This study aims to systematically review the various factors influencing corporate tax avoidance.Tax avoidance refers to legal strategies used to minimize tax liabilities and has become a critical issue in accounting ...This study aims to systematically review the various factors influencing corporate tax avoidance.Tax avoidance refers to legal strategies used to minimize tax liabilities and has become a critical issue in accounting and corporate governance.The study examines key determinants of tax avoidance,including firm characteristics(such as size,leverage,and multinational scale),managerial attributes,executive compensation,ownership structure,corporate social responsibility(CSR)performance,as well as the impact of regulations and legal reforms.The review findings highlight that the motivations behind tax avoidance are multifaceted,driven by the interaction of economic incentives,organizational ethics,external pressures,and public policies.Moreover,strict regulatory environments and strong CSR practices can mitigate tax avoidance behaviors,although their effectiveness is often contingent upon a firm’s cultural and political context.This study offers a comprehensive mapping of the current literature and recommends future research that integrates additional variables and broader time spans to enhance the understanding of tax avoidance behavior across different national contexts.展开更多
The problem of collision avoidance for non-cooperative targets has received significant attention from researchers in recent years.Non-cooperative targets exhibit uncertain states and unpredictable behaviors,making co...The problem of collision avoidance for non-cooperative targets has received significant attention from researchers in recent years.Non-cooperative targets exhibit uncertain states and unpredictable behaviors,making collision avoidance significantly more challenging than that for space debris.Much existing research focuses on the continuous thrust model,whereas the impulsive maneuver model is more appropriate for long-duration and long-distance avoidance missions.Additionally,it is important to minimize the impact on the original mission while avoiding noncooperative targets.On the other hand,the existing avoidance algorithms are computationally complex and time-consuming especially with the limited computing capability of the on-board computer,posing challenges for practical engineering applications.To conquer these difficulties,this paper makes the following key contributions:(A)a turn-based(sequential decision-making)limited-area impulsive collision avoidance model considering the time delay of precision orbit determination is established for the first time;(B)a novel Selection Probability Learning Adaptive Search-depth Search Tree(SPL-ASST)algorithm is proposed for non-cooperative target avoidance,which improves the decision-making efficiency by introducing an adaptive-search-depth mechanism and a neural network into the traditional Monte Carlo Tree Search(MCTS).Numerical simulations confirm the effectiveness and efficiency of the proposed method.展开更多
Aiming to address the Unmanned Aerial Vehicle(UAV) formation collision avoidance problem in Three-Dimensional(3-D) low-altitude environments where dense various obstacles exist, a fluid-based path planning framework n...Aiming to address the Unmanned Aerial Vehicle(UAV) formation collision avoidance problem in Three-Dimensional(3-D) low-altitude environments where dense various obstacles exist, a fluid-based path planning framework named the Formation Interfered Fluid Dynamical System(FIFDS) with Moderate Evasive Maneuver Strategy(MEMS) is proposed in this study.First, the UAV formation collision avoidance problem including quantifiable performance indexes is formulated. Second, inspired by the phenomenon of fluids continuously flowing while bypassing objects, the FIFDS for multiple UAVs is presented, which contains a Parallel Streamline Tracking(PST) method for formation keeping and the traditional IFDS for collision avoidance. Third, to rationally balance flight safety and collision avoidance cost, MEMS is proposed to generate moderate evasive maneuvers that match up with collision risks. Comprehensively containing the time and distance safety information, the 3-D dynamic collision regions are modeled for collision prediction. Then, the moderate evasive maneuver principle is refined, which provides criterions of the maneuver amplitude and direction. On this basis, an analytical parameter mapping mechanism is designed to online optimize IFDS parameters. Finally, the performance of the proposed method is validated by comparative simulation results and real flight experiments using fixed-wing UAVs.展开更多
Advertising avoidance is resistance to advertising intrusion.This issue has been the subject of much academic research in recent years.To guide scholars to better carry out relevant research and promote enterprises to...Advertising avoidance is resistance to advertising intrusion.This issue has been the subject of much academic research in recent years.To guide scholars to better carry out relevant research and promote enterprises to better implement advertising activities,this study intends to summarize the relevant research on advertising avoidance in recent years.The specific method is to use the core literature meta-analysis method to identify,filter,and screen relevant literature published in core journals from 1997 to 2020 with the keywords advertising avoidance and advertising resistance.We review the collected articles from the following perspectives:the definition and classification,external stimulating factors,internal perception factors,and moderating factors of advertising avoidance.On this basis,the SOMR model of advertising avoidance is constructed according to the SOR model.Finally,some prospects for future related research are presented.展开更多
Multiple quadrotors target encirclement is widely used in the intelligent field,as it can effectively monitor and control target behavior.However,it faces the danger of collision,as well as difficulties in localizatio...Multiple quadrotors target encirclement is widely used in the intelligent field,as it can effectively monitor and control target behavior.However,it faces the danger of collision,as well as difficulties in localization and tracking.Therefore,we propose a complete target encirclement method.Firstly,based on Hooke's law,a collision avoidance controller is designed to maintain a safe flying distance among quadrotors.Then,based on the consensus theory,a formation tracking controller is designed to meet the requirements of formation transformation and encirclement tasks,and a stability proof based on Lyapunov was provided.Besides,the target detection is designed based on YOLOv5s,and the target location model is constructed based on the principle of pinhole projection and triangle similarity.Finally,we conducted experiments on the built platform,with 3 reconnaissance quadrotors detecting and localization 3 target vehicles and 7 hunter quadrotors tracking them.The results show that the minimum average error for localization targets with reconnaissance quadrotors can reach 0.1354 m,while the minimum average error for tracking with hunter quadrotors is only 0.2960 m.No quadrotors collision occurred in the whole formation transformation and tracking experiment.In addition,compared with the advanced methods,the proposed method has better performance.展开更多
