two WVF models(WVF_Ku P9 with 9 inputs and WVF_Ku P4 with 4 inputs) are constructed by the Transformer encoder for different application scenarios. Both models achieve high accuracy for WVF estimation with root mean square errors(RMSE) of 1.874 Hz and 2.716 Hz, respectively. The reliability and superiority of the proposed models are validated through comparisons with the Ka DOP, which is a typical geophysical model function(GMF). The findings in this paper advance the understanding of WVF characteristics and generation mechanisms. The proposed estimation models can provide reliable estimates, offering critical references for lowincidence-angle RAR applications such as ocean surface current retrieval.展开更多
BACKGROUND Pancreatic cystic neoplasms(PCNs)are increasingly detected due to advancements in radiographic techniques,with a prevalence of approximately 15%in the general population.These lesions range from benign to p...BACKGROUND Pancreatic cystic neoplasms(PCNs)are increasingly detected due to advancements in radiographic techniques,with a prevalence of approximately 15%in the general population.These lesions range from benign to premalignant and malignant,posing a diagnostic challenge.Accurate differentiation is critical,as premalignant and malignant PCNs often require surgical intervention,while benign cysts may only need monitoring unless symptomatic.Current diagnostic methods,including cross-sectional imaging,endoscopic ultrasonography,and endoscopic ultrasonography-guided fine-needle aspiration/biopsy,are specialized,not universally available,and have variable accuracy.Clinical and laboratory parameters such as carbohydrate antigen 19-9(CA 19-9),neutrophillymphocyte ratio,platelet-lymphocyte ratio,and red cell distribution width(RDW)have been associated with malignancy risk,though only CA 19-9 is guideline-supported.AIM To assess the malignancy risk of PCNs using preoperative clinical and routine laboratory parameters.METHODS A retrospective cohort study analyzed 70 patients who underwent surgery for PCNs at Ankara Bilkent City Hospital between February 2019 and March 2023.Patients were categorized into group A(benign or low-grade dysplasia,n=40)and group B(malignancy or high-grade dysplasia,n=30)based on postoperative pathology.Preoperative demographic and laboratory parameters,including age,RDW,albumin,and CA 19-9,were compared.Univariate and multivariate logistic regression analyses identified independent predictors of malignancy.Receiver operating characteristic curve analysis evaluated predictive performance,with internal validation using bootstrapping.RESULTS Group B patients were older(69.86±9.58 years vs 52.74±16.85 years,P<0.001)and had a higher incidence of diabetes mellitus(57.1%vs 21.4%,P=0.002).RDW(16.2%vs 13.7%,P<0.001),platelet-lymphocyte ratio(178 vs 126,P=0.008),and CA 19-9(21.7 U/mL vs 9.3 U/mL,P=0.009)were significantly higher in group B,while albumin was lower(41 g/L vs 45 g/L,P=0.008).Multivariate analysis identified age[odds ratio=1.067,95%confidence interval(CI):1.014-1.122,P=0.012]and RDW(odds ratio=1.784,95%CI:1.172-2.715,P=0.007)as independent predictors.The area under the curve for age,RDW,and their combination was 0.798(95%CI:0.695-0.900),0.801(95%CI:0.692-0.911),and 0.858(95%CI:0.771-0.944),respectively,with bootstrapped validation confirming stability.Cut-off values of age≥60 years and RDW≥15.5%balanced sensitivity and specificity,increasing malignancy risk 15.3-fold and 22.6-fold,respectively.CONCLUSION Age and RDW are independent predictors of malignancy in PCNs,aiding in patient selection for advanced diagnostics and surgery.Larger,multicenter studies are needed to validate these findings.展开更多
Taking short-duration heavy rainfall and convective wind gusts as examples, the present study examined the characteristics of radar reflectivity and several convective parameters. We analyzed nowcasting techniques by ...Taking short-duration heavy rainfall and convective wind gusts as examples, the present study examined the characteristics of radar reflectivity and several convective parameters. We analyzed nowcasting techniques by integrating a high-resolution numerical weather prediction model with these convective parameters. Based on the CMA-GD 1-km model and its assimilation system, we conducted repeated tests on radar reflectivity data assimilation and analyzed their impact on nowcasting accuracy. Based on these analyses, we proposed a method to improve model forecasts using the useful indicative information provided by high-frequency radar reflectivity data and convective parameters. The improved method was applied to the CMA-GD 1-km model for nowcasting tests. Evaluations from batch tests and case analysis show that the proposed method significantly reduced the model's false alarm rates and improved its nowcasting performance.展开更多
In the context of the diversity of smart terminals,the unity of the root of trust becomes complicated,which not only affects the efficiency of trust propagation,but also poses a challenge to the security of the whole ...In the context of the diversity of smart terminals,the unity of the root of trust becomes complicated,which not only affects the efficiency of trust propagation,but also poses a challenge to the security of the whole system.In particular,the solidification of the root of trust in non-volatile memory(NVM)restricts the system’s dynamic updating capability,which is an obvious disadvantage in a rapidly changing security environment.To address this issue,this study proposes a novel approach to generate root security parameters using static random access memory(SRAM)physical unclonable functions(PUFs).SRAM PUFs,as a security primitive,show great potential in lightweight security solutions due to their inherent physical properties,low cost and scalability.However,the stability of SRAM PUFs in harsh environments is a key issue.These environmental conditions include extreme temperatures,high humidity,and strong electromagnetic radiation,all of which can affect the performance of SRAM PUFs.In order to ensure the stability of root safety parameters under these conditions,this study proposes an integrated approach that