Benzalkonium chloride(BAC)is widely employed as a broad-spectrum biocide and has emerged as a significant environmental pollutant.Polymyxin B(PB)serves as the last-line defense for the treatment of Gram-negative patho...Benzalkonium chloride(BAC)is widely employed as a broad-spectrum biocide and has emerged as a significant environmental pollutant.Polymyxin B(PB)serves as the last-line defense for the treatment of Gram-negative pathogens.Previous studies reported that BAC-adapted Pseudomonas aeruginosa increased the tolerance to PB.Herein,we present the novel finding that the combination of BAC and PB exhibited synergistic antibacterial effects against P.aeruginosa.Time-killing assay demonstrated a significant reduction in bacterial cell viability.Scanning electron microscopy,zeta potential analysis,hydrophobicity measurements,and fluorescence probe analyses collectively revealed severe disruption of the cell envelope and membrane potential induced by the combination of BAC and PB.Transcriptomic analysis revealed that the BAC-PB combination notably downreg-ulated the expression of genes involved in lipid A modification and cell envelope production,including phoPQ,pmrAB,bamABCDE,lptABCDEG,lolB,yidC,and murJ.Additionally,the combination group exhibited augmented production of reactive oxygen species and diminished ATP synthesis.The expression of the genes associated with substance metabolism and energy generation was significantly impeded.This study provides significant implica-tions for the interactions of biocides and antibiotics on Gram-negative pathogens,while also addressing antibiotic resistance and developing the external treatment strategy for Pseudomonas-infected wounds and burns.展开更多
The discontinuation of denosumab[antibody targeting receptor activator of nuclear factor kappa B ligand(RANKL)]therapy may increase the risk of multiple vertebral fractures;however,the underlying pathophysiology is la...The discontinuation of denosumab[antibody targeting receptor activator of nuclear factor kappa B ligand(RANKL)]therapy may increase the risk of multiple vertebral fractures;however,the underlying pathophysiology is largely unknown.In patients who underwent discontinuation after multiple injections of denosumab,the levels of tartrate-resistant acid phosphatase 5b increased compared to pretreatment levels,indicating a phenomenon known as“overshoot.”The rate of decrease in bone mineral density during the withdrawal period was higher than the rate of decrease associated with aging,suggesting that the physiological bone metabolism had broken down.Overshoot and significant bone loss were also observed in mice receiving continuous administration of anti-RANKL antibody after treatment was interrupted,resembling the original pathology.In mice long out of overshoot,bone resorption recovered,but osteoblast numbers and bone formation remained markedly reduced.The bone marrow exhibited a significant reduction in stem cell(SC)antigen 1-and platelet-derived growth factor receptor alpha-expressing osteoblast progenitors(PαS cells)and alkaline phosphatase-positive early osteoblasts.Just before the overshoot phase,the osteoclast precursor cell population expands and RANKL-bearing extracellular vesicles(EVs)became abundant in the serum,leading to robust osteoclastogenesis after cessation of anti-RANKL treatment.Thus,accelerated bone resorption due to the accumulation of RANKLbearing EVs and long-term suppression of bone formation uncoupled from bone resorption leads to the severe bone loss characteristic of denosumab discontinuation.展开更多
Background:A significant proportion of patients still cannot benefit from existing targeted therapies and immunotherapies,making the search for new treatment strategies extremely urgent.In this study,we combined integ...Background:A significant proportion of patients still cannot benefit from existing targeted therapies and immunotherapies,making the search for new treatment strategies extremely urgent.In this study,we combined integrate public data analysis with experimental validation to identify novel prognostic biomarkers and therapeutic targets for lung adenocarcinoma(LUAD).Methods:We analyzed RNA and protein databases to assess the expression levels of cytochrome C oxidase 5B(COX5B)in LUAD.Several computational algorithms were employed to investigate the relationship between COX5B