A set of permutations is called sign-balanced if the set contains the same number of even permutations as odd permutations.Let S_(n)(σ_(1),σ_(2),...,σ_(r))denote the set of permutations in the symmetric group S_(n)...A set of permutations is called sign-balanced if the set contains the same number of even permutations as odd permutations.Let S_(n)(σ_(1),σ_(2),...,σ_(r))denote the set of permutations in the symmetric group S_(n)which avoid patternsσ_(1),σ_(2),...,σ_(r).The aim of this paper is to investigate when,for certain patternsσ_(1),σ_(2),...,σ_(r),S_(n)(σ_(1),σ_(2),...,σ_(r))is sign-balanced for every integer n>1.We prove that for any{σ_(1),σ_(2),...,σ_(r)}?S_3,if{σ_(1),σ_(2),...,σ_(r)}is sign-balanced except for{132,213,231,312},then S_(n)(σ_(1),σ_(2),...,σ_(r))is sign-balanced for every integer n>1.In addition,we give some results in the case of avoiding some patterns of length 4.展开更多
Objectives:Positive family functioning(FF)is critical for adolescent development,yet only a few studies have examined this developmental trajectory pathway.This study aimed to identify different types of FF developmen...Objectives:Positive family functioning(FF)is critical for adolescent development,yet only a few studies have examined this developmental trajectory pathway.This study aimed to identify different types of FF development trajectories during junior high school students,investigate their influence on social avoidance(SA),and further examine the mediating role of preference for solitude(PS)between them.Methods:A three-wave longitudinal study was used with six-month intervals.Questionnaire data were collected from 436 junior high school students in Jiangxi Province,China.Participants ranged in age from 11 to 14 years old(Mean=12.89 years,SD=1.08;50.2%male).Results:Four heterogeneous types of FF trajectories were identified:(1)a high and increasing group(14.7%);(2)a consistently high group(36.24%);(3)a consistently moderate group(45.86%);and(4)a rapid growth group(3.2%).The developmental trajectories of FF among junior high students significantly varied in their levels of SA(F(3,432)=32.03,p<0.001).Compared to the high and increasing groups,the consistently high,consistently medium,and rapid growth groups exhibited higher levels of SA.PS mediated the association between the developmental trajectory of FF and SA.Conclusion:There was a close relationship between the developmental trajectory of FF and SA.Interventions focusing on family system optimization and solitary preference management could effectively mitigate SA behaviors.These findings are important for promoting healthy socialization in adolescents.展开更多
Throughout the lifespan,an animal can encounter predators frequently,thus the ability to avoid attacks from predators is crucial for its survival.The chances of evading danger can be greatly improved if the animal can...Throughout the lifespan,an animal can encounter predators frequently,thus the ability to avoid attacks from predators is crucial for its survival.The chances of evading danger can be greatly improved if the animal can respond immediately to the threat.Therefore,when an animal detects a threat through its visual system,it must quickly direct its gaze and attention toward the source of danger,assess the threat level,and take appropriate action.展开更多
This paper deeply explores the autonomous collision avoidance algorithm for intelligent ships,aiming to enhance the intelligence level and safety of ship collision avoidance by integrating navigation experience.An aut...This paper deeply explores the autonomous collision avoidance algorithm for intelligent ships,aiming to enhance the intelligence level and safety of ship collision avoidance by integrating navigation experience.An autonomous collision avoidance algorithm based on navigation experience is designed,a collision avoidance experience database is constructed,a quantitative model is established,and specific algorithm steps are implemented.The algorithm is verified and analyzed through simulation tests.The results show that the algorithm can effectively achieve autonomous ship collision avoidance in different scenarios,providing new ideas and methods for the development of intelligent ship collision avoidance technology.展开更多
In the realm of missile defense systems,the self-sufficient maneuver capacity of missile swarms is pivotal for their survival.Through the analysis of the missile dynamics model,a time-efficient cooperative attack stra...In the realm of missile defense systems,the self-sufficient maneuver capacity of missile swarms is pivotal for their survival.Through the analysis of the missile dynamics model,a time-efficient cooperative attack strategy for missile swarm is proposed.Based on the distribution of the attackers and defenders,the collision avoidance against the defenders is considered during the attack process.By analyzing the geometric relationship between the relative velocity vector and relative position vector of the attackers and defenders,the collision avoidance constrains of attacking swarm are redefined.The key point is on adjusting the relative velocity vectors to fall outside the collision cone.This work facilitates high-precision attack toward the target while keeping safe missing distance between other attackers during collision avoidance process.By leveraging an innovative repulsion artificial function,a time-efficient cooperative attack strategy for missile swarm is obtained.Through rigorous simulation,the effectiveness of this cooperative attack strategy is substantiated.Furthermore,by employing Monte Carlo simulation,the success rate of the cooperative attack strategy is assessesed and the optimal configuration for the missile swarm is deduced.展开更多
BACKGROUND Bariatric surgery is an effective treatment for severe obesity but is associated with an increased risk for development of eating disorders.Indeed,numerous maladaptive eating behaviors and eating disorders ...BACKGROUND Bariatric surgery is an effective treatment for severe obesity but is associated with an increased risk for development of eating disorders.Indeed,numerous maladaptive eating behaviors and eating disorders have been described following bariatric surgery.However,the differentiation of pathologic eating patterns from expected dietary changes following bariatric surgery can sometimes be difficult to discern.CASE SUMMARY A female in her early 40s presented for medical stabilization of severe protein calorie malnutrition after losing 52.3 kg over the last six months after Roux-en-Y gastric bypass,with subsequent development of cyclic nausea and vomiting.Fear of these aversive physical symptoms led to further restriction of nutritional intake and weight loss.The patient was diagnosed with avoidant/restrictive food intake disorder,which has not been previously reported after bariatric surgery.CONCLUSION Improvement in the diagnostic nomenclature for feeding and eating disorders is warranted for patients who have undergone bariatric surgery.展开更多
In this paper, a bearing-based three-dimensional self-localization and distributed circumnavigation with connectivity preservation and collision avoidance are investigated for a group of quadrotor-type unmanned aerial...In this paper, a bearing-based three-dimensional self-localization and distributed circumnavigation with connectivity preservation and collision avoidance are investigated for a group of quadrotor-type unmanned aerial vehicles (UAVs). A leader–follower structure is adopted, wherein the leader moves with reference dynamics (a target). Different from the existing approaches that necessitate full knowledge of the time-varying reference trajectory, in this paper, it is assumed that only some vehicles (at least one) have access to the bearing relative to the target, and all other vehicles are equipped with sensors capable of measuring the bearings relative to neighboring vehicles. In this paper, a consensus estimator is proposed to estimate the global position for each vehicle using relative bearing measurements and an estimate of neighboring vehicles received from a direct communication network. Then, a continuous robust integral of the sign of the error (RISE) control approach is effectively integrated with the distributed vector field approach to ensure UAV formation orbiting around the moving target while avoiding obstacles and maintaining network links within available communication ranges. In contrast to the classical RISE control rule, a \(\tanh (\cdot )\) function is used instead of the \(\text {sgn}(\cdot )\) function to further decrease the high-gain feedback and to obtain a smoother control signal. Furthermore, by using the localized radial basis function (RBF) neural networks (NNs) in a cooperative way, deterministic learning theory is employed to accurately identify/learn model uncertainties resulting from the attitude dynamics. The convergence of the entire closed-loop system is illustrated using the Lyapunov theory and is shown to be uniformly ultimately bounded. Finally, numerical simulations show the effectiveness of the proposed approach.展开更多