covers not only the acquisition of entropy sources,but also the implementation of algorithms and configuration management.In addition,this study develops a series of reliability-enhancing algorithms,including adaptive parameter selection,data preprocessing,auxiliary data generation,and error correction,which are essential for improving the performance of SRAM PUFs in harsh environments.Based on these techniques,this study establishes six types of secure parameter generation mechanisms,which not only improve the security of the system,but also enhance its adaptability in variable environments.Through a series of experiments,we verify the effectiveness of the proposed method.Under 10 different environmental conditions,our method is able to achieve full recovery of security data with an error rate of less than 25%,which proves the robustness and reliability of our method.These results not only provide strong evidence for the stability of SRAM PUFs in practical applications,but also provide a new direction for future research in the field of smart terminal security.展开更多
AIM:To describe ocular biometric parameters among Han and Uyghur myopic adults in Xinjiang,China.METHODS:A cross-sectional study was conducted.The different ocular biometric parameters collected using Pentacam were an...AIM:To describe ocular biometric parameters among Han and Uyghur myopic adults in Xinjiang,China.METHODS:A cross-sectional study was conducted.The different ocular biometric parameters collected using Pentacam were analyzed,including corneal curvature,corneal astigmatism(CA),horizontal corneal diameter(white-to-white,WTW),corneal volume(CV),pupil diameter(PD),anterior chamber angle(ACA),anterior chamber depth(ACD),anterior chamber volume(ACV)and axial length(AL).RESULTS:In total,2932 participants were included in the final analysis,comprising 2310 Han and 622 Uyghur adults.Adults in the high myopia(HM)group had steeper K2,larger CA,smaller WTW and longer AL in both the Uyghur and Han adults(all P<0.05).The moderate myopia(MM)and HM group had deeper ACV,ACD and wider ACA than the low myopia(all P<0.05)in Han adults,however there were no differences in anterior chamber indices with Uyghur adults.In the Uyghur adults,we noticed that CV,WTW,and ACD were smaller,ACA was narrower,PD was larger,and AL was shorter(all P<0.05).We also noticed sex differences:males had flatter corneas,deeper ACD and ACV,and larger WTW than females(all P<0.05).In the correlation analysis,WTW was positively correlated with ACD and ACV but negatively correlated with K1,K2 and CV(all P<0.05).Narrower ACA was associated with larger PD(rU=-0.25,rH=-0.16,all P<0.01).CONCLUSION:The Han population have different biometric parameters in eyes with HM compared to the Uyghur population,and the Uyghur population may anatomically more susceptible to primary angle closure glaucoma than the Han population.展开更多
AIM:To investigate the relationship between preoperative corneal biomechanical properties and corneal tomographic properties in cataract patients.METHODS:The study consisted of 59 eyes of 30 participants who were diag...AIM:To investigate the relationship between preoperative corneal biomechanical properties and corneal tomographic properties in cataract patients.METHODS:The study consisted of 59 eyes of 30 participants who were diagnosed as cataract in Peking University Third Hospital between September 2019 and November 2019.Stepwise multivariable linear regression analysis was calculated to determine the relationship between corneal biomechanical parameters and tomographic parameters.The patients were classified into three groups of with the rule(WTR)astigmatism,against the rule astigmatism and oblique astigmatism.And the differences in corneal parameters among different groups were compared.RESULTS:There were significant differences in the first applanation time(A1T),the first applanation length(A1L),corneal velocity during the first applanation(Vin),the second applanation time(A2T),highest concavity(HC)radius,displacement amount(DA),DA ratio,stiffness parameter A1(SPA1)and integrated radius(IR)between oblique astigmatism patients and the other two groups.Total corneal steep meridian(K2)was negatively associated with A1L,A1T and corneal velocity during the second applanation(Vout).Patients with higher anterior corneal curvature had lower HC radius and central corneal thickness(CCT;P=0.001 and 0.006,respectively),while the Ambrosio relational thickness to the horizontal profile(ARTh)was higher than those with lower anterior corneal curvature(P=0.009).CONCLUSION:The study reveals that the elasticity of corneal collagen fibers is greater,but the viscoelasticity of cornea is smaller in patients with oblique astigmatism.There is no significant difference in ARTh between patients with different types of astigmatism,that is,the corneal biomechanical specificity of oblique astigmatism group is probably not caused by corneal thickness.Moreover,we find patients with higher anterior corneal curvature has lower HC radius and CCT but higher ARTh than those with lower anterior corneal curvature.展开更多
In order to improve the accuracy of the photogrammetric joint roughness coefficient(JRC)value,the present study proposed a novel method combining an autonomous shooting parameter selection algorithm with a composite e...In order to improve the accuracy of the photogrammetric joint roughness coefficient(JRC)value,the present study proposed a novel method combining an autonomous shooting parameter selection algorithm with a composite error model.Firstly,according to the depth map-based photogrammetric theory,the estimation of JRC from a three-dimensional(3D)digital surface model of rock discontinuities was presented.Secondly,an automatic shooting parameter selection algorithm was novelly proposed to establish the 3D model dataset of rock discontinuities with varying shooting parameters and target sizes.Meanwhile,the photogrammetric tests were performed with custom-built equipment capable of adjusting baseline lengths,and a total of 36 sets of JRC data was gathered via a combination of laboratory and field tests.Then,by combining the theory of point cloud coordinate