As urban landscapes evolve and vehicular volumes soar,traditional traffic monitoring systems struggle to scale,often failing under the complexities of dense,dynamic,and occluded environments.This paper introduces a no...As urban landscapes evolve and vehicular volumes soar,traditional traffic monitoring systems struggle to scale,often failing under the complexities of dense,dynamic,and occluded environments.This paper introduces a novel,unified deep learning framework for vehicle detection,tracking,counting,and classification in aerial imagery designed explicitly for modern smart city infrastructure demands.Our approach begins with adaptive histogram equalization to optimize aerial image clarity,followed by a cutting-edge scene parsing technique using Mask2Former,enabling robust segmentation even in visually congested settings.Vehicle detection leverages the latest YOLOv11 architecture,delivering superior accuracy in aerial contexts by addressing occlusion,scale variance,and fine-grained object differentiation.We incorporate the highly efficient ByteTrack algorithm for tracking,enabling seamless identity preservation across frames.Vehicle counting is achieved through an unsupervised DBSCAN-based method,ensuring adaptability to varying traffic densities.We further introduce a hybrid feature extraction module combining Convolutional Neural Networks(CNNs)with Zernike Moments,capturing both deep semantic and geometric signatures of vehicles.The final classification is powered by NASNet,a neural architecture search-optimized model,ensuring high accuracy across diverse vehicle types and orientations.Extensive evaluations of the VAID benchmark dataset demonstrate the system’s outstanding performance,achieving 96%detection,94%tracking,and 96.4%classification accuracy.On the UAVDT dataset,the system attains 95%detection,93%tracking,and 95%classification accuracy,confirming its robustness across diverse aerial traffic scenarios.These results establish new benchmarks in aerial traffic analysis and validate the framework’s scalability,making it a powerful and adaptable solution for next-generation intelligent transportation systems and urban surveillance.展开更多
Spinal cord injury(SCI) often results in permanent dysfunction of locomotion,sensation,and autonomic regulation,imposing a substantial burden on both individuals and society(Anjum et al.,2020).SCI has a complex pathop...Spinal cord injury(SCI) often results in permanent dysfunction of locomotion,sensation,and autonomic regulation,imposing a substantial burden on both individuals and society(Anjum et al.,2020).SCI has a complex pathophysiology:an initial primary injury(mechanical trauma,axonal disruption,and hemorrhage) is followed by a progressive secondary injury cascade that involves ischemia,neuronal loss,and inflammation.Given the challenges in achieving regeneration of the injured spinal cord,neuroprotection has been at the forefront of clinical research.展开更多
At present,energy consumption is one of the main bottlenecks in autonomous mobile robot development.To address the challenge of high energy consumption in path planning for autonomous mobile robots navigating unknown ...At present,energy consumption is one of the main bottlenecks in autonomous mobile robot development.To address the challenge of high energy consumption in path planning for autonomous mobile robots navigating unknown and complex environments,this paper proposes an Attention-Enhanced Dueling Deep Q-Network(ADDueling DQN),which integrates a multi-head attention mechanism and a prioritized experience replay strategy into a Dueling-DQN reinforcement learning framework.A multi-objective reward function,centered on energy efficiency,is designed to comprehensively consider path length,terrain slope,motion smoothness,and obstacle avoidance,enabling optimal low-energy trajectory generation in 3D space from the source.The incorporation of a multihead attention mechanism allows the model to dynamically focus on energy-critical state features—such as slope gradients and obstacle density—thereby significantly improving its ability to recognize and avoid energy-intensive paths.Additionally,the prioritized experience replay mechanism accelerates learning from key decision-making experiences,suppressing inefficient exploration and guiding the policy toward low-energy solutions more rapidly.The effectiveness of the proposed path planning algorithm is validated through simulation experiments conducted in multiple off-road scenarios.Results demonstrate that AD-Dueling DQN consistently achieves the lowest average energy consumption across all tested environments.Moreover,the proposed method exhibits faster convergence and greater training stability compared to baseline algorithms,highlighting its global optimization capability under energy-aware objectives in complex terrains.This study offers an efficient and scalable intelligent control strategy for the development of energy-conscious autonomous navigation systems.展开更多