and immune infiltration in LUAD.To further elucidate the role of COX5B in LUAD,we utilized multiple experimental approaches,including quantitative reverse transcription PCR assays,western blot,immunohistochemistry,electron microscopy,flow cytometry,and EdU proliferation assays.Results:We revealed that COX5B was significantly elevated in LUAD and positively correlated with poor prognosis of LUAD patients.Analysis of co-expression network indicated that COX5B may take part in the intracellular adenosine triphosphate(ATP)synthesis through the oxidative phosphorylation pathway.There was a negative correlation between COX5B expression and immune infiltration in LUAD.Furthermore,we validated that COX5B levels were significantly elevated in both LUAD tissues and cell lines.Specifically,immunohistochemistry(IHC)assays revealed a 2.32-fold increase of COX5B in tumor tissues compared to that in adjacent normal tissues(p=0.0044).Additionally,COX5B knockdown disrupted the redox homeostasis,ultimately suppressed the proliferation of LUAD cells.Subsequent investigations demonstrated that berberine effectively targeted COX5B,diminishing its protein expression and consequently inhibiting cell proliferation and tumor growth in LUAD.Conclusions:This study established that upregulated COX5B was positive associated with poor patient prognosis in LUAD,elucidating the mechanisms by which berberine targets COX5B to inhibit tumor growth,thereby providing a novel therapeutic target and strategy for the clinical management of LUAD.展开更多
Objective:To analyse the prevalence of serotypes,antibiotic resistance,and virulence genes of Group B Streptococcus(GBS)strains isolated from pregnant women at 35-37 weeks of gestation in Ho Chi Minh City,Vietnam,from...Objective:To analyse the prevalence of serotypes,antibiotic resistance,and virulence genes of Group B Streptococcus(GBS)strains isolated from pregnant women at 35-37 weeks of gestation in Ho Chi Minh City,Vietnam,from January 2022 to January 2023.Methods:GBS strains were isolated through selective culture methods and confirmed by PCR.Serotyping,virulence gene detection,and antibiotic susceptibility testing were performed using PCR,gel electrophoresis techniques and Kirby-Bauer test.Results:Totally,61 GBS isolated from 300 participants have been identified including seven GBS serotypes(Ⅰa,Ⅰb,Ⅱ,Ⅲ,Ⅳ,Ⅴ,andⅥ).SerotypesⅦ,Ⅷ,andⅨwere not detected in the study population.Antibiotic resistance patterns varied:13.1%of isolates were fully susceptible,while the majority showed multi-drug resistance,with 34.4%resistant to three antibiotics.SerotypeⅠa demonstrated high susceptibility(35.7%),while serotypeⅢshowed extensive resistance,with 87.5%being resistant to at least three antibiotics.All strains are susceptible to vancomycin andβ-lactams susceptibility also remained high,but resistance to clindamycin,erythromycin,and tetracycline was high(>65%).The virulence genes scpB,cylB,fbsB,and cfb were highly prevalent(90%-100%),indicating their potential for vaccine and diagnostic development.Conclusions:Our findings provide valuable insights into GBS serotypes,resistance,and virulence factors,contributing to community monitoring,preventive measures,diagnostics,and vaccine development.However,the limited sample size necessitates further research.展开更多
Objective:To investigate the antifibrotic effects of curcumin in a transverse aortic constriction(TAC)mouse model and elucidate its molecular mechanisms.Methods:Male C57BL/6 mice underwent TAC and received vehicle,low...Objective:To investigate the antifibrotic effects of curcumin in a transverse aortic constriction(TAC)mouse model and elucidate its molecular mechanisms.Methods:Male C57BL/6 mice underwent TAC and received vehicle,low-dose curcumin(50 mg/kg),high-dose curcumin(200 mg/kg),high-dose curcumin plus a scrambled control antagomir,or high-dose curcumin plus anti-miR-29b treatments.Cardiac function was assessed by echocardiography.Fibrosis was evaluated by histology,collagen volume fraction,and hydroxyproline content.Expression of miR-29b,HDAC4,and fibrosis-related markers(Col1a1,Col3a1,TGF-β1)was measured by quantitative RT-PCR and Western blotting assays.Myocardial procollagen type I carboxy-terminal propeptide was determined by ELISA,and HDAC4-specific enzymatic activity was assayed using a fluorogenic kit.Results:Curcumin improved cardiac function,reduced fibrosis,restored miR-29b expression,and suppressed HDAC4 expression and activity in a dose-dependent manner.Furthermore,curcumin decreased myocardial procollagen type I carboxy-terminal propeptide levels,confirming reduced collagen synthesis.Anti-miR-29b administration partially abrogated the antifibrotic and cardioprotective effects of curcumin.Conclusions:Curcumin attenuates pressure overload-induced cardiac fibrosis and dysfunction in a TAC mouse model via modulation of the miR-29b/HDAC4 axis and suppression of collagen synthesis.展开更多