computation error with the equation of JRC calculation,a composite error model controlled by the shooting parameters was proposed.This newly proposed model was validated via the 3D model dataset,demonstrating the capability to correct initially obtained JRC values solely based on shooting parameters.Furthermore,the implementation of this correction can significantly reduce errors in JRC values obtained via photographic measurement.Subsequently,our proposed error model was integrated into the shooting parameter selection algorithm,thus improving the rationality and convenience of selecting suitable shooting parameter combinations when dealing with target rock masses with different sizes.Moreover,the optimal combination of three shooting parameters was offered.JRC values resulting from various combinations of shooting parameters were verified by comparing them with 3D laser scan data.Finally,the application scope and limitations of the newly proposed approach were further addressed.展开更多
The Rydberg atom-based receiver, as a novel type of antenna, demonstrates broad application prospects in the field of microwave communications. However, since Rydberg atomic receivers are nonlinear systems, mismatches...The Rydberg atom-based receiver, as a novel type of antenna, demonstrates broad application prospects in the field of microwave communications. However, since Rydberg atomic receivers are nonlinear systems, mismatches between the parameters of the received amplitude modulation(AM) signals and the system's linear workspace and demodulation operating points can cause severe distortion in the demodulated signals. To address this, the article proposes a method for determining the operational parameters based on the mean square error(MSE) and total harmonic distortion(THD) assessments and presents strategies for optimizing the system's operational parameters focusing on linear response characteristics(LRC) and linear dynamic range(LDR). Specifically, we employ a method that minimizes the MSE to define the system's linear workspace, thereby ensuring the system has a good LRC while maximizing the LDR. To ensure that the signal always operates within the linear workspace, an appropriate carrier amplitude is set as the demodulation operating point. By calculating the THD at different operating points, the LRC performance within different regions of the linear workspace is evaluated, and corresponding optimization strategies based on the range of signal strengths are proposed. Moreover, to more accurately restore the baseband signal, we establish a mapping relationship between the carrier Rabi frequency and the transmitted power of the probe light, and optimize the slope of the linear demodulation function to reduce the MSE to less than 0.8×10^(-4). Finally, based on these methods for determining the operational parameters, we explore the effects of different laser Rabi frequencies on the system performance, and provide optimization recommendations. This research provides robust support for the design of high-performance Rydberg atom-based AM receivers.展开更多
Pelargonium zonale is an important ornamental and medicinal plant.The purpose of this investigation was to evaluate the effects of conventional and unconventional fertilization on variations in the physicochemical par...Pelargonium zonale is an important ornamental and medicinal plant.The purpose of this investigation was to evaluate the effects of conventional and unconventional fertilization on variations in the physicochemical parameters of the culture substrate(temperature,pH,and electrical conductivity)in two cultivars of Pelargonium zonale(L.)L’Hér.,grown in pots.This study was conducted under greenhouse conditions,using Pindstrup peat as the culture substrate.The analysis focused on how these physicochemical indicators of peat influenced plant height and development under fertilization conditions.Results revealed that in the‘Tango Salmon’cultivar,both fertilization regimes significantly modified substrate temperature and electrical conductivity(conventional fertilization leading to the highest electric conductivity values of 0.77 mS/cm)while in control,was observed the highest substrate temperature(21.24℃).In contrast,pH remained relatively stable across treatments.In the‘Tango Dark Red’cultivar,no significant differences were observed between substrate physicochemical parameters regardless of treatment.The multiple correlations coefficients values showed that substrate parameters influenced plant height with varying degrees of intensity depending on cultivar and fertilization scheme,reaching up the highest predictability of 60.6%in the‘Tango Dark Red’control variant.The study highlighted that physicochemical properties of the substrate(particularly electric conductivity and temperature)are for were the main contributors to optimal plant development and should be carefully managed within fertilization strategies.展开更多
文摘Hepatocellular carcinoma presents with three distinct immune phenotypes,including immune-desert,immune-excluded,and immune-inflamed,indicating various treatment responses and prognostic outcomes.The clinical application of multi-omics parameters is still restricted by the expensive and less accessible assays,although they accurately reflect immune status.A comprehensive evaluation framework based on“easy-to-obtain”multi-model clinical parameters is urgently required,incorporating clinical features to establish baseline patient profiles and disease staging;routine blood tests assessing systemic metabolic and functional status;immune cell subsets quantifying subcluster dynamics;imaging features delineating tumor morphology,spatial configuration,and perilesional anatomical relationships;immunohistochemical markers positioning qualitative and quantitative detection of tumor antigens from the cellular and molecular level.This integrated phenomic approach aims to improve prognostic stratification and clinical decision-making in hepatocellular carcinoma management conveniently and practically.
基金The National Natural Science Foundation of China(No.52338011,52378291)Young Elite Scientists Sponsorship Program by CAST(No.2022-2024QNRC0101).