AIM:To evaluate the prevalence and the causes of blindness,severe visual impairment(SVI),and visual impairment(VI)and to investigate the frequency of cataract surgery in people aged≥50y in Yueqing,Zhejiang Province,C...AIM:To evaluate the prevalence and the causes of blindness,severe visual impairment(SVI),and visual impairment(VI)and to investigate the frequency of cataract surgery in people aged≥50y in Yueqing,Zhejiang Province,China.METHODS:A population-based,cross-sectional study was performed using the Rapid Assessment of Avoidable Blindness technique.Eight-seven clusters,each consisting of 50 people aged≥50y,were selected by probabilityproportionate-to-size sampling.Three outreach teams conducted door-to-door visits.Visual acuity(VA)was measured using a tumbling E chart.Lens status and causes of VI were assessed by ophthalmologists for individuals with a VA of<6/12 in either eye.A standardized questionnaire was used to collect information about cataract surgeries.RESULTS:Of 4350 eligible individuals,4120 were examined with a 94.7%response rate.Age-and genderadjusted prevalence of blindness,SVI,and VI were 0.5%(95%CI,0.3%–0.7%),0.7%(95%CI,0.4%–1.0%),and 4.8%(95%CI,4.2%–5.5%),respectively.Age was associated with an increased prevalence of VI,and the most common cause of VI was untreated cataracts,with the main barriers to cataract surgery being a lack of knowledge or awareness about cataracts.Of the 415 eyes operated on for cataracts,68(16.4%)eyes had a poor outcomes(VA<6/60)and 303(73.0%)had a good outcomes(VA>6/18).CONCLUSION:Prevalence rates of blindness,SVI,and VI in Yueqing are lower than other reported Chinese population-based studies.Cataracts remain the most common cause of blindness and VI.展开更多
In this paper,a novel cooperative collision avoidance control strategy with relative velocity information for redundant robotic manipulators is derived to guarantee the behavioral safety of robots in the cooperative o...In this paper,a novel cooperative collision avoidance control strategy with relative velocity information for redundant robotic manipulators is derived to guarantee the behavioral safety of robots in the cooperative operational task.This strategy can generate the collision-free trajectory of the robotic links in real-time,which is to realize that the robot can avoid moving obstacles less conservatively and ensure tracking accuracy of terminal end-effector tasks in performing cooperative tasks.For the case where there is interference between the moving obstacle and the desired path of the robotic end-effector,the method inherits the null-space-based self-motion characteristics of the redundant manipulator,integrates the relative motion information,and uses the improved artificial potential field method to design the control items,which are used to generate the collision avoidance motion and carry out moving obstacles smoothly and less conservatively.At the same time,the strategy maintains the kinematic constraint relationship of dual-arm cooperatives,to meet the real-time collision avoidance task under collaborative tasks.Finally,the algorithm simulation indicates that the method can better ensure the tracking accuracy of the end-effector task and carry out moving obstacles smoothly.The experimental results show that the method can generate the real-time collision-free trajectory of the robot in the cooperative handling task,and the joint movement is continuous and stable.展开更多
In this paper,a distributed Event-Triggered(ET)collision avoidance coordinated control for Quadrotor Unmanned Aerial Vehicles(QUAVs)is proposed based on Virtual Tubes(VTs)with flexible boundaries in the presence of un...In this paper,a distributed Event-Triggered(ET)collision avoidance coordinated control for Quadrotor Unmanned Aerial Vehicles(QUAVs)is proposed based on Virtual Tubes(VTs)with flexible boundaries in the presence of unknown external disturbances.Firstly,VTs are constructed for each QUAV,and the QUAV is restricted into the corresponding VT by the artificial potential field,which is distributed around the boundary of the VT.Thus,the collisions between QUAVs are avoided.Besides,the boundaries of the VTs are flexible by the modification signals,which are generated by the self-regulating auxiliary systems,to make the repulsive force smaller and give more buffer space for QUAVs without collision.Then,a novel ET mechanism is designed by introducing the concept of prediction to the traditional fixed threshold ET mechanism.Furthermore,a disturbance observer is proposed to deal with the adverse effects of the unknown external disturbance.On this basis,a distributed ET collision avoidance coordinated controller is proposed.Then,the proposed controller is quantized by the hysteresis uniform quantizer and then sent to the actuator only at the ET instants.The boundedness of the closed-loop signals is verified by the Lyapunov method.Finally,simulation and experimental results are performed to demonstrate the superiority of the proposed control method.展开更多
An Interval Type-2(IT-2)fuzzy controller design approach is proposed in this research to simultaneously achievemultiple control objectives inNonlinearMulti-Agent Systems(NMASs),including formation,containment,and coll...An Interval Type-2(IT-2)fuzzy controller design approach is proposed in this research to simultaneously achievemultiple control objectives inNonlinearMulti-Agent Systems(NMASs),including formation,containment,and collision avoidance.However,inherent nonlinearities and uncertainties present in practical control systems contribute to the challenge of achieving precise control performance.Based on the IT-2 Takagi-Sugeno Fuzzy Model(T-SFM),the fuzzy control approach can offer a more effective solution for NMASs facing uncertainties.Unlike existing control methods for NMASs,the Formation and Containment(F-and-C)control problem with collision avoidance capability under uncertainties based on the IT-2 T-SFM is discussed for the first time.Moreover,an IT-2 fuzzy tracking control approach is proposed to solve the formation task for leaders in NMASs without requiring communication.This control scheme makes the design process of the IT-2 fuzzy Formation Controller(FC)more straightforward and effective.According to the communication interaction protocol,the IT-2 Containment Controller(CC)design approach is proposed for followers to ensure convergence into the region defined by the leaders.Leveraging the IT-2 T-SFM representation,the analysis methods developed for linear Multi-Agent Systems(MASs)are successfully extended to perform containment analysis without requiring the additional assumptions imposed in existing research.Notably,the IT-2 fuzzy tracking controller can also be applied in collision avoidance situations to track the desired trajectories calculated by the avoidance algorithm under the Artificial Potential Field(APF).Benefiting from the combination of vortex and source APFs,the leaders can properly adjust the system dynamics to prevent potential collision risk.Integrating the fuzzy theory and APFs avoidance algorithm,an IT-2 fuzzy controller design approach is proposed to achieve the F-and-C purposewhile ensuring collision avoidance capability.Finally,amulti-ship simulation is conducted to validate the feasibility and effectiveness of the designed IT-2 fuzzy controller.展开更多