In recent years,advancements in autonomous vehicle technology have accelerated,promising safer and more efficient transportation systems.However,achieving fully autonomous driving in challenging weather conditions,par...In recent years,advancements in autonomous vehicle technology have accelerated,promising safer and more efficient transportation systems.However,achieving fully autonomous driving in challenging weather conditions,particularly in snowy environments,remains a challenge.Snow-covered roads introduce unpredictable surface conditions,occlusions,and reduced visibility,that require robust and adaptive path detection algorithms.This paper presents an enhanced road detection framework for snowy environments,leveraging Simple Framework forContrastive Learning of Visual Representations(SimCLR)for Self-Supervised pretraining,hyperparameter optimization,and uncertainty-aware object detection to improve the performance of YouOnly Look Once version 8(YOLOv8).Themodel is trained and evaluated on a custom-built dataset collected from snowy roads in Tromsø,Norway,which covers a range of snow textures,illumination conditions,and road geometries.The proposed framework achieves scores in terms of mAP@50 equal to 99%and mAP@50–95 equal to 97%,demonstrating the effectiveness of YOLOv8 for real-time road detection in extreme winter conditions.The findings contribute to the safe and reliable deployment of autonomous vehicles in Arctic environments,enabling robust decision-making in hazardous weather conditions.This research lays the groundwork for more resilient perceptionmodels in self-driving systems,paving the way for the future development of intelligent and adaptive transportation networks.展开更多
To solve problems of poor security guarantee and insufficient training efficiency in the conventional reinforcement learning methods for decision-making,this study proposes a hybrid framework to combine deep reinforce...To solve problems of poor security guarantee and insufficient training efficiency in the conventional reinforcement learning methods for decision-making,this study proposes a hybrid framework to combine deep reinforcement learning with rule-based decision-making methods.A risk assessment model for lane-change maneuvers considering uncertain predictions of surrounding vehicles is established as a safety filter to improve learning efficiency while correcting dangerous actions for safety enhancement.On this basis,a Risk-fused DDQN is constructed utilizing the model-based risk assessment and supervision mechanism.The proposed reinforcement learning algorithm sets up a separate experience buffer for dangerous trials and punishes such actions,which is shown to improve the sampling efficiency and training outcomes.Compared with conventional DDQN methods,the proposed algorithm improves the convergence value of cumulated reward by 7.6%and 2.2%in the two constructed scenarios in the simulation study and reduces the number of training episodes by 52.2%and 66.8%respectively.The success rate of lane change is improved by 57.3%while the time headway is increased at least by 16.5%in real vehicle tests,which confirms the higher training efficiency,scenario adaptability,and security of the proposed Risk-fused DDQN.展开更多
Safe and efficient sortie scheduling on the confined flight deck is crucial for maintaining high combat effectiveness of the aircraft carrier.The primary difficulty exactly lies in the spatiotemporal coordination,i.e....Safe and efficient sortie scheduling on the confined flight deck is crucial for maintaining high combat effectiveness of the aircraft carrier.The primary difficulty exactly lies in the spatiotemporal coordination,i.e.,allocation of limited supporting resources and collision-avoidance between heterogeneous dispatch entities.In this paper,the problem is investigated in the perspective of hybrid flow-shop scheduling problem by synthesizing the precedence,space and resource constraints.Specifically,eight processing procedures are abstracted,where tractors,preparing spots,catapults,and launching are virtualized as machines.By analyzing the constraints in sortie scheduling,a mixed-integer planning model is constructed.In particular,the constraint on preparing spot occupancy is improved to further enhance the sortie efficiency.The basic trajectory library for each dispatch entity is generated and a delayed strategy is integrated to address the collision-avoidance issue.To efficiently solve the formulated HFSP,which is essentially a combinatorial problem with tightly coupled constraints,a chaos-initialized genetic algorithm is developed.The solution framework is validated by the simulation environment referring to the Fort-class carrier,exhibiting higher sortie efficiency when compared to existing strategies.And animation of the simulation results is available at www.bilibili.com/video/BV14t421A7Tt/.The study presents a promising supporting technique for autonomous flight deck operation in the foreseeable future,and can be easily extended to other supporting scenarios,e.g.,ammunition delivery and aircraft maintenance.展开更多