文摘To overcome the limitations of low efficiency and reliance on manual processes in the measurement of geometric parameters for bridge prefabricated components,a method based on deep learning and computer vision is developed to identify the geometric parameters.The study utilizes a common precast element for highway bridges as the research subject.First,edge feature points of the bridge component section are extracted from images of the precast component cross-sections by combining the Canny operator with mathematical morphology.Subsequently,a deep learning model is developed to identify the geometric parameters of the precast components using the extracted edge coordinates from the images as input and the predefined control parameters of the bridge section as output.A dataset is generated by varying the control parameters and noise levels for model training.Finally,field measurements are conducted to validate the accuracy of the developed method.The results indicate that the developed method effectively identifies the geometric parameters of bridge precast components,with an error rate maintained within 5%.
基金“High precision prestack reverse time depth migration imaging of long array seismic data in the East China Sea Shelf Basin”of the National Natural Science Foundation of China(No.42106207)“Seismic acquisition technology for deep strata under strong shielding layers in the sea and rugged seabed”of Laoshan Laboratory Science and Technology Innovation Project(No.LSKJ202203404)“Research on the compensation methods of the middledeep weak seismic reflections in the South Yellow Sea based on multi-resolution HHT time-frequency analysis”of the National Natural Science Foundation of China(No.42106208).
文摘The seismic data of the Laoshan Uplift in the South Yellow Sea Basin reveal a low signal-tonoise ratio and low refl ection signal energy in the deep Mesozoic–Paleozoic strata.The main reason is that the Mesozoic-Paleozoic marine carbonate rock strata are directly covered by the Cenozoic terrestrial clastic rock strata,which form a strong shielding layer.To obtain the reflection signals of the strata below the strong shielding layer,a one-way wave equation bidirectional illumination analysis of the main observation system parameters was conducted by analyzing the mechanism of the strong shielding layer.Low-frequency seismic sources are assumed to have a high illumination intensity on the reflection layer below the strong shielding layer.Accordingly,optimized acquisition parameter suggestions were proposed,and reacquisition was performed at the existing survey line locations in the Laoshan Uplift area.The imaging of the newly acquired data in the middle and deep layers was drastically improved.It revealed the unconformity between the Sinian and Cambrian under the strong shielding layer.The study yielded new insights into the tectonic and sedimentary evolution of the Lower Paleozoic in the South Yellow Sea.
基金financially supported by the National Natural Science Foundation of China(Grant No.42172292)Taishan Scholars Project Special Funding,and Shandong Energy Group(Grant No.SNKJ 2022A01-R26).
文摘A conceptual model of intermittent joints is introduced to the cyclic shear test in the laboratory to explore the effects of loading parameters on its shear behavior under cyclic shear loading.The results show that the loading parameters(initial normal stress,normal stiffness,and shear velocity)determine propagation paths of the wing and secondary cracks in rock bridges during the initial shear cycle,creating different morphologies of macroscopic step-path rupture surfaces and asperities on them.The differences in stress state and rupture surface induce different cyclic shear responses.It shows that high initial normal stress accelerates asperity degradation,raises shear resistance,and promotes compression of intermittent joints.In addition,high normal stiffness provides higher normal stress and shear resistance during the initial cycles and inhibits the dilation and compression of intermittent joints.High shear velocity results in a higher shear resistance,greater dilation,and greater compression.Finally,shear strength is most sensitive to initial normal stress,followed by shear velocity and normal stiffness.Moreover,average dilation angle is most sensitive to initial normal stress,followed by normal stiffness and shear velocity.During the shear cycles,frictional coefficient is affected by asperity degradation,backfilling of rock debris,and frictional area,exhibiting a non-monotonic behavior.
基金Projects(U22B2084,52275483,52075142)supported by the National Natural Science Foundation of ChinaProject(2023ZY01050)supported by the Ministry of Industry and Information Technology High Quality Development,China。
文摘The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can cause changes in cutting force/heat,resulting in affecting gear machining precision.Therefore,this paper studies the effect of different process parameters on gear machining precision.A multi-objective optimization model is established for the relationship between process parameters and tooth surface deviations,tooth profile deviations,and tooth lead deviations through the cutting speed,feed rate,and cutting depth of the worm wheel gear grinding machine.The response surface method(RSM)is used for experimental design,and the corresponding experimental results and optimal process parameters are obtained.Subsequently,gray relational analysis-principal component analysis(GRA-PCA),particle swarm optimization(PSO),and genetic algorithm-particle swarm optimization(GA-PSO)methods are used to analyze the experimental results and obtain different optimal process parameters.The results show that optimal process parameters obtained by the GRA-PCA,PSO,and GA-PSO methods improve the gear machining precision.Moreover,the gear machining precision obtained by GA-PSO is superior to other methods.