This work proposes an online collaborative hunting strategy for multi-robot systems based on obstacle-avoiding Voronoi cells in a complex dynamic environment. This involves firstly designing the construction method us...This work proposes an online collaborative hunting strategy for multi-robot systems based on obstacle-avoiding Voronoi cells in a complex dynamic environment. This involves firstly designing the construction method using a support vector machine(SVM) based on the definition of buffered Voronoi cells(BVCs). Based on the safe collision-free region of the robots, the boundary weights between the robots and the obstacles are dynamically updated such that the robots are tangent to the buffered Voronoi safety areas without intersecting with the obstacles. Then, the robots are controlled to move within their own buffered Voronoi safety area to achieve collision-avoidance with other robots and obstacles. The next step involves proposing a hunting method that optimizes collaboration between the pursuers and evaders. Some hunting points are generated and distributed evenly around a circle. Next, the pursuers are assigned to match the optimal points based on the Hungarian algorithm.Then, a hunting controller is designed to improve the containment capability and minimize containment time based on collision risk. Finally, simulation results have demonstrated that the proposed cooperative hunting method is more competitive in terms of time and travel distance.展开更多
The forward design of trajectory planning strategies requires preset trajectory optimization functions,resulting in poor adaptability of the strategy and an inability to accurately generate obstacle avoidance trajecto...The forward design of trajectory planning strategies requires preset trajectory optimization functions,resulting in poor adaptability of the strategy and an inability to accurately generate obstacle avoidance trajectories that conform to real driver behavior habits.In addition,owing to the strong time-varying dynamic characteristics of obstacle avoidance scenarios,it is necessary to design numerous trajectory optimization functions and adjust the corresponding parameters.Therefore,an anthropomorphic obstacle-avoidance trajectory planning strategy for adaptive driving scenarios is proposed.First,numerous expert-demonstrated trajectories are extracted from the HighD natural driving dataset.Subsequently,a trajectory expectation feature-matching algorithm is proposed that uses maximum entropy inverse reinforcement learning theory to learn the extracted expert-demonstrated trajectories and achieve automatic acquisition of the optimization function of the expert-demonstrated trajectory.Furthermore,a mapping model is constructed by combining the key driving scenario information that affects vehicle obstacle avoidance with the weight of the optimization function,and an anthropomorphic obstacle avoidance trajectory planning strategy for adaptive driving scenarios is proposed.Finally,the proposed strategy is verified based on real driving scenarios.The results show that the strategy can adjust the weight distribution of the trajectory optimization function in real time according to the“emergency degree”of obstacle avoidance and the state of the vehicle.Moreover,this strategy can generate anthropomorphic trajectories that are similar to expert-demonstrated trajectories,effectively improving the adaptability and acceptability of trajectories in driving scenarios.展开更多
In some military application scenarios,Unmanned Aerial Vehicles(UAVs)need to perform missions with the assistance of on-board cameras when radar is not available and communication is interrupted,which brings challenge...In some military application scenarios,Unmanned Aerial Vehicles(UAVs)need to perform missions with the assistance of on-board cameras when radar is not available and communication is interrupted,which brings challenges for UAV autonomous navigation and collision avoidance.In this paper,an improved deep-reinforcement-learning algorithm,Deep Q-Network with a Faster R-CNN model and a Data Deposit Mechanism(FRDDM-DQN),is proposed.A Faster R-CNN model(FR)is introduced and optimized to obtain the ability to extract obstacle information from images,and a new replay memory Data Deposit Mechanism(DDM)is designed to train an agent with a better performance.During training,a two-part training approach is used to reduce the time spent on training as well as retraining when the scenario changes.In order to verify the performance of the proposed method,a series of experiments,including training experiments,test experiments,and typical episodes experiments,is conducted in a 3D simulation environment.Experimental results show that the agent trained by the proposed FRDDM-DQN has the ability to navigate autonomously and avoid collisions,and performs better compared to the FRDQN,FR-DDQN,FR-Dueling DQN,YOLO-based YDDM-DQN,and original FR outputbased FR-ODQN.展开更多
This paper presents that a serpentine curve-based controller can solve locomotion control problems for articulated space robots with extensive flight phases,such as obstacle avoidance during free floating or attitude ...This paper presents that a serpentine curve-based controller can solve locomotion control problems for articulated space robots with extensive flight phases,such as obstacle avoidance during free floating or attitude adjustment before landing.The proposed algorithm achieves articulated robots to use closed paths in the joint space to accomplish the above tasks.Flying snakes,which can shuttle through gaps and adjust their landing posture by swinging their body during gliding in jungle environments,inspired the design of two maneuvers.The first maneuver generates a rotation of the system by varying the moment of inertia between the joints of the robot,with the magnitude of the net rotation depending on the controller parameters.This maneuver can be repeated to allow the robot to reach arbitrary reorientation.The second maneuver involves periodic undulations,allowing the robot to avoid collisions when the trajectory of the global Center of Mass(CM)passes through the obstacle.Both maneuvers are based on the improved serpenoid curve,which can adapt to redundant systems consisting of different numbers of modules.Finally,the simulation illustrates that combining the two maneuvers can help a free-floating chain-type robot traverse complex environments.Our proposed algorithm can be used with similar articulated robot models.展开更多
文摘This study aims to systematically review the various factors influencing corporate tax avoidance.Tax avoidance refers to legal strategies used to minimize tax liabilities and has become a critical issue in accounting and corporate governance.The study examines key determinants of tax avoidance,including firm characteristics(such as size,leverage,and multinational scale),managerial attributes,executive compensation,ownership structure,corporate social responsibility(CSR)performance,as well as the impact of regulations and legal reforms.The review findings highlight that the motivations behind tax avoidance are multifaceted,driven by the interaction of economic incentives,organizational ethics,external pressures,and public policies.Moreover,strict regulatory environments and strong CSR practices can mitigate tax avoidance behaviors,although their effectiveness is often contingent upon a firm’s cultural and political context.This study offers a comprehensive mapping of the current literature and recommends future research that integrates additional variables and broader time spans to enhance the understanding of tax avoidance behavior across different national contexts.
基金co-supported by the Foundation of Shanghai Astronautics Science and Technology Innovation,China(No.SAST2022-114)the National Natural Science Foundation of China(No.62303378),the National Natural Science Foundation of China(Nos.124B2031,12202281)the Foundation of China National Key Laboratory of Science and Technology on Test Physics&Numerical Mathematics,China(No.08-YY-2023-R11)。
文摘The problem of collision avoidance for non-cooperative targets has received significant attention from researchers in recent years.Non-cooperative targets exhibit uncertain states and unpredictable behaviors,making collision avoidance significantly more challenging than that for space debris.Much existing research focuses on the continuous thrust model,whereas the impulsive maneuver model is more appropriate for long-duration and long-distance avoidance missions.Additionally,it is important to minimize the impact on the original mission while avoiding noncooperative targets.On the other hand,the existing avoidance algorithms are computationally complex and time-consuming especially with the limited computing capability of the on-board computer,posing challenges for practical engineering applications.To conquer these difficulties,this paper makes the following key contributions:(A)a turn-based(sequential decision-making)limited-area impulsive collision avoidance model considering the time delay of precision orbit determination is established for the first time;(B)a novel Selection Probability Learning Adaptive Search-depth Search Tree(SPL-ASST)algorithm is proposed for non-cooperative target avoidance,which improves the decision-making efficiency by introducing an adaptive-search-depth mechanism and a neural network into the traditional Monte Carlo Tree Search(MCTS).Numerical simulations confirm the effectiveness and efficiency of the proposed method.
基金supported in part by the National Natural Science Foundations of China(Nos.61175084,61673042 and 62203046)the China Postdoctoral Science Foundation(No.2022M713006).
文摘Aiming to address the Unmanned Aerial Vehicle(UAV) formation collision avoidance problem in Three-Dimensional(3-D) low-altitude environments where dense various obstacles exist, a fluid-based path planning framework named the Formation Interfered Fluid Dynamical System(FIFDS) with Moderate Evasive Maneuver Strategy(MEMS) is proposed in this study.First, the UAV formation collision avoidance problem including quantifiable performance indexes is formulated. Second, inspired by the phenomenon of fluids continuously flowing while bypassing objects, the FIFDS for multiple UAVs is presented, which contains a Parallel Streamline Tracking(PST) method for formation keeping and the traditional IFDS for collision avoidance. Third, to rationally balance flight safety and collision avoidance cost, MEMS is proposed to generate moderate evasive maneuvers that match up with collision risks. Comprehensively containing the time and distance safety information, the 3-D dynamic collision regions are modeled for collision prediction. Then, the moderate evasive maneuver principle is refined, which provides criterions of the maneuver amplitude and direction. On this basis, an analytical parameter mapping mechanism is designed to online optimize IFDS parameters. Finally, the performance of the proposed method is validated by comparative simulation results and real flight experiments using fixed-wing UAVs.
文摘Advertising avoidance is resistance to advertising intrusion.This issue has been the subject of much academic research in recent years.To guide scholars to better carry out relevant research and promote enterprises to better implement advertising activities,this study intends to summarize the relevant research on advertising avoidance in recent years.The specific method is to use the core literature meta-analysis method to identify,filter,and screen relevant literature published in core journals from 1997 to 2020 with the keywords advertising avoidance and advertising resistance.We review the collected articles from the following perspectives:the definition and classification,external stimulating factors,internal perception factors,and moderating factors of advertising avoidance.On this basis,the SOMR model of advertising avoidance is constructed according to the SOR model.Finally,some prospects for future related research are presented.
基金the National Natural Science Foundation of China(Grant Nos.62303348 and 62173242)the Aeronautical Science Foundation of China(Grant No.2024M071048002)the National Science Fund for Distinguished Young Scholars(Grant No.62225308)to provide fund for conducting experiments.
文摘Multiple quadrotors target encirclement is widely used in the intelligent field,as it can effectively monitor and control target behavior.However,it faces the danger of collision,as well as difficulties in localization and tracking.Therefore,we propose a complete target encirclement method.Firstly,based on Hooke's law,a collision avoidance controller is designed to maintain a safe flying distance among quadrotors.Then,based on the consensus theory,a formation tracking controller is designed to meet the requirements of formation transformation and encirclement tasks,and a stability proof based on Lyapunov was provided.Besides,the target detection is designed based on YOLOv5s,and the target location model is constructed based on the principle of pinhole projection and triangle similarity.Finally,we conducted experiments on the built platform,with 3 reconnaissance quadrotors detecting and localization 3 target vehicles and 7 hunter quadrotors tracking them.The results show that the minimum average error for localization targets with reconnaissance quadrotors can reach 0.1354 m,while the minimum average error for tracking with hunter quadrotors is only 0.2960 m.No quadrotors collision occurred in the whole formation transformation and tracking experiment.In addition,compared with the advanced methods,the proposed method has better performance.