The rapid advent in artificial intelligence and big data has revolutionized the dynamic requirement in the demands of the computing resource for executing specific tasks in the cloud environment.The process of achievi...The rapid advent in artificial intelligence and big data has revolutionized the dynamic requirement in the demands of the computing resource for executing specific tasks in the cloud environment.The process of achieving autonomic resource management is identified to be a herculean task due to its huge distributed and heterogeneous environment.Moreover,the cloud network needs to provide autonomic resource management and deliver potential services to the clients by complying with the requirements of Quality-of-Service(QoS)without impacting the Service Level Agreements(SLAs).However,the existing autonomic cloud resource managing frameworks are not capable in handling the resources of the cloud with its dynamic requirements.In this paper,Coot Bird Behavior Model-based Workload Aware Autonomic Resource Management Scheme(CBBM-WARMS)is proposed for handling the dynamic requirements of cloud resources through the estimation of workload that need to be policed by the cloud environment.This CBBM-WARMS initially adopted the algorithm of adaptive density peak clustering for workloads clustering of the cloud.Then,it utilized the fuzzy logic during the process of workload scheduling for achieving the determining the availability of cloud resources.It further used CBBM for potential Virtual Machine(VM)deployment that attributes towards the provision of optimal resources.It is proposed with the capability of achieving optimal QoS with minimized time,energy consumption,SLA cost and SLA violation.The experimental validation of the proposed CBBMWARMS confirms minimized SLA cost of 19.21%and reduced SLA violation rate of 18.74%,better than the compared autonomic cloud resource managing frameworks.展开更多
Acute mountain sickness(AMS) is an illness caused by hypoxia due to rapid ascent to altitudes above 2,500 m. Symptoms include headache,nausea, vomiting, and loss of appetite, all of which usually improve within 1 to 2...Acute mountain sickness(AMS) is an illness caused by hypoxia due to rapid ascent to altitudes above 2,500 m. Symptoms include headache,nausea, vomiting, and loss of appetite, all of which usually improve within 1 to 2 days. However,untreated AMS can progress to life-threatening conditions such as high-altitude cerebral and pulmonary edema(HACE and HAPE, respectively)^([1]).展开更多
Xi Jinping,general secretary of the Communist Party of China(CPC)Central Committee,stressed that we should adhere to the“two integrations”(namely,integrating the basic tenets of Marxism with China’s specific realit...Xi Jinping,general secretary of the Communist Party of China(CPC)Central Committee,stressed that we should adhere to the“two integrations”(namely,integrating the basic tenets of Marxism with China’s specific realities and fine traditional culture),root ourselves in Chinese soil,carry forward the Chinese cultural heritage,and strengthen the academic foundation.We should accelerate the building of an independent knowledge system for Chinese philosophy and social sciences,and formulate original concepts and develop systems of academic discipline,research and discourse,drawing on China’s rich experience of advancing human rights.In the face of changes of a magnitude not seen in a century,in the historic process of advancing the great rejuvenation of the Chinese nation on all fronts through Chinese modernization,we should and must strengthen our theoretical self-consciousness and confidence in the path of Chinese modernization.We need to enhance human rights research,develop the human rights theoretical system and paradigm that are based on Chinese realities and express Chinese voice,and an independent Chinese knowledge system for human rights.展开更多
Amyotrophic lateral sclerosis(ALS)is a neuromuscular condition resulting from the progressive degeneration of motor neurons in the cortex,brainstem,and spinal cord.While the typical clinical phenotype of ALS involves ...Amyotrophic lateral sclerosis(ALS)is a neuromuscular condition resulting from the progressive degeneration of motor neurons in the cortex,brainstem,and spinal cord.While the typical clinical phenotype of ALS involves both upper and lower motor neurons,human and animal studies over the years have highlighted the potential spread to other motor and non-motor regions,expanding the phenotype of ALS.Although superoxide dismutase 1(SOD1)mutations represent a minority of ALS cases,the SOD1 gene remains a milestone in ALS research as it represents the first genetic target for personalized therapies.Despite numerous single case reports or case series exhibiting extramotor symptoms in patients with ALS mutations in SOD1(SOD1-ALS),no studies have comprehensively explored the full spectrum of extramotor neurological manifestations in this subpopulation.In this narrative review,we analyze and discuss the available literature on extrapyramidal and non-motor features during SOD1-ALS.The multifaceted expression of SOD1 could deepen our understanding of the pathogenic mechanisms,pointing towards a multidisciplinary approach for affected patients in light of new therapeutic strategies for SOD1-ALS.展开更多
Evaluation of a Commercially Available Radiochromic Film for Use as a Complementary Dosimeter for Rapid In-field Low Photon Equivalent Radiation Dose (≤50 mSv) Monitoring Nicky Nivi1, Helen Moise1,2, Ana Pejovic'...Evaluation of a Commercially Available Radiochromic Film for Use as a Complementary Dosimeter for Rapid In-field Low Photon Equivalent Radiation Dose (≤50 mSv) Monitoring Nicky Nivi1, Helen Moise1,2, Ana Pejovic'-Milic'1(1. Department of Physics, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario, M5B 2K3;2. Autonomous and Radiological Technologies Section, Defense Research and Development Canada, PO Box 4000 Stn Main,Medicine Hat, Alberta, T1A 8K6).展开更多