文摘In complex systems,there is a kind of parameters having only a minor impact on the outputs in most cases,but their accurate values are still critical for the operation of systems.In this paper,the authors focus on the identification of these weak influence parameters in the complex systems and propose a identification model based on the parameter recursion.As an application,three parameters of the steam generator are identified,that is,the valve opening,the valve CV value,and the reference water level,in which the valve opening and the reference water level are weak influence parameters under most operating conditions.Numerical simulation results show that,in comparison with the multi-layer perceptron(MLP),the identification error rate is decreased.Actually,the average identification error rate for the valve opening decreases by 0.96%,for the valve CV decreases by 0.002%,and for the reference water level decreases by 12%after one recursion.After two recursions,the average identification error rate for the valve opening decreases by 11.07%,for the valve CV decreases by 2.601%,and for the reference water level decreases by 95.79%.This method can help to improve the control of the steam generator.
基金Shaanxi Province Qin Chuangyuan“Scientist+Engineer”Team Construction Project(2022KXJ-071)2022 Qin Chuangyuan Achievement Transformation Incubation Capacity Improvement Project(2022JH-ZHFHTS-0012)+1 种基金Shaanxi Province Key Research and Development Plan-“Two Chains”Integration Key Project-Qin Chuangyuan General Window Industrial Cluster Project(2023QCY-LL-02)Xixian New Area Science and Technology Plan(2022-YXYJ-003,2022-XXCY-010)。
文摘To overcome the shortage of complex equipment,large volume,and high energy consumption in space capsule manufacturing,a novel sliding pressure Joule heat fuse additive manufacturing technique with reduced volume and low energy consumption was proposed.But the unreasonable process parameters may lead to the inferior consistency of the forming quality of single-channel multilayer in Joule heat additive manufacturing process,and it is difficult to reach the condition for forming thinwalled parts.Orthogonal experiments were designed to fabricate single-channel multilayer samples with varying numbers of layers,and their forming quality was evaluated.The influence of printing current,forming speed,and contact pressure on the forming quality of the single-channel multilayer was analyzed.The optimal process parameters were obtained and the quality characterization of the experiment results was conducted.Results show that the printing current has the most significant influence on the forming quality of the single-channel multilayer.Under the optimal process parameters,the forming section is well fused and the surface is continuously smooth.The surface roughness of a single-channel 3-layer sample is 0.16μm,and the average Vickers hardness of cross section fusion zone is 317 HV,which lays a foundation for the subsequent use of Joule heat additive manufacturing technique to form thinwall parts.
文摘The study of the morphometric parameters of the three most abundant species in the lower course of the Kouilou River (Chrysichthys auratus, Liza falcipinnis and Pellonula vorax) was carried out. The standard length of Chrysichthys auratus varies between 43.57 and 210 mm, for an average of 96.70 ± 28.63 mm;the weight varies between 2.92 and 140.83 mg, an average of 73.03 ± 21.62 mg. The condition coefficient is equal to 4.42 ± 1.52. Liza falcipinnis has a standard length which varies between 59.9 mm and 158.08 mm for an average of 88.15 ± 29.74 mm;its weight varies between 4.77 and 76.21 mg, an average of 18.61 ± 11.82 mg. The condition coefficient is equal to 2.47 ± 1.57. Pellonula vorax has a standard length which varies between 60.33 mm and 117.72 mm;for an average of 80.48 ± 17.75 mm;the weight varies between 3.61 and 25.17 mg, an average of 9.03 ± 3.61 mg. The condition coefficient is equal to 2.17 ± 0.57. These three species have a minor allometric growth.
基金National Natural Science Foundation of China(12102410)Fund of National Key Laboratory of Shock Wave and Detonation Physics(JCKYS2022212005)。
文摘The lattice parameter,measured with sufficient accuracy,can be utilized to evaluate the quality of single crystals and to determine the equation of state for materials.We propose an iterative method for obtaining more precise lattice parameters using the interaction points for the pseudo-Kossel pattern obtained from laser-induced X-ray diffraction(XRD).This method has been validated by the analysis of an XRD experiment conducted on iron single crystals.Furthermore,the method was used to calculate the compression ratio and rotated angle of an LiF sample under high pressure loading.This technique provides a robust tool for in-situ characterization of structural changes in single crystals under extreme conditions.It has significant implications for studying the equation of state and phase transitions.
基金supported by the National Natural Science Foundation of China under Grant No.62471381the ZTE Industry-University-Institute Cooperation Funds.
文摘In the field of antenna engineering parameter calibration for indoor communication base stations,traditional methods suffer from issues such as low efficiency,poor accuracy,and limited applicability to indoor scenarios.To address these problems,a high-precision and high-efficiency indoor base station parameter calibration method based on laser measurement is proposed.We use a high-precision laser tracker to measure and determine the coordinate system transformation relationship,and further obtain the coordinates and attitude of the base station.In addition,we propose a simple calibration method based on point cloud fitting for specific scenes.Simulation results show that using common commercial laser trackers,we can achieve a coordinate correction accuracy of 1 cm and an angle correction accuracy of 0.25°,which is sufficient to meet the needs of wireless positioning.