基金Supported by the National Natural Science Foundation of China(Grant No.12061030)the Natural Science Foundation of Hainan Province(Grant No.122RC652)2023 Excellent Science and Technology Innovation Team of Jiangsu Province Universities(Real-Time Industrial Internet of Things).
文摘A set of permutations is called sign-balanced if the set contains the same number of even permutations as odd permutations.Let S_(n)(σ_(1),σ_(2),...,σ_(r))denote the set of permutations in the symmetric group S_(n)which avoid patternsσ_(1),σ_(2),...,σ_(r).The aim of this paper is to investigate when,for certain patternsσ_(1),σ_(2),...,σ_(r),S_(n)(σ_(1),σ_(2),...,σ_(r))is sign-balanced for every integer n>1.We prove that for any{σ_(1),σ_(2),...,σ_(r)}?S_3,if{σ_(1),σ_(2),...,σ_(r)}is sign-balanced except for{132,213,231,312},then S_(n)(σ_(1),σ_(2),...,σ_(r))is sign-balanced for every integer n>1.In addition,we give some results in the case of avoiding some patterns of length 4.
基金supported by the National Natural Science Foundation of China(72164018)National Social Science Fund Project(BFA200065)Jiangxi Social Science Foundation Project(21JY13).
文摘Objectives:Positive family functioning(FF)is critical for adolescent development,yet only a few studies have examined this developmental trajectory pathway.This study aimed to identify different types of FF development trajectories during junior high school students,investigate their influence on social avoidance(SA),and further examine the mediating role of preference for solitude(PS)between them.Methods:A three-wave longitudinal study was used with six-month intervals.Questionnaire data were collected from 436 junior high school students in Jiangxi Province,China.Participants ranged in age from 11 to 14 years old(Mean=12.89 years,SD=1.08;50.2%male).Results:Four heterogeneous types of FF trajectories were identified:(1)a high and increasing group(14.7%);(2)a consistently high group(36.24%);(3)a consistently moderate group(45.86%);and(4)a rapid growth group(3.2%).The developmental trajectories of FF among junior high students significantly varied in their levels of SA(F(3,432)=32.03,p<0.001).Compared to the high and increasing groups,the consistently high,consistently medium,and rapid growth groups exhibited higher levels of SA.PS mediated the association between the developmental trajectory of FF and SA.Conclusion:There was a close relationship between the developmental trajectory of FF and SA.Interventions focusing on family system optimization and solitary preference management could effectively mitigate SA behaviors.These findings are important for promoting healthy socialization in adolescents.
基金supported by the National Natural Science Foundation of China(32471055 and 82171090)Shanghai Municipal Science and Technology Major Project(2018SHZDZX01)ZJLab,Shanghai Center for Brain Science and Brain-Inspired Technology,the Lingang Laboratory(LG-QS-202203-12).
文摘Throughout the lifespan,an animal can encounter predators frequently,thus the ability to avoid attacks from predators is crucial for its survival.The chances of evading danger can be greatly improved if the animal can respond immediately to the threat.Therefore,when an animal detects a threat through its visual system,it must quickly direct its gaze and attention toward the source of danger,assess the threat level,and take appropriate action.
基金Research and Development of Unmanned Vessel System Based on Intelligent Ship-Shore Collaborative Technology,Hainan University of Science and Technology Science Research(HKKY2024-79)。
文摘This paper deeply explores the autonomous collision avoidance algorithm for intelligent ships,aiming to enhance the intelligence level and safety of ship collision avoidance by integrating navigation experience.An autonomous collision avoidance algorithm based on navigation experience is designed,a collision avoidance experience database is constructed,a quantitative model is established,and specific algorithm steps are implemented.The algorithm is verified and analyzed through simulation tests.The results show that the algorithm can effectively achieve autonomous ship collision avoidance in different scenarios,providing new ideas and methods for the development of intelligent ship collision avoidance technology.
基金supported by the Intelligent Aerospace System Leading Innovation Team Program of Zhejiang(2022R01003).
文摘In the realm of missile defense systems,the self-sufficient maneuver capacity of missile swarms is pivotal for their survival.Through the analysis of the missile dynamics model,a time-efficient cooperative attack strategy for missile swarm is proposed.Based on the distribution of the attackers and defenders,the collision avoidance against the defenders is considered during the attack process.By analyzing the geometric relationship between the relative velocity vector and relative position vector of the attackers and defenders,the collision avoidance constrains of attacking swarm are redefined.The key point is on adjusting the relative velocity vectors to fall outside the collision cone.This work facilitates high-precision attack toward the target while keeping safe missing distance between other attackers during collision avoidance process.By leveraging an innovative repulsion artificial function,a time-efficient cooperative attack strategy for missile swarm is obtained.Through rigorous simulation,the effectiveness of this cooperative attack strategy is substantiated.Furthermore,by employing Monte Carlo simulation,the success rate of the cooperative attack strategy is assessesed and the optimal configuration for the missile swarm is deduced.
文摘BACKGROUND Bariatric surgery is an effective treatment for severe obesity but is associated with an increased risk for development of eating disorders.Indeed,numerous maladaptive eating behaviors and eating disorders have been described following bariatric surgery.However,the differentiation of pathologic eating patterns from expected dietary changes following bariatric surgery can sometimes be difficult to discern.CASE SUMMARY A female in her early 40s presented for medical stabilization of severe protein calorie malnutrition after losing 52.3 kg over the last six months after Roux-en-Y gastric bypass,with subsequent development of cyclic nausea and vomiting.Fear of these aversive physical symptoms led to further restriction of nutritional intake and weight loss.The patient was diagnosed with avoidant/restrictive food intake disorder,which has not been previously reported after bariatric surgery.CONCLUSION Improvement in the diagnostic nomenclature for feeding and eating disorders is warranted for patients who have undergone bariatric surgery.