Autonomous Transporta tion Research(中文刊名《自主交通研究》,简称ATRes期刊)是由武汉理工大学主办,水路交通控制全国重点实验室、国家水运安全工程技术研究中心、交通信息与安全教育部工程研究中心等协办,科爱出版社出版发行的英...Autonomous Transporta tion Research(中文刊名《自主交通研究》,简称ATRes期刊)是由武汉理工大学主办,水路交通控制全国重点实验室、国家水运安全工程技术研究中心、交通信息与安全教育部工程研究中心等协办,科爱出版社出版发行的英文开放获取式高水平学术期刊,国际标准连续出版物号:ISSN 3050-8622。展开更多
1. Introduction Celestial navigation is a kind of navigation with a long history.With the increasing demand for intelligent autonomy and antielectromagnetic interference in spacecraft, celestial navigation has become ...1. Introduction Celestial navigation is a kind of navigation with a long history.With the increasing demand for intelligent autonomy and antielectromagnetic interference in spacecraft, celestial navigation has become one of the current research hotspots in spacecraft autonomous navigation. Spacecraft face complex electromagnetic interference in orbit. The time-varying, non-Gaussian interference from internal devices and external environment can lead to measurement distortion.展开更多
Enhancing Autonomous Decision-Making (ADM) for unmanned combat aerial vehicle formations in beyond-visual-range air combat is pivotal for future battlefields, whereas the predominant reinforcement learning technique f...Enhancing Autonomous Decision-Making (ADM) for unmanned combat aerial vehicle formations in beyond-visual-range air combat is pivotal for future battlefields, whereas the predominant reinforcement learning technique for ADM has been proven to be inadequately fitting complex tactical Unit Coordination (UC), limiting the integrity of decision-making for formations. This study proposes a knowledge-enhanced ADM method, with a focus on UC, to elevate formation combat effectiveness. The main innovation is integrating data mining technique with tactical knowledge mining and integration. Foremost, based on Frequent Event Arrangement Mining (FEAM) theory, a cross-channel UC knowledge mining method is designed by introducing data flow, which is capable of capturing dynamic coordinative action sequences. Then, a dual-mode knowledge integration method is proposed by employing the Graph Attention Network (GAT) and attenuated structural similarity, bolstering the interplay between autonomous UC tactics fitting and knowledge injection. The experimental results demonstrate that the algorithm surpasses the existing methods, providing more strategic maneuver trajectories and a win rate of more than 90% in different scenarios. The method is promising to augment the autonomous operational capabilities of unmanned formations and drive the evolution of combat effectiveness.展开更多
Autonomic dysfunction(AD)is frequently observed in cirrhotic patients and is associated with poor clinical outcomes and prognoses.Heart rate variability(HRV),a noninvasive tool for assessing autonomic nervous system b...Autonomic dysfunction(AD)is frequently observed in cirrhotic patients and is associated with poor clinical outcomes and prognoses.Heart rate variability(HRV),a noninvasive tool for assessing autonomic nervous system balance,has been extensively studied in a variety of conditions,including chronic liver disease(CLD);however,no recent reviews have focused on its role in CLD.This article examines the mechanisms of AD in CLD and the foundation for HRV assessment,highlighting its diagnostic,prognostic,and therapeutic applications in CLD,including liver transplantation(LT).Changes in HRV,particularly in patients with cirrhotic complications,and its prognostic significance throughout the natural history of CLD are summarized.We show that HRV is consistently reduced in CLD patients,reflecting AD,and is inversely correlated with liver disease severity.Also,low HRV is associated with complications such as hepatic encephalopathy,ascites,and portal hypertension.Moreover,evidence indicates that reduced HRV is an independent risk factor for mortality and circulatory instability in CLD.Furthermore,treatment with beta-blockers and LT improves HRV,underscoring its potential role in patient management.While further studies are needed,HRV emerges as a promising tool for the comprehensive evaluation and clinical management of patients with CLD,offering insights into disease progression and therapeutic response.展开更多
Integrating autonomous vehicles (AVs) and autonomous parking spaces (APS) marks a transformative development in urban mobility and sustainability. This paper reflects on these technologies’ historical evolution, curr...Integrating autonomous vehicles (AVs) and autonomous parking spaces (APS) marks a transformative development in urban mobility and sustainability. This paper reflects on these technologies’ historical evolution, current interdependence, and future potential through the lens of environmental, social, and economic sustainability. Historically, parking systems evolved from manual designs to automated processes yet remained focused on convenience rather than sustainability. Presently, advancements in smart infrastructure and vehicle-to-infrastructure (V2I) communication have enabled AVs and APS to operate as a cohesive system, optimizing space, energy, and transportation efficiency. Looking ahead, the seamless integration of AVs and APS into broader smart city ecosystems promises to redefine urban landscapes by repurposing traditional parking infrastructure into multifunctional spaces and supporting renewable energy initiatives. These technologies align with global sustainability goals by mitigating emissions, reducing urban sprawl, and fostering adaptive land uses. This reflection highlights the need for collaborative efforts among stakeholders to address regulatory and technological challenges, ensuring the equitable and efficient deployment of AVs and APS for smarter, greener cities.展开更多
