期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Deep Rank-Based Average Pooling Network for Covid-19 Recognition 被引量:4
1
作者 Shui-Hua Wang Muhammad Attique Khan +3 位作者 Vishnuvarthanan Govindaraj Steven L.Fernandes Ziquan Zhu Yu-Dong Zhang 《Computers, Materials & Continua》 SCIE EI 2022年第2期2797-2813,共17页
(Aim)To make a more accurate and precise COVID-19 diagnosis system,this study proposed a novel deep rank-based average pooling network(DRAPNet)model,i.e.,deep rank-based average pooling network,for COVID-19 recognitio... (Aim)To make a more accurate and precise COVID-19 diagnosis system,this study proposed a novel deep rank-based average pooling network(DRAPNet)model,i.e.,deep rank-based average pooling network,for COVID-19 recognition.(Methods)521 subjects yield 1164 slice images via the slice level selection method.All the 1164 slice images comprise four categories:COVID-19 positive;community-acquired pneumonia;second pulmonary tuberculosis;and healthy control.Our method firstly introduced an improved multiple-way data augmentation.Secondly,an n-conv rankbased average pooling module(NRAPM)was proposed in which rank-based pooling—particularly,rank-based average pooling(RAP)—was employed to avoid overfitting.Third,a novel DRAPNet was proposed based on NRAPM and inspired by the VGGnetwork.Grad-CAM was used to generate heatmaps and gave our AI model an explainable analysis.(Results)Our DRAPNet achieved a micro-averaged F1 score of 95.49%by 10 runs over the test set.The sensitivities of the four classes were 95.44%,96.07%,94.41%,and 96.07%,respectively.The precisions of four classes were 96.45%,95.22%,95.05%,and 95.28%,respectively.The F1 scores of the four classes were 95.94%,95.64%,94.73%,and 95.67%,respectively.Besides,the confusion matrix was given.(Conclusions)The DRAPNet is effective in diagnosing COVID-19 and other chest infectious diseases.The RAP gives better results than four other methods:strided convolution,l2-norm pooling,average pooling,and max pooling. 展开更多
关键词 COVID-19 rank-based average pooling deep learning deep neural network
在线阅读 下载PDF
Large Scale Fish Images Classification and Localization using Transfer Learning and Localization Aware CNN Architecture 被引量:2
2
作者 Usman Ahmad Muhammad Junaid Ali +7 位作者 Faizan Ahmed Khan Arfat Ahmad Khan ArifUr Rehman Malik Muhammad Ali Shahid Mohd Anul Haq Ilyas Khan Zamil SAlzamil Ahmed Alhussen 《Computer Systems Science & Engineering》 SCIE EI 2023年第5期2125-2140,共16页
Building an automatic fish recognition and detection system for largescale fish classes is helpful for marine researchers and marine scientists because there are large numbers of fish species.However,it is quite diffi... Building an automatic fish recognition and detection system for largescale fish classes is helpful for marine researchers and marine scientists because there are large numbers of fish species.However,it is quite difficult to build such systems owing to the lack of data imbalance problems and large number of classes.To solve these issues,we propose a transfer learning-based technique in which we use Efficient-Net,which is pre-trained on ImageNet dataset and fine-tuned on QuT Fish Database,which is a large scale dataset.Furthermore,prior to the activation layer,we use Global Average Pooling(GAP)instead of dense layer with the aim of averaging the results of predictions along with having more information compared to the dense layer.To check the validity of our model,we validate our model on the validation set which achieves satisfactory results.Also,for the localization task,we propose an architecture that consists of localization aware block,which captures localization information for better prediction and residual connections to handle the over-fitting problem.Actually,the residual connections help the layer to combine missing information with the relevant one.In addition,we use class weights and Focal Loss(FL)to handle class imbalance problems along with reducing false predictions.Actually,class weights assign less weights to classes having fewer instances and large weights to classes having more number of instances.During the localization,the qualitative assessment shows that we achieve 57%Mean Intersection Over Union(IoU)on testing data,and the classification results show 75%precision,70%recall,78%accuracy and 74%F1-Score for 468 fish species. 展开更多
关键词 Underwater species transfer learning k-nearest neighbors global average pooling efficientnet
在线阅读 下载PDF
An Interpretable CNN for the Segmentation of the Left Ventricle in Cardiac MRI by Real-Time Visualization 被引量:1
3
作者 Jun Liu Geng Yuan +2 位作者 Changdi Yang Houbing Song Liang Luo 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第5期1571-1587,共17页