Background:ZhiZi-BoPi Decoction(ZZBPD),a traditional prescription for liver and gallbladder protection,has garnered significant clinical interest due to its hepatoprotective properties.Despite its proven efficacy in m...Background:ZhiZi-BoPi Decoction(ZZBPD),a traditional prescription for liver and gallbladder protection,has garnered significant clinical interest due to its hepatoprotective properties.Despite its proven efficacy in mitigating intrahepatic cholestasis,the precise mechanisms underlying its therapeutic effects remain inadequately understood.This study aims to comprehensively investigate the pharmacological mechanisms underlying the therapeutic effects of ZZBPD in cholestatic liver injury(CLI).Methods:Firstly,we evaluated the hepatoprotective effects of ZZBPD on mice with CLI induced byα-naphthylisothiocyanate(ANIT),by measuring biochemical markers,inflammatory factors,and bile acid levels.Subsequently,we employed network pharmacology and single-cell RNA sequencing(scRNA-seq)to identify key targets and potential signaling pathways for the prevention and treatment of CLI.Finally,we further validated the mechanism of action of ZZBPD on these key targets through molecular docking,western blotting,and immunofluorescence techniques.Results:ZZBPD notably improved serum liver function,reduced hepatic inflammation,and restored bile acid balance.Through network pharmacology and scRNA-seq analysis,48 core targets were identified,including TNF,IL-6,and NFKB1,all of which are linked to the IL-17 and NF-κB signaling pathways,as shown by KEGG enrichment analysis.Molecular docking further confirmed stable interactions between ZZBPD’s key active components and molecules such as IL-6,IL-17,and NF-κB.Additionally,western blotting and immunofluorescence validated the downregulation of IL-17 and NF-κB protein expression in liver tissue.Conclusion:ZZBPD effectively treats CLI by activating pathways related to the bile acid receptor FXR,while also modulating the IL-17/NF-κB signaling pathway.This dual action enhances bile secretion and alleviates liver inflammation.These findings offer important insights into the pharmacological mechanisms of ZZBPD and underscore its potential as a promising therapeutic for CLI.展开更多
基金supported by the National Natural Science Foundation of China(No.32170121).
文摘Benzalkonium chloride(BAC)is widely employed as a broad-spectrum biocide and has emerged as a significant environmental pollutant.Polymyxin B(PB)serves as the last-line defense for the treatment of Gram-negative pathogens.Previous studies reported that BAC-adapted Pseudomonas aeruginosa increased the tolerance to PB.Herein,we present the novel finding that the combination of BAC and PB exhibited synergistic antibacterial effects against P.aeruginosa.Time-killing assay demonstrated a significant reduction in bacterial cell viability.Scanning electron microscopy,zeta potential analysis,hydrophobicity measurements,and fluorescence probe analyses collectively revealed severe disruption of the cell envelope and membrane potential induced by the combination of BAC and PB.Transcriptomic analysis revealed that the BAC-PB combination notably downreg-ulated the expression of genes involved in lipid A modification and cell envelope production,including phoPQ,pmrAB,bamABCDE,lptABCDEG,lolB,yidC,and murJ.Additionally,the combination group exhibited augmented production of reactive oxygen species and diminished ATP synthesis.The expression of the genes associated with substance metabolism and energy generation was significantly impeded.This study provides significant implica-tions for the interactions of biocides and antibiotics on Gram-negative pathogens,while also addressing antibiotic resistance and developing the external treatment strategy for Pseudomonas-infected wounds and burns.