基金funded by the Open Access Initiative of the University of Bremen and the DFG via SuUB BremenThe authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Group Project under grant number(RGP2/367/46)+1 种基金This research is supported and funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2025R410)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘As urban landscapes evolve and vehicular volumes soar,traditional traffic monitoring systems struggle to scale,often failing under the complexities of dense,dynamic,and occluded environments.This paper introduces a novel,unified deep learning framework for vehicle detection,tracking,counting,and classification in aerial imagery designed explicitly for modern smart city infrastructure demands.Our approach begins with adaptive histogram equalization to optimize aerial image clarity,followed by a cutting-edge scene parsing technique using Mask2Former,enabling robust segmentation even in visually congested settings.Vehicle detection leverages the latest YOLOv11 architecture,delivering superior accuracy in aerial contexts by addressing occlusion,scale variance,and fine-grained object differentiation.We incorporate the highly efficient ByteTrack algorithm for tracking,enabling seamless identity preservation across frames.Vehicle counting is achieved through an unsupervised DBSCAN-based method,ensuring adaptability to varying traffic densities.We further introduce a hybrid feature extraction module combining Convolutional Neural Networks(CNNs)with Zernike Moments,capturing both deep semantic and geometric signatures of vehicles.The final classification is powered by NASNet,a neural architecture search-optimized model,ensuring high accuracy across diverse vehicle types and orientations.Extensive evaluations of the VAID benchmark dataset demonstrate the system’s outstanding performance,achieving 96%detection,94%tracking,and 96.4%classification accuracy.On the UAVDT dataset,the system attains 95%detection,93%tracking,and 95%classification accuracy,confirming its robustness across diverse aerial traffic scenarios.These results establish new benchmarks in aerial traffic analysis and validate the framework’s scalability,making it a powerful and adaptable solution for next-generation intelligent transportation systems and urban surveillance.
文摘Spinal cord injury(SCI) often results in permanent dysfunction of locomotion,sensation,and autonomic regulation,imposing a substantial burden on both individuals and society(Anjum et al.,2020).SCI has a complex pathophysiology:an initial primary injury(mechanical trauma,axonal disruption,and hemorrhage) is followed by a progressive secondary injury cascade that involves ischemia,neuronal loss,and inflammation.Given the challenges in achieving regeneration of the injured spinal cord,neuroprotection has been at the forefront of clinical research.
文摘At present,energy consumption is one of the main bottlenecks in autonomous mobile robot development.To address the challenge of high energy consumption in path planning for autonomous mobile robots navigating unknown and complex environments,this paper proposes an Attention-Enhanced Dueling Deep Q-Network(ADDueling DQN),which integrates a multi-head attention mechanism and a prioritized experience replay strategy into a Dueling-DQN reinforcement learning framework.A multi-objective reward function,centered on energy efficiency,is designed to comprehensively consider path length,terrain slope,motion smoothness,and obstacle avoidance,enabling optimal low-energy trajectory generation in 3D space from the source.The incorporation of a multihead attention mechanism allows the model to dynamically focus on energy-critical state features—such as slope gradients and obstacle density—thereby significantly improving its ability to recognize and avoid energy-intensive paths.Additionally,the prioritized experience replay mechanism accelerates learning from key decision-making experiences,suppressing inefficient exploration and guiding the policy toward low-energy solutions more rapidly.The effectiveness of the proposed path planning algorithm is validated through simulation experiments conducted in multiple off-road scenarios.Results demonstrate that AD-Dueling DQN consistently achieves the lowest average energy consumption across all tested environments.Moreover,the proposed method exhibits faster convergence and greater training stability compared to baseline algorithms,highlighting its global optimization capability under energy-aware objectives in complex terrains.This study offers an efficient and scalable intelligent control strategy for the development of energy-conscious autonomous navigation systems.