基金National Key R&D Program of China(No.2017YFB1304000)Fundamental Research Funds for the Central Universities,China(No.2232023G-05-1)。
文摘The high-speed winding spindle employs a flexible support system incorporating rubber O-rings.By precisely configuring the structural parameters and the number of the O-rings,the spindle can stably surpass its critical speed points and maintain operational stability across the entire working speed range.However,the support stiffness and damping of rubber O-rings exhibit significant nonlinear frequency dependence.Conventional experimental methods for deriving equivalent stiffness and damping,based on the principle of the forced non-resonance method,require fabricating custom setups for each O-ring specification and conducting vibration tests at varying frequencies,resulting in low efficiency and high costs.This study proposes a hybrid simulation-experimental method for dynamic parameter identification.Firstly,the frequency-dependent dynamic parameters of a specific O-ring support system are experimentally obtained.Subsequently,a corresponding parametric finite element model is established to simulate and solve the equivalent elastic modulus and equivalent stiffness-damping coefficient of this O-ring support system.Ultimately,after iterative simulation,the simulated and experimental results achieve a 99.7%agreement.The parametric finite element model developed herein can directly simulate and inversely estimate frequency-dependent dynamic parameters for O-rings of different specifications but identical elastic modulus.
基金The National Natural Science Foundation of China under contract No. 42274159the Project supported by Key Laboratory of Space Ocean Remote Sensing and Application,MNR under contract No.2023CFO016。
文摘The research on ocean dynamics information plays a crucial role in understanding ocean phenomena, assessing marine environmental impacts, and guiding engineering designs. The Doppler information observed by radars reflects sea surface dynamics, to which ocean waves make important contributions. Low-incidence-angle real aperture radar(RAR)demonstrates great potential for independently observing vectorial Doppler information on the ocean surface. To systematically characterize and accurately estimate the wave-induced Doppler frequency shift(WVF) from lowincidence-angle RAR, this study conducts comprehensive influencing factor analysis and establishes sea-stateparameterized WVF models. First, a simulated WVF dataset is generated under a rotating low-incidence-angle RAR.The feature parameters of WVF are then determined by analysing contributing factors including wind waves, swells,and sea state parameters. Furthermore, two WVF models(WVF_Ku P9 with 9 inputs and WVF_Ku P4 with 4 inputs) are constructed by the Transformer encoder for different application scenarios. Both models achieve high accuracy for WVF estimation with root mean square errors(RMSE) of 1.874 Hz and 2.716 Hz, respectively. The reliability and superiority of the proposed models are validated through comparisons with the Ka DOP, which is a typical geophysical model function(GMF). The findings in this paper advance the understanding of WVF characteristics and generation mechanisms. The proposed estimation models can provide reliable estimates, offering critical references for lowincidence-angle RAR applications such as ocean surface current retrieval.
文摘BACKGROUND Pancreatic cystic neoplasms(PCNs)are increasingly detected due to advancements in radiographic techniques,with a prevalence of approximately 15%in the general population.These lesions range from benign to premalignant and malignant,posing a diagnostic challenge.Accurate differentiation is critical,as premalignant and malignant PCNs often require surgical intervention,while benign cysts may only need monitoring unless symptomatic.Current diagnostic methods,including cross-sectional imaging,endoscopic ultrasonography,and endoscopic ultrasonography-guided fine-needle aspiration/biopsy,are specialized,not universally available,and have variable accuracy.Clinical and laboratory parameters such as carbohydrate antigen 19-9(CA 19-9),neutrophillymphocyte ratio,platelet-lymphocyte ratio,and red cell distribution width(RDW)have been associated with malignancy risk,though only CA 19-9 is guideline-supported.AIM To assess the malignancy risk of PCNs using preoperative clinical and routine laboratory parameters.METHODS A retrospective cohort study analyzed 70 patients who underwent surgery for PCNs at Ankara Bilkent City Hospital between February 2019 and March 2023.Patients were categorized into group A(benign or low-grade dysplasia,n=40)and group B(malignancy or high-grade dysplasia,n=30)based on postoperative pathology.Preoperative demographic and laboratory parameters,including age,RDW,albumin,and CA 19-9,were compared.Univariate and multivariate logistic regression analyses identified independent predictors of malignancy.Receiver operating characteristic curve analysis evaluated predictive performance,with internal validation using bootstrapping.RESULTS Group B patients were older(69.86±9.58 years vs 52.74±16.85 years,P<0.001)and had a higher incidence of diabetes mellitus(57.1%vs 21.4%,P=0.002).RDW(16.2%vs 13.7%,P<0.001),platelet-lymphocyte ratio(178 vs 126,P=0.008),and CA 19-9(21.7 U/mL vs 9.3 U/mL,P=0.009)were significantly higher in group B,while albumin was lower(41 g/L vs 45 g/L,P=0.008).Multivariate analysis identified age[odds ratio=1.067,95%confidence interval(CI):1.014-1.122,P=0.012]and RDW(odds ratio=1.784,95%CI:1.172-2.715,P=0.007)as independent predictors.The area under the curve for age,RDW,and their combination was 0.798(95%CI:0.695-0.900),0.801(95%CI:0.692-0.911),and 0.858(95%CI:0.771-0.944),respectively,with bootstrapped validation confirming stability.Cut-off values of age≥60 years and RDW≥15.5%balanced sensitivity and specificity,increasing malignancy risk 15.3-fold and 22.6-fold,respectively.CONCLUSION Age and RDW are independent predictors of malignancy in PCNs,aiding in patient selection for advanced diagnostics and surgery.Larger,multicenter studies are needed to validate these findings.