文摘In this paper, a bearing-based three-dimensional self-localization and distributed circumnavigation with connectivity preservation and collision avoidance are investigated for a group of quadrotor-type unmanned aerial vehicles (UAVs). A leader–follower structure is adopted, wherein the leader moves with reference dynamics (a target). Different from the existing approaches that necessitate full knowledge of the time-varying reference trajectory, in this paper, it is assumed that only some vehicles (at least one) have access to the bearing relative to the target, and all other vehicles are equipped with sensors capable of measuring the bearings relative to neighboring vehicles. In this paper, a consensus estimator is proposed to estimate the global position for each vehicle using relative bearing measurements and an estimate of neighboring vehicles received from a direct communication network. Then, a continuous robust integral of the sign of the error (RISE) control approach is effectively integrated with the distributed vector field approach to ensure UAV formation orbiting around the moving target while avoiding obstacles and maintaining network links within available communication ranges. In contrast to the classical RISE control rule, a \(\tanh (\cdot )\) function is used instead of the \(\text {sgn}(\cdot )\) function to further decrease the high-gain feedback and to obtain a smoother control signal. Furthermore, by using the localized radial basis function (RBF) neural networks (NNs) in a cooperative way, deterministic learning theory is employed to accurately identify/learn model uncertainties resulting from the attitude dynamics. The convergence of the entire closed-loop system is illustrated using the Lyapunov theory and is shown to be uniformly ultimately bounded. Finally, numerical simulations show the effectiveness of the proposed approach.
基金Supported by Zhejiang Province Science and Technology Benefiting Project(No.2014H01007)Wenzhou Municipal Basic Research Project(No.Y20210208).
文摘AIM:To evaluate the prevalence and the causes of blindness,severe visual impairment(SVI),and visual impairment(VI)and to investigate the frequency of cataract surgery in people aged≥50y in Yueqing,Zhejiang Province,China.METHODS:A population-based,cross-sectional study was performed using the Rapid Assessment of Avoidable Blindness technique.Eight-seven clusters,each consisting of 50 people aged≥50y,were selected by probabilityproportionate-to-size sampling.Three outreach teams conducted door-to-door visits.Visual acuity(VA)was measured using a tumbling E chart.Lens status and causes of VI were assessed by ophthalmologists for individuals with a VA of<6/12 in either eye.A standardized questionnaire was used to collect information about cataract surgeries.RESULTS:Of 4350 eligible individuals,4120 were examined with a 94.7%response rate.Age-and genderadjusted prevalence of blindness,SVI,and VI were 0.5%(95%CI,0.3%–0.7%),0.7%(95%CI,0.4%–1.0%),and 4.8%(95%CI,4.2%–5.5%),respectively.Age was associated with an increased prevalence of VI,and the most common cause of VI was untreated cataracts,with the main barriers to cataract surgery being a lack of knowledge or awareness about cataracts.Of the 415 eyes operated on for cataracts,68(16.4%)eyes had a poor outcomes(VA<6/60)and 303(73.0%)had a good outcomes(VA>6/18).CONCLUSION:Prevalence rates of blindness,SVI,and VI in Yueqing are lower than other reported Chinese population-based studies.Cataracts remain the most common cause of blindness and VI.
基金supported in part by the Advanced Equipment Manufacturing Technology Innovation Project of Hebei Province under Grant No.22311801D,23311807D,and 236Z1816Gin part by the National Natural Science Foundation of China under Grant No.U20A20283.
文摘In this paper,a novel cooperative collision avoidance control strategy with relative velocity information for redundant robotic manipulators is derived to guarantee the behavioral safety of robots in the cooperative operational task.This strategy can generate the collision-free trajectory of the robotic links in real-time,which is to realize that the robot can avoid moving obstacles less conservatively and ensure tracking accuracy of terminal end-effector tasks in performing cooperative tasks.For the case where there is interference between the moving obstacle and the desired path of the robotic end-effector,the method inherits the null-space-based self-motion characteristics of the redundant manipulator,integrates the relative motion information,and uses the improved artificial potential field method to design the control items,which are used to generate the collision avoidance motion and carry out moving obstacles smoothly and less conservatively.At the same time,the strategy maintains the kinematic constraint relationship of dual-arm cooperatives,to meet the real-time collision avoidance task under collaborative tasks.Finally,the algorithm simulation indicates that the method can better ensure the tracking accuracy of the end-effector task and carry out moving obstacles smoothly.The experimental results show that the method can generate the real-time collision-free trajectory of the robot in the cooperative handling task,and the joint movement is continuous and stable.
基金supported in part by the National Key R&D Program of China(No.2023YFB4704400)in part by the National Natural Science Foundation of China(Nos.U23B2036,U2013201).
文摘In this paper,a distributed Event-Triggered(ET)collision avoidance coordinated control for Quadrotor Unmanned Aerial Vehicles(QUAVs)is proposed based on Virtual Tubes(VTs)with flexible boundaries in the presence of unknown external disturbances.Firstly,VTs are constructed for each QUAV,and the QUAV is restricted into the corresponding VT by the artificial potential field,which is distributed around the boundary of the VT.Thus,the collisions between QUAVs are avoided.Besides,the boundaries of the VTs are flexible by the modification signals,which are generated by the self-regulating auxiliary systems,to make the repulsive force smaller and give more buffer space for QUAVs without collision.Then,a novel ET mechanism is designed by introducing the concept of prediction to the traditional fixed threshold ET mechanism.Furthermore,a disturbance observer is proposed to deal with the adverse effects of the unknown external disturbance.On this basis,a distributed ET collision avoidance coordinated controller is proposed.Then,the proposed controller is quantized by the hysteresis uniform quantizer and then sent to the actuator only at the ET instants.The boundedness of the closed-loop signals is verified by the Lyapunov method.Finally,simulation and experimental results are performed to demonstrate the superiority of the proposed control method.
基金founded by the National Science and Technology Council of the Republic of China under contract NSTC113-2221-E-019-032.