文摘In recent years,advancements in autonomous vehicle technology have accelerated,promising safer and more efficient transportation systems.However,achieving fully autonomous driving in challenging weather conditions,particularly in snowy environments,remains a challenge.Snow-covered roads introduce unpredictable surface conditions,occlusions,and reduced visibility,that require robust and adaptive path detection algorithms.This paper presents an enhanced road detection framework for snowy environments,leveraging Simple Framework forContrastive Learning of Visual Representations(SimCLR)for Self-Supervised pretraining,hyperparameter optimization,and uncertainty-aware object detection to improve the performance of YouOnly Look Once version 8(YOLOv8).Themodel is trained and evaluated on a custom-built dataset collected from snowy roads in Tromsø,Norway,which covers a range of snow textures,illumination conditions,and road geometries.The proposed framework achieves scores in terms of mAP@50 equal to 99%and mAP@50–95 equal to 97%,demonstrating the effectiveness of YOLOv8 for real-time road detection in extreme winter conditions.The findings contribute to the safe and reliable deployment of autonomous vehicles in Arctic environments,enabling robust decision-making in hazardous weather conditions.This research lays the groundwork for more resilient perceptionmodels in self-driving systems,paving the way for the future development of intelligent and adaptive transportation networks.
基金Supported by National Key Research and Development Program of China(Grant No.2022YFE0117100)National Science Foundation of China(Grant No.52102468,52325212)Fundamental Research Funds for the Central Universities。
文摘To solve problems of poor security guarantee and insufficient training efficiency in the conventional reinforcement learning methods for decision-making,this study proposes a hybrid framework to combine deep reinforcement learning with rule-based decision-making methods.A risk assessment model for lane-change maneuvers considering uncertain predictions of surrounding vehicles is established as a safety filter to improve learning efficiency while correcting dangerous actions for safety enhancement.On this basis,a Risk-fused DDQN is constructed utilizing the model-based risk assessment and supervision mechanism.The proposed reinforcement learning algorithm sets up a separate experience buffer for dangerous trials and punishes such actions,which is shown to improve the sampling efficiency and training outcomes.Compared with conventional DDQN methods,the proposed algorithm improves the convergence value of cumulated reward by 7.6%and 2.2%in the two constructed scenarios in the simulation study and reduces the number of training episodes by 52.2%and 66.8%respectively.The success rate of lane change is improved by 57.3%while the time headway is increased at least by 16.5%in real vehicle tests,which confirms the higher training efficiency,scenario adaptability,and security of the proposed Risk-fused DDQN.
基金the financial support of the National Key Research and Development Plan(2021YFB3302501)the financial support of the National Natural Science Foundation of China(12102077)。
文摘Safe and efficient sortie scheduling on the confined flight deck is crucial for maintaining high combat effectiveness of the aircraft carrier.The primary difficulty exactly lies in the spatiotemporal coordination,i.e.,allocation of limited supporting resources and collision-avoidance between heterogeneous dispatch entities.In this paper,the problem is investigated in the perspective of hybrid flow-shop scheduling problem by synthesizing the precedence,space and resource constraints.Specifically,eight processing procedures are abstracted,where tractors,preparing spots,catapults,and launching are virtualized as machines.By analyzing the constraints in sortie scheduling,a mixed-integer planning model is constructed.In particular,the constraint on preparing spot occupancy is improved to further enhance the sortie efficiency.The basic trajectory library for each dispatch entity is generated and a delayed strategy is integrated to address the collision-avoidance issue.To efficiently solve the formulated HFSP,which is essentially a combinatorial problem with tightly coupled constraints,a chaos-initialized genetic algorithm is developed.The solution framework is validated by the simulation environment referring to the Fort-class carrier,exhibiting higher sortie efficiency when compared to existing strategies.And animation of the simulation results is available at www.bilibili.com/video/BV14t421A7Tt/.The study presents a promising supporting technique for autonomous flight deck operation in the foreseeable future,and can be easily extended to other supporting scenarios,e.g.,ammunition delivery and aircraft maintenance.