基金Key-Area Research and Development Program of Guangdong (2020B1111200001)National Natural Science Foundation of China (42230105, U2142213, 42175167)。
文摘Taking short-duration heavy rainfall and convective wind gusts as examples, the present study examined the characteristics of radar reflectivity and several convective parameters. We analyzed nowcasting techniques by integrating a high-resolution numerical weather prediction model with these convective parameters. Based on the CMA-GD 1-km model and its assimilation system, we conducted repeated tests on radar reflectivity data assimilation and analyzed their impact on nowcasting accuracy. Based on these analyses, we proposed a method to improve model forecasts using the useful indicative information provided by high-frequency radar reflectivity data and convective parameters. The improved method was applied to the CMA-GD 1-km model for nowcasting tests. Evaluations from batch tests and case analysis show that the proposed method significantly reduced the model's false alarm rates and improved its nowcasting performance.
基金supported by National key Research and Development Program“Security Protection Technology for Critical Information Infrastructure of Distribution Network”(2022YFB3105100).
文摘In the context of the diversity of smart terminals,the unity of the root of trust becomes complicated,which not only affects the efficiency of trust propagation,but also poses a challenge to the security of the whole system.In particular,the solidification of the root of trust in non-volatile memory(NVM)restricts the system’s dynamic updating capability,which is an obvious disadvantage in a rapidly changing security environment.To address this issue,this study proposes a novel approach to generate root security parameters using static random access memory(SRAM)physical unclonable functions(PUFs).SRAM PUFs,as a security primitive,show great potential in lightweight security solutions due to their inherent physical properties,low cost and scalability.However,the stability of SRAM PUFs in harsh environments is a key issue.These environmental conditions include extreme temperatures,high humidity,and strong electromagnetic radiation,all of which can affect the performance of SRAM PUFs.In order to ensure the stability of root safety parameters under these conditions,this study proposes an integrated approach that covers not only the acquisition of entropy sources,but also the implementation of algorithms and configuration management.In addition,this study develops a series of reliability-enhancing algorithms,including adaptive parameter selection,data preprocessing,auxiliary data generation,and error correction,which are essential for improving the performance of SRAM PUFs in harsh environments.Based on these techniques,this study establishes six types of secure parameter generation mechanisms,which not only improve the security of the system,but also enhance its adaptability in variable environments.Through a series of experiments,we verify the effectiveness of the proposed method.Under 10 different environmental conditions,our method is able to achieve full recovery of security data with an error rate of less than 25%,which proves the robustness and reliability of our method.These results not only provide strong evidence for the stability of SRAM PUFs in practical applications,but also provide a new direction for future research in the field of smart terminal security.
基金Supported by the National Natural Science Foundation of China(No.81960181).
文摘AIM:To describe ocular biometric parameters among Han and Uyghur myopic adults in Xinjiang,China.METHODS:A cross-sectional study was conducted.The different ocular biometric parameters collected using Pentacam were analyzed,including corneal curvature,corneal astigmatism(CA),horizontal corneal diameter(white-to-white,WTW),corneal volume(CV),pupil diameter(PD),anterior chamber angle(ACA),anterior chamber depth(ACD),anterior chamber volume(ACV)and axial length(AL).RESULTS:In total,2932 participants were included in the final analysis,comprising 2310 Han and 622 Uyghur adults.Adults in the high myopia(HM)group had steeper K2,larger CA,smaller WTW and longer AL in both the Uyghur and Han adults(all P<0.05).The moderate myopia(MM)and HM group had deeper ACV,ACD and wider ACA than the low myopia(all P<0.05)in Han adults,however there were no differences in anterior chamber indices with Uyghur adults.In the Uyghur adults,we noticed that CV,WTW,and ACD were smaller,ACA was narrower,PD was larger,and AL was shorter(all P<0.05).We also noticed sex differences:males had flatter corneas,deeper ACD and ACV,and larger WTW than females(all P<0.05).In the correlation analysis,WTW was positively correlated with ACD and ACV but negatively correlated with K1,K2 and CV(all P<0.05).Narrower ACA was associated with larger PD(rU=-0.25,rH=-0.16,all P<0.01).CONCLUSION:The Han population have different biometric parameters in eyes with HM compared to the Uyghur population,and the Uyghur population may anatomically more susceptible to primary angle closure glaucoma than the Han population.
基金Supported by China Primary Health Care Foundation(No.MTP2022C025)Beijing Natural Science Foundation of China(No.7242168).