文摘The discontinuation of denosumab[antibody targeting receptor activator of nuclear factor kappa B ligand(RANKL)]therapy may increase the risk of multiple vertebral fractures;however,the underlying pathophysiology is largely unknown.In patients who underwent discontinuation after multiple injections of denosumab,the levels of tartrate-resistant acid phosphatase 5b increased compared to pretreatment levels,indicating a phenomenon known as“overshoot.”The rate of decrease in bone mineral density during the withdrawal period was higher than the rate of decrease associated with aging,suggesting that the physiological bone metabolism had broken down.Overshoot and significant bone loss were also observed in mice receiving continuous administration of anti-RANKL antibody after treatment was interrupted,resembling the original pathology.In mice long out of overshoot,bone resorption recovered,but osteoblast numbers and bone formation remained markedly reduced.The bone marrow exhibited a significant reduction in stem cell(SC)antigen 1-and platelet-derived growth factor receptor alpha-expressing osteoblast progenitors(PαS cells)and alkaline phosphatase-positive early osteoblasts.Just before the overshoot phase,the osteoclast precursor cell population expands and RANKL-bearing extracellular vesicles(EVs)became abundant in the serum,leading to robust osteoclastogenesis after cessation of anti-RANKL treatment.Thus,accelerated bone resorption due to the accumulation of RANKLbearing EVs and long-term suppression of bone formation uncoupled from bone resorption leads to the severe bone loss characteristic of denosumab discontinuation.
基金supported by grants from the Guangxi Natural Science Foundation(2024GXNSFAA010150)the Guangdong Basic and Applied Basic Research Foundation(2022A1515111167).
文摘Background:A significant proportion of patients still cannot benefit from existing targeted therapies and immunotherapies,making the search for new treatment strategies extremely urgent.In this study,we combined integrate public data analysis with experimental validation to identify novel prognostic biomarkers and therapeutic targets for lung adenocarcinoma(LUAD).Methods:We analyzed RNA and protein databases to assess the expression levels of cytochrome C oxidase 5B(COX5B)in LUAD.Several computational algorithms were employed to investigate the relationship between COX5B and immune infiltration in LUAD.To further elucidate the role of COX5B in LUAD,we utilized multiple experimental approaches,including quantitative reverse transcription PCR assays,western blot,immunohistochemistry,electron microscopy,flow cytometry,and EdU proliferation assays.Results:We revealed that COX5B was significantly elevated in LUAD and positively correlated with poor prognosis of LUAD patients.Analysis of co-expression network indicated that COX5B may take part in the intracellular adenosine triphosphate(ATP)synthesis through the oxidative phosphorylation pathway.There was a negative correlation between COX5B expression and immune infiltration in LUAD.Furthermore,we validated that COX5B levels were significantly elevated in both LUAD tissues and cell lines.Specifically,immunohistochemistry(IHC)assays revealed a 2.32-fold increase of COX5B in tumor tissues compared to that in adjacent normal tissues(p=0.0044).Additionally,COX5B knockdown disrupted the redox homeostasis,ultimately suppressed the proliferation of LUAD cells.Subsequent investigations demonstrated that berberine effectively targeted COX5B,diminishing its protein expression and consequently inhibiting cell proliferation and tumor growth in LUAD.Conclusions:This study established that upregulated COX5B was positive associated with poor patient prognosis in LUAD,elucidating the mechanisms by which berberine targets COX5B to inhibit tumor growth,thereby providing a novel therapeutic target and strategy for the clinical management of LUAD.
文摘Objective:To analyse the prevalence of serotypes,antibiotic resistance,and virulence genes of Group B Streptococcus(GBS)strains isolated from pregnant women at 35-37 weeks of gestation in Ho Chi Minh City,Vietnam,from January 2022 to January 2023.Methods:GBS strains were isolated through selective culture methods and confirmed by PCR.Serotyping,virulence gene detection,and antibiotic susceptibility testing were performed using PCR,gel electrophoresis techniques and Kirby-Bauer test.Results:Totally,61 GBS isolated from 300 participants have been identified including seven GBS serotypes(Ⅰa,Ⅰb,Ⅱ,Ⅲ,Ⅳ,Ⅴ,andⅥ).SerotypesⅦ,Ⅷ,andⅨwere not detected in the study population.Antibiotic resistance patterns varied:13.1%of isolates were fully susceptible,while the majority showed multi-drug resistance,with 34.4%resistant to three antibiotics.SerotypeⅠa demonstrated high susceptibility(35.7%),while serotypeⅢshowed extensive resistance,with 87.5%being resistant to at least three antibiotics.All strains are susceptible to vancomycin andβ-lactams susceptibility also remained high,but resistance to clindamycin,erythromycin,and tetracycline was high(>65%).The virulence genes scpB,cylB,fbsB,and cfb were highly prevalent(90%-100%),indicating their potential for vaccine and diagnostic development.Conclusions:Our findings provide valuable insights into GBS serotypes,resistance,and virulence factors,contributing to community monitoring,preventive measures,diagnostics,and vaccine development.However,the limited sample size necessitates further research.