文摘The rapid advent in artificial intelligence and big data has revolutionized the dynamic requirement in the demands of the computing resource for executing specific tasks in the cloud environment.The process of achieving autonomic resource management is identified to be a herculean task due to its huge distributed and heterogeneous environment.Moreover,the cloud network needs to provide autonomic resource management and deliver potential services to the clients by complying with the requirements of Quality-of-Service(QoS)without impacting the Service Level Agreements(SLAs).However,the existing autonomic cloud resource managing frameworks are not capable in handling the resources of the cloud with its dynamic requirements.In this paper,Coot Bird Behavior Model-based Workload Aware Autonomic Resource Management Scheme(CBBM-WARMS)is proposed for handling the dynamic requirements of cloud resources through the estimation of workload that need to be policed by the cloud environment.This CBBM-WARMS initially adopted the algorithm of adaptive density peak clustering for workloads clustering of the cloud.Then,it utilized the fuzzy logic during the process of workload scheduling for achieving the determining the availability of cloud resources.It further used CBBM for potential Virtual Machine(VM)deployment that attributes towards the provision of optimal resources.It is proposed with the capability of achieving optimal QoS with minimized time,energy consumption,SLA cost and SLA violation.The experimental validation of the proposed CBBMWARMS confirms minimized SLA cost of 19.21%and reduced SLA violation rate of 18.74%,better than the compared autonomic cloud resource managing frameworks.
文摘Acute mountain sickness(AMS) is an illness caused by hypoxia due to rapid ascent to altitudes above 2,500 m. Symptoms include headache,nausea, vomiting, and loss of appetite, all of which usually improve within 1 to 2 days. However,untreated AMS can progress to life-threatening conditions such as high-altitude cerebral and pulmonary edema(HACE and HAPE, respectively)^([1]).
文摘Xi Jinping,general secretary of the Communist Party of China(CPC)Central Committee,stressed that we should adhere to the“two integrations”(namely,integrating the basic tenets of Marxism with China’s specific realities and fine traditional culture),root ourselves in Chinese soil,carry forward the Chinese cultural heritage,and strengthen the academic foundation.We should accelerate the building of an independent knowledge system for Chinese philosophy and social sciences,and formulate original concepts and develop systems of academic discipline,research and discourse,drawing on China’s rich experience of advancing human rights.In the face of changes of a magnitude not seen in a century,in the historic process of advancing the great rejuvenation of the Chinese nation on all fronts through Chinese modernization,we should and must strengthen our theoretical self-consciousness and confidence in the path of Chinese modernization.We need to enhance human rights research,develop the human rights theoretical system and paradigm that are based on Chinese realities and express Chinese voice,and an independent Chinese knowledge system for human rights.
文摘Amyotrophic lateral sclerosis(ALS)is a neuromuscular condition resulting from the progressive degeneration of motor neurons in the cortex,brainstem,and spinal cord.While the typical clinical phenotype of ALS involves both upper and lower motor neurons,human and animal studies over the years have highlighted the potential spread to other motor and non-motor regions,expanding the phenotype of ALS.Although superoxide dismutase 1(SOD1)mutations represent a minority of ALS cases,the SOD1 gene remains a milestone in ALS research as it represents the first genetic target for personalized therapies.Despite numerous single case reports or case series exhibiting extramotor symptoms in patients with ALS mutations in SOD1(SOD1-ALS),no studies have comprehensively explored the full spectrum of extramotor neurological manifestations in this subpopulation.In this narrative review,we analyze and discuss the available literature on extrapyramidal and non-motor features during SOD1-ALS.The multifaceted expression of SOD1 could deepen our understanding of the pathogenic mechanisms,pointing towards a multidisciplinary approach for affected patients in light of new therapeutic strategies for SOD1-ALS.
文摘Evaluation of a Commercially Available Radiochromic Film for Use as a Complementary Dosimeter for Rapid In-field Low Photon Equivalent Radiation Dose (≤50 mSv) Monitoring Nicky Nivi1, Helen Moise1,2, Ana Pejovic'-Milic'1(1. Department of Physics, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario, M5B 2K3;2. Autonomous and Radiological Technologies Section, Defense Research and Development Canada, PO Box 4000 Stn Main,Medicine Hat, Alberta, T1A 8K6).