文摘AIM:To investigate the relationship between preoperative corneal biomechanical properties and corneal tomographic properties in cataract patients.METHODS:The study consisted of 59 eyes of 30 participants who were diagnosed as cataract in Peking University Third Hospital between September 2019 and November 2019.Stepwise multivariable linear regression analysis was calculated to determine the relationship between corneal biomechanical parameters and tomographic parameters.The patients were classified into three groups of with the rule(WTR)astigmatism,against the rule astigmatism and oblique astigmatism.And the differences in corneal parameters among different groups were compared.RESULTS:There were significant differences in the first applanation time(A1T),the first applanation length(A1L),corneal velocity during the first applanation(Vin),the second applanation time(A2T),highest concavity(HC)radius,displacement amount(DA),DA ratio,stiffness parameter A1(SPA1)and integrated radius(IR)between oblique astigmatism patients and the other two groups.Total corneal steep meridian(K2)was negatively associated with A1L,A1T and corneal velocity during the second applanation(Vout).Patients with higher anterior corneal curvature had lower HC radius and central corneal thickness(CCT;P=0.001 and 0.006,respectively),while the Ambrosio relational thickness to the horizontal profile(ARTh)was higher than those with lower anterior corneal curvature(P=0.009).CONCLUSION:The study reveals that the elasticity of corneal collagen fibers is greater,but the viscoelasticity of cornea is smaller in patients with oblique astigmatism.There is no significant difference in ARTh between patients with different types of astigmatism,that is,the corneal biomechanical specificity of oblique astigmatism group is probably not caused by corneal thickness.Moreover,we find patients with higher anterior corneal curvature has lower HC radius and CCT but higher ARTh than those with lower anterior corneal curvature.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52225904 and 52039007)the Fundamental Research Funds for the Central Universities,CHD(Grant No.300102212207).
文摘In order to improve the accuracy of the photogrammetric joint roughness coefficient(JRC)value,the present study proposed a novel method combining an autonomous shooting parameter selection algorithm with a composite error model.Firstly,according to the depth map-based photogrammetric theory,the estimation of JRC from a three-dimensional(3D)digital surface model of rock discontinuities was presented.Secondly,an automatic shooting parameter selection algorithm was novelly proposed to establish the 3D model dataset of rock discontinuities with varying shooting parameters and target sizes.Meanwhile,the photogrammetric tests were performed with custom-built equipment capable of adjusting baseline lengths,and a total of 36 sets of JRC data was gathered via a combination of laboratory and field tests.Then,by combining the theory of point cloud coordinate computation error with the equation of JRC calculation,a composite error model controlled by the shooting parameters was proposed.This newly proposed model was validated via the 3D model dataset,demonstrating the capability to correct initially obtained JRC values solely based on shooting parameters.Furthermore,the implementation of this correction can significantly reduce errors in JRC values obtained via photographic measurement.Subsequently,our proposed error model was integrated into the shooting parameter selection algorithm,thus improving the rationality and convenience of selecting suitable shooting parameter combinations when dealing with target rock masses with different sizes.Moreover,the optimal combination of three shooting parameters was offered.JRC values resulting from various combinations of shooting parameters were verified by comparing them with 3D laser scan data.Finally,the application scope and limitations of the newly proposed approach were further addressed.
基金Project supported by the National Natural Science Foundation of China (Grant No. U22B2095)the Civil Aerospace Technology Research Project (Grant No. D010103)。
文摘The Rydberg atom-based receiver, as a novel type of antenna, demonstrates broad application prospects in the field of microwave communications. However, since Rydberg atomic receivers are nonlinear systems, mismatches between the parameters of the received amplitude modulation(AM) signals and the system's linear workspace and demodulation operating points can cause severe distortion in the demodulated signals. To address this, the article proposes a method for determining the operational parameters based on the mean square error(MSE) and total harmonic distortion(THD) assessments and presents strategies for optimizing the system's operational parameters focusing on linear response characteristics(LRC) and linear dynamic range(LDR). Specifically, we employ a method that minimizes the MSE to define the system's linear workspace, thereby ensuring the system has a good LRC while maximizing the LDR. To ensure that the signal always operates within the linear workspace, an appropriate carrier amplitude is set as the demodulation operating point. By calculating the THD at different operating points, the LRC performance within different regions of the linear workspace is evaluated, and corresponding optimization strategies based on the range of signal strengths are proposed. Moreover, to more accurately restore the baseband signal, we establish a mapping relationship between the carrier Rabi frequency and the transmitted power of the probe light, and optimize the slope of the linear demodulation function to reduce the MSE to less than 0.8×10^(-4). Finally, based on these methods for determining the operational parameters, we explore the effects of different laser Rabi frequencies on the system performance, and provide optimization recommendations. This research provides robust support for the design of high-performance Rydberg atom-based AM receivers.
文摘Pelargonium zonale is an important ornamental and medicinal plant.The purpose of this investigation was to evaluate the effects of conventional and unconventional fertilization on variations in the physicochemical parameters of the culture substrate(temperature,pH,and electrical conductivity)in two cultivars of Pelargonium zonale(L.)L’Hér.,grown in pots.This study was conducted under greenhouse conditions,using Pindstrup peat as the culture substrate.The analysis focused on how these physicochemical indicators of peat influenced plant height and development under fertilization conditions.Results revealed that in the‘Tango Salmon’cultivar,both fertilization regimes significantly modified substrate temperature and electrical conductivity(conventional fertilization leading to the highest electric conductivity values of 0.77 mS/cm)while in control,was observed the highest substrate temperature(21.24℃).In contrast,pH remained relatively stable across treatments.In the‘Tango Dark Red’cultivar,no significant differences were observed between substrate physicochemical parameters regardless of treatment.The multiple correlations coefficients values showed that substrate parameters influenced plant height with varying degrees of intensity depending on cultivar and fertilization scheme,reaching up the highest predictability of 60.6%in the‘Tango Dark Red’control variant.The study highlighted that physicochemical properties of the substrate(particularly electric conductivity and temperature)are for were the main contributors to optimal plant development and should be carefully managed within fertilization strategies.