期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Parameter estimation for multirate multi-input systems using auxiliary model and multi-innovation 被引量:3
1
作者 Lili Han Feng Ding 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第6期1079-1083,共5页
The multirate multi-input systems have different updating periods and sampling periods such that the conventional identification algorithms cannot be used to identify such multirate systems. By using the auxiliary mod... The multirate multi-input systems have different updating periods and sampling periods such that the conventional identification algorithms cannot be used to identify such multirate systems. By using the auxiliary model identification idea, the multiinnovation stochastic gradient algorithm is developed to estimate the parameters of multirate systems. Finally, an illustrative example is given to verify the effectiveness of the proposed algorithm. 展开更多
关键词 parameter estimation multirate systems multiinnovation auxiliary model.
在线阅读 下载PDF
Auxiliary Model Based Multi-innovation Stochastic Gradient Identification Methods for Hammerstein Output-Error System
2
作者 冯启亮 贾立 李峰 《Journal of Donghua University(English Edition)》 EI CAS 2017年第1期53-59,共7页
Special input signals identification method based on the auxiliary model based multi-innovation stochastic gradient algorithm for Hammerstein output-error system was proposed.The special input signals were used to rea... Special input signals identification method based on the auxiliary model based multi-innovation stochastic gradient algorithm for Hammerstein output-error system was proposed.The special input signals were used to realize the identification and separation of the Hammerstein model.As a result,the identification of the dynamic linear part can be separated from the static nonlinear elements without any redundant adjustable parameters.The auxiliary model based multi-innovation stochastic gradient algorithm was applied to identifying the serial link parameters of the Hammerstein model.The auxiliary model based multi-innovation stochastic gradient algorithm can avoid the influence of noise and improve the identification accuracy by changing the innovation length.The simulation results show the efficiency of the proposed method. 展开更多
关键词 Hammerstein output-error system special input signals auxiliary model based multi-innovation stochastic gradient algorithm innovation length
在线阅读 下载PDF
Stochastic gradient algorithm for a dual-rate Box-Jenkins model based on auxiliary model and FIR model 被引量:2
3
作者 Jing CHEN Rui-feng DING 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2014年第2期147-152,共6页
Based on the work in Ding and Ding(2008),we develop a modifed stochastic gradient(SG)parameter estimation algorithm for a dual-rate Box-Jenkins model by using an auxiliary model.We simplify the complex dual-rate Box-J... Based on the work in Ding and Ding(2008),we develop a modifed stochastic gradient(SG)parameter estimation algorithm for a dual-rate Box-Jenkins model by using an auxiliary model.We simplify the complex dual-rate Box-Jenkins model to two fnite impulse response(FIR)models,present an auxiliary model to estimate the missing outputs and the unknown noise variables,and compute all the unknown parameters of the system with colored noises.Simulation results indicate that the proposed method is efective. 展开更多
关键词 Parameter estimation auxiliary model Dual-rate system Stochastic gradient Box-Jenkins model FIR model
原文传递
Auxiliary error and probability density function based neuro-fuzzy model and its application in batch processes
4
作者 贾立 袁凯 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第12期2013-2019,共7页
This paper focuses on resolving the identification problem of a neuro-fuzzy model(NFM) applied in batch processes. A hybrid learning algorithm is introduced to identify the proposed NFM with the idea of auxiliary erro... This paper focuses on resolving the identification problem of a neuro-fuzzy model(NFM) applied in batch processes. A hybrid learning algorithm is introduced to identify the proposed NFM with the idea of auxiliary error model and the identification principle based on the probability density function(PDF). The main contribution is that the NFM parameter updating approach is transformed into the shape control for the PDF of modeling error. More specifically, a virtual adaptive control system is constructed with the aid of the auxiliary error model and then the PDF shape control idea is used to tune NFM parameters so that the PDF of modeling error is controlled to follow a targeted PDF, which is in Gaussian or uniform distribution. Examples are used to validate the applicability of the proposed method and comparisons are made with the minimum mean square error based approaches. 展开更多
关键词 Batch process auxiliary error model Probability density function Neuro-fuzzy model
在线阅读 下载PDF
Pattern-Moving-Based Parameter Identification of Output Error Models with Multi-Threshold Quantized Observations 被引量:2
5
作者 Xiangquan Li Zhengguang Xu +1 位作者 Cheng Han Ning Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第3期1807-1825,共19页
This paper addresses a modified auxiliary model stochastic gradient recursive parameter identification algorithm(M-AM-SGRPIA)for a class of single input single output(SISO)linear output error models with multi-thresho... This paper addresses a modified auxiliary model stochastic gradient recursive parameter identification algorithm(M-AM-SGRPIA)for a class of single input single output(SISO)linear output error models with multi-threshold quantized observations.It proves the convergence of the designed algorithm.A pattern-moving-based system dynamics description method with hybrid metrics is proposed for a kind of practical single input multiple output(SIMO)or SISO nonlinear systems,and a SISO linear output error model with multi-threshold quantized observations is adopted to approximate the unknown system.The system input design is accomplished using the measurement technology of random repeatability test,and the probabilistic characteristic of the explicit metric value is employed to estimate the implicit metric value of the pattern class variable.A modified auxiliary model stochastic gradient recursive algorithm(M-AM-SGRA)is designed to identify the model parameters,and the contraction mapping principle proves its convergence.Two numerical examples are given to demonstrate the feasibility and effectiveness of the achieved identification algorithm. 展开更多
关键词 Pattern moving multi-threshold quantized observations output error model auxiliary model parameter identification
在线阅读 下载PDF
Modeling and identification for soft sensor systems based on the separation of multi-dynamic and static characteristics 被引量:1
6
作者 Pengfei Cao Xionglin Luo Xiaohong Song 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第1期137-143,共7页
Data-driven soft sensor is an effective solution to provide rapid and reliable estimations for key quality variables online. The secondary variables affect the primary variable in considerably different speed, and sof... Data-driven soft sensor is an effective solution to provide rapid and reliable estimations for key quality variables online. The secondary variables affect the primary variable in considerably different speed, and soft sensor systems exhibit multi-dynamic characteristics. Thus, the first contribution is improving the model in the previous study with multi-time-constant. The characteristics-separation-based model will be identified in substep way,and the stochastic Newton recursive(SNR) algorithm is adopted. Considering the dual-rate characteristics of soft sensor systems, the proposed model cannot be identified directly. Thus, two auxiliary models are first proposed to offer the intersample estimations at each update period, based on which the improved algorithm(DAM-SNR) is derived. These two auxiliary models function in switching mechanism which has been illustrated in detail. This algorithm serves for the identification of the proposed model together with the SNR algorithm, and the identification procedure is then presented. Finally, the laboratorial case confirms the effectiveness of the proposed soft sensor model and the algorithms. 展开更多
关键词 soft sensor modeling Characteristics separation System identification Double auxiliary models
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部