文摘Autonomous Transporta tion Research(中文刊名《自主交通研究》,简称ATRes期刊)是由武汉理工大学主办,水路交通控制全国重点实验室、国家水运安全工程技术研究中心、交通信息与安全教育部工程研究中心等协办,科爱出版社出版发行的英文开放获取式高水平学术期刊,国际标准连续出版物号:ISSN 3050-8622。
基金supported by the National Level Project of China (No. 2020-JCJQ-ZQ-059)。
文摘1. Introduction Celestial navigation is a kind of navigation with a long history.With the increasing demand for intelligent autonomy and antielectromagnetic interference in spacecraft, celestial navigation has become one of the current research hotspots in spacecraft autonomous navigation. Spacecraft face complex electromagnetic interference in orbit. The time-varying, non-Gaussian interference from internal devices and external environment can lead to measurement distortion.
文摘Enhancing Autonomous Decision-Making (ADM) for unmanned combat aerial vehicle formations in beyond-visual-range air combat is pivotal for future battlefields, whereas the predominant reinforcement learning technique for ADM has been proven to be inadequately fitting complex tactical Unit Coordination (UC), limiting the integrity of decision-making for formations. This study proposes a knowledge-enhanced ADM method, with a focus on UC, to elevate formation combat effectiveness. The main innovation is integrating data mining technique with tactical knowledge mining and integration. Foremost, based on Frequent Event Arrangement Mining (FEAM) theory, a cross-channel UC knowledge mining method is designed by introducing data flow, which is capable of capturing dynamic coordinative action sequences. Then, a dual-mode knowledge integration method is proposed by employing the Graph Attention Network (GAT) and attenuated structural similarity, bolstering the interplay between autonomous UC tactics fitting and knowledge injection. The experimental results demonstrate that the algorithm surpasses the existing methods, providing more strategic maneuver trajectories and a win rate of more than 90% in different scenarios. The method is promising to augment the autonomous operational capabilities of unmanned formations and drive the evolution of combat effectiveness.
基金Supported by National Agency of Research and Development(ANID),Government of Chile(https://anid.cl/about-us/),through the Initiation in Research FONDECYT grant No.11241548.
文摘Autonomic dysfunction(AD)is frequently observed in cirrhotic patients and is associated with poor clinical outcomes and prognoses.Heart rate variability(HRV),a noninvasive tool for assessing autonomic nervous system balance,has been extensively studied in a variety of conditions,including chronic liver disease(CLD);however,no recent reviews have focused on its role in CLD.This article examines the mechanisms of AD in CLD and the foundation for HRV assessment,highlighting its diagnostic,prognostic,and therapeutic applications in CLD,including liver transplantation(LT).Changes in HRV,particularly in patients with cirrhotic complications,and its prognostic significance throughout the natural history of CLD are summarized.We show that HRV is consistently reduced in CLD patients,reflecting AD,and is inversely correlated with liver disease severity.Also,low HRV is associated with complications such as hepatic encephalopathy,ascites,and portal hypertension.Moreover,evidence indicates that reduced HRV is an independent risk factor for mortality and circulatory instability in CLD.Furthermore,treatment with beta-blockers and LT improves HRV,underscoring its potential role in patient management.While further studies are needed,HRV emerges as a promising tool for the comprehensive evaluation and clinical management of patients with CLD,offering insights into disease progression and therapeutic response.
文摘Integrating autonomous vehicles (AVs) and autonomous parking spaces (APS) marks a transformative development in urban mobility and sustainability. This paper reflects on these technologies’ historical evolution, current interdependence, and future potential through the lens of environmental, social, and economic sustainability. Historically, parking systems evolved from manual designs to automated processes yet remained focused on convenience rather than sustainability. Presently, advancements in smart infrastructure and vehicle-to-infrastructure (V2I) communication have enabled AVs and APS to operate as a cohesive system, optimizing space, energy, and transportation efficiency. Looking ahead, the seamless integration of AVs and APS into broader smart city ecosystems promises to redefine urban landscapes by repurposing traditional parking infrastructure into multifunctional spaces and supporting renewable energy initiatives. These technologies align with global sustainability goals by mitigating emissions, reducing urban sprawl, and fostering adaptive land uses. This reflection highlights the need for collaborative efforts among stakeholders to address regulatory and technological challenges, ensuring the equitable and efficient deployment of AVs and APS for smarter, greener cities.