基金supported by China International Medical Foundation(Z-2019-42-1908-4)Natural Science Basic Research Program of Shaanxi Province(2019JM-440).
文摘Objective:To investigate the antifibrotic effects of curcumin in a transverse aortic constriction(TAC)mouse model and elucidate its molecular mechanisms.Methods:Male C57BL/6 mice underwent TAC and received vehicle,low-dose curcumin(50 mg/kg),high-dose curcumin(200 mg/kg),high-dose curcumin plus a scrambled control antagomir,or high-dose curcumin plus anti-miR-29b treatments.Cardiac function was assessed by echocardiography.Fibrosis was evaluated by histology,collagen volume fraction,and hydroxyproline content.Expression of miR-29b,HDAC4,and fibrosis-related markers(Col1a1,Col3a1,TGF-β1)was measured by quantitative RT-PCR and Western blotting assays.Myocardial procollagen type I carboxy-terminal propeptide was determined by ELISA,and HDAC4-specific enzymatic activity was assayed using a fluorogenic kit.Results:Curcumin improved cardiac function,reduced fibrosis,restored miR-29b expression,and suppressed HDAC4 expression and activity in a dose-dependent manner.Furthermore,curcumin decreased myocardial procollagen type I carboxy-terminal propeptide levels,confirming reduced collagen synthesis.Anti-miR-29b administration partially abrogated the antifibrotic and cardioprotective effects of curcumin.Conclusions:Curcumin attenuates pressure overload-induced cardiac fibrosis and dysfunction in a TAC mouse model via modulation of the miR-29b/HDAC4 axis and suppression of collagen synthesis.
基金supported by the National Science Foundation of China(No.82405004,82474253)the Natural Science Foundation postdoctoral project of Chongqing(CSTB2022NSCQ-BHX0709)+2 种基金Chongqing Wanzhou District doctoral“through train”scientific research project(wzstc-20220124)Natural Science Foundation of Chongqing,China(No.Cstc2021jcyj-msxmX0996)Chongqing Wanzhou District Science and Health Joint Medical Research Project(wzstc-kw2023032)。
文摘Background:ZhiZi-BoPi Decoction(ZZBPD),a traditional prescription for liver and gallbladder protection,has garnered significant clinical interest due to its hepatoprotective properties.Despite its proven efficacy in mitigating intrahepatic cholestasis,the precise mechanisms underlying its therapeutic effects remain inadequately understood.This study aims to comprehensively investigate the pharmacological mechanisms underlying the therapeutic effects of ZZBPD in cholestatic liver injury(CLI).Methods:Firstly,we evaluated the hepatoprotective effects of ZZBPD on mice with CLI induced byα-naphthylisothiocyanate(ANIT),by measuring biochemical markers,inflammatory factors,and bile acid levels.Subsequently,we employed network pharmacology and single-cell RNA sequencing(scRNA-seq)to identify key targets and potential signaling pathways for the prevention and treatment of CLI.Finally,we further validated the mechanism of action of ZZBPD on these key targets through molecular docking,western blotting,and immunofluorescence techniques.Results:ZZBPD notably improved serum liver function,reduced hepatic inflammation,and restored bile acid balance.Through network pharmacology and scRNA-seq analysis,48 core targets were identified,including TNF,IL-6,and NFKB1,all of which are linked to the IL-17 and NF-κB signaling pathways,as shown by KEGG enrichment analysis.Molecular docking further confirmed stable interactions between ZZBPD’s key active components and molecules such as IL-6,IL-17,and NF-κB.Additionally,western blotting and immunofluorescence validated the downregulation of IL-17 and NF-κB protein expression in liver tissue.Conclusion:ZZBPD effectively treats CLI by activating pathways related to the bile acid receptor FXR,while also modulating the IL-17/NF-κB signaling pathway.This dual action enhances bile secretion and alleviates liver inflammation.These findings offer important insights into the pharmacological mechanisms of ZZBPD and underscore its potential as a promising therapeutic for CLI.