文摘An Interval Type-2(IT-2)fuzzy controller design approach is proposed in this research to simultaneously achievemultiple control objectives inNonlinearMulti-Agent Systems(NMASs),including formation,containment,and collision avoidance.However,inherent nonlinearities and uncertainties present in practical control systems contribute to the challenge of achieving precise control performance.Based on the IT-2 Takagi-Sugeno Fuzzy Model(T-SFM),the fuzzy control approach can offer a more effective solution for NMASs facing uncertainties.Unlike existing control methods for NMASs,the Formation and Containment(F-and-C)control problem with collision avoidance capability under uncertainties based on the IT-2 T-SFM is discussed for the first time.Moreover,an IT-2 fuzzy tracking control approach is proposed to solve the formation task for leaders in NMASs without requiring communication.This control scheme makes the design process of the IT-2 fuzzy Formation Controller(FC)more straightforward and effective.According to the communication interaction protocol,the IT-2 Containment Controller(CC)design approach is proposed for followers to ensure convergence into the region defined by the leaders.Leveraging the IT-2 T-SFM representation,the analysis methods developed for linear Multi-Agent Systems(MASs)are successfully extended to perform containment analysis without requiring the additional assumptions imposed in existing research.Notably,the IT-2 fuzzy tracking controller can also be applied in collision avoidance situations to track the desired trajectories calculated by the avoidance algorithm under the Artificial Potential Field(APF).Benefiting from the combination of vortex and source APFs,the leaders can properly adjust the system dynamics to prevent potential collision risk.Integrating the fuzzy theory and APFs avoidance algorithm,an IT-2 fuzzy controller design approach is proposed to achieve the F-and-C purposewhile ensuring collision avoidance capability.Finally,amulti-ship simulation is conducted to validate the feasibility and effectiveness of the designed IT-2 fuzzy controller.
基金supported by the National Natural Science Foundation of China (62273007,61973023)Project of Cultivation for Young Top-motch Talents of Beijing Municipal Institutions (BPHR202203032)。
文摘This work proposes an online collaborative hunting strategy for multi-robot systems based on obstacle-avoiding Voronoi cells in a complex dynamic environment. This involves firstly designing the construction method using a support vector machine(SVM) based on the definition of buffered Voronoi cells(BVCs). Based on the safe collision-free region of the robots, the boundary weights between the robots and the obstacles are dynamically updated such that the robots are tangent to the buffered Voronoi safety areas without intersecting with the obstacles. Then, the robots are controlled to move within their own buffered Voronoi safety area to achieve collision-avoidance with other robots and obstacles. The next step involves proposing a hunting method that optimizes collaboration between the pursuers and evaders. Some hunting points are generated and distributed evenly around a circle. Next, the pursuers are assigned to match the optimal points based on the Hungarian algorithm.Then, a hunting controller is designed to improve the containment capability and minimize containment time based on collision risk. Finally, simulation results have demonstrated that the proposed cooperative hunting method is more competitive in terms of time and travel distance.
基金supported by the National Natural Science Foundation of China(51875302)。
文摘The forward design of trajectory planning strategies requires preset trajectory optimization functions,resulting in poor adaptability of the strategy and an inability to accurately generate obstacle avoidance trajectories that conform to real driver behavior habits.In addition,owing to the strong time-varying dynamic characteristics of obstacle avoidance scenarios,it is necessary to design numerous trajectory optimization functions and adjust the corresponding parameters.Therefore,an anthropomorphic obstacle-avoidance trajectory planning strategy for adaptive driving scenarios is proposed.First,numerous expert-demonstrated trajectories are extracted from the HighD natural driving dataset.Subsequently,a trajectory expectation feature-matching algorithm is proposed that uses maximum entropy inverse reinforcement learning theory to learn the extracted expert-demonstrated trajectories and achieve automatic acquisition of the optimization function of the expert-demonstrated trajectory.Furthermore,a mapping model is constructed by combining the key driving scenario information that affects vehicle obstacle avoidance with the weight of the optimization function,and an anthropomorphic obstacle avoidance trajectory planning strategy for adaptive driving scenarios is proposed.Finally,the proposed strategy is verified based on real driving scenarios.The results show that the strategy can adjust the weight distribution of the trajectory optimization function in real time according to the“emergency degree”of obstacle avoidance and the state of the vehicle.Moreover,this strategy can generate anthropomorphic trajectories that are similar to expert-demonstrated trajectories,effectively improving the adaptability and acceptability of trajectories in driving scenarios.
文摘In some military application scenarios,Unmanned Aerial Vehicles(UAVs)need to perform missions with the assistance of on-board cameras when radar is not available and communication is interrupted,which brings challenges for UAV autonomous navigation and collision avoidance.In this paper,an improved deep-reinforcement-learning algorithm,Deep Q-Network with a Faster R-CNN model and a Data Deposit Mechanism(FRDDM-DQN),is proposed.A Faster R-CNN model(FR)is introduced and optimized to obtain the ability to extract obstacle information from images,and a new replay memory Data Deposit Mechanism(DDM)is designed to train an agent with a better performance.During training,a two-part training approach is used to reduce the time spent on training as well as retraining when the scenario changes.In order to verify the performance of the proposed method,a series of experiments,including training experiments,test experiments,and typical episodes experiments,is conducted in a 3D simulation environment.Experimental results show that the agent trained by the proposed FRDDM-DQN has the ability to navigate autonomously and avoid collisions,and performs better compared to the FRDQN,FR-DDQN,FR-Dueling DQN,YOLO-based YDDM-DQN,and original FR outputbased FR-ODQN.
基金co-supported by the National Science Fund for Distinguished Young Scholars,China(No.52025054)the National Natural Science Foundation of China(No.61961015).
文摘This paper presents that a serpentine curve-based controller can solve locomotion control problems for articulated space robots with extensive flight phases,such as obstacle avoidance during free floating or attitude adjustment before landing.The proposed algorithm achieves articulated robots to use closed paths in the joint space to accomplish the above tasks.Flying snakes,which can shuttle through gaps and adjust their landing posture by swinging their body during gliding in jungle environments,inspired the design of two maneuvers.The first maneuver generates a rotation of the system by varying the moment of inertia between the joints of the robot,with the magnitude of the net rotation depending on the controller parameters.This maneuver can be repeated to allow the robot to reach arbitrary reorientation.The second maneuver involves periodic undulations,allowing the robot to avoid collisions when the trajectory of the global Center of Mass(CM)passes through the obstacle.Both maneuvers are based on the improved serpenoid curve,which can adapt to redundant systems consisting of different numbers of modules.Finally,the simulation illustrates that combining the two maneuvers can help a free-floating chain-type robot traverse complex environments.Our proposed algorithm can be used with similar articulated robot models.