The interpretability of deep learning models has emerged as a compelling area in artificial intelligence research.The safety criteria for medical imaging are highly stringent,and models are required for an explanation... The interpretability of deep learning models has emerged as a compelling area in artificial intelligence research.The safety criteria for medical imaging are highly stringent,and models are required for an explanation.However,existing convolutional neural network solutions for left ventricular segmentation are viewed in terms of inputs and outputs.Thus,the interpretability of CNNs has come into the spotlight.Since medical imaging data are limited,many methods to fine-tune medical imaging models that are popular in transfer models have been built using massive public Image Net datasets by the transfer learning method.Unfortunately,this generates many unreliable parameters and makes it difficult to generate plausible explanations from these models.In this study,we trained from scratch rather than relying on transfer learning,creating a novel interpretable approach for autonomously segmenting the left ventricle with a cardiac MRI.Our enhanced GPU training system implemented interpretable global average pooling for graphics using deep learning.The deep learning tasks were simplified.Simplification included data management,neural network architecture,and training.Our system monitored and analyzed the gradient changes of different layers with dynamic visualizations in real-time and selected the optimal deployment model.Our results demonstrated that the proposed method was feasible and efficient:the Dice coefficient reached 94.48%,and the accuracy reached 99.7%.It was found that no current transfer learning models could perform comparably to the ImageNet transfer learning architectures.This model is lightweight and more convenient to deploy on mobile devices than transfer learning models. 展开更多
关键词 Interpretable graphics training VISUALIZATION image segmentation left ventricle CNNS global average pooling
在线阅读 下载PDF
Predicting Human Mobility via Long Short-Term Patterns 被引量:1
4
作者 Jianwei Chen Jianbo Li Ying Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第9期847-864,共18页
Predicting human mobility has great significance in Location based Social Network applications,while it is challenging due to the impact of historical mobility patterns and current trajectories.Among these challenges,... Predicting human mobility has great significance in Location based Social Network applications,while it is challenging due to the impact of historical mobility patterns and current trajectories.Among these challenges,historical patterns tend to be crucial in the prediction task.However,it is difficult to capture complex patterns from long historical trajectories.Motivated by recent success of Convolutional Neural Network(CNN)-based methods,we propose a Union ConvGRU(UCG)Net,which can capture long short-term patterns of historical trajectories and sequential impact of current trajectories.Specifically,we first incorporate historical trajectories into hidden states by a shared-weight layer,and then utilize a 1D CNN to capture short-term pattern of hidden states.Next,an average pooling method is involved to generate separated hidden states of historical trajectories,on which we use a Fully Connected(FC)layer to capture longterm pattern subsequently.Finally,we use a Recurrent Neural Net-work(RNN)to predict future trajectories by integrating current trajectories and long short-term patterns.Experiments demonstrate that UCG Net performs best in comparison with neural network-based methods. 展开更多
关键词 Human mobility prediction CNN average pooling
在线阅读 下载PDF
Automatic diagnosis of keratitis from low-quality slit-lamp images using feature vector quantization and self-attention mechanisms
5
作者 JIANG Jiewei XIN Yu +3 位作者 DING Ke ZHU Mingmin CHEN Yi LI Zhongwen 《Optoelectronics Letters》 2025年第10期612-618,共7页
This paper proposes a novel method for the automatic diagnosis of keratitis using feature vector quantization and self-attention mechanisms(ADK_FVQSAM).First,high-level features are extracted using the DenseNet121 bac... This paper proposes a novel method for the automatic diagnosis of keratitis using feature vector quantization and self-attention mechanisms(ADK_FVQSAM).First,high-level features are extracted using the DenseNet121 backbone network,followed by adaptive average pooling to scale the features to a fixed length.Subsequently,product quantization with residuals(PQR)is applied to convert continuous feature vectors into discrete features representations,preserving essential information insensitive to image quality variations.The quantized and original features are concatenated and fed into a self-attention mechanism to capture keratitis-related features.Finally,these enhanced features are classified through a fully connected layer.Experiments on clinical low-quality(LQ)images show that ADK_FVQSAM achieves accuracies of 87.7%,81.9%,and 89.3% for keratitis,other corneal abnormalities,and normal corneas,respectively.Compared to DenseNet121,Swin transformer,and InceptionResNet,ADK_FVQSAM improves average accuracy by 3.1%,11.3%,and 15.3%,respectively.These results demonstrate that ADK_FVQSAM significantly enhances the recognition performance of keratitis based on LQ slit-lamp images,offering a practical approach for clinical application. 展开更多
关键词 keratitis low quality images adaptive average pooling densenet backbone networkfollowed self attention mechanism feature vector quantization diagnosis keratitis automatic diagnosis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部