In this paper,the existence,uniqueness,asymptotic and global exponential stability of pseudo almost automorphic solution for a class of delayed Lasota-Wazewska model with impulsive effects are established by applying ...In this paper,the existence,uniqueness,asymptotic and global exponential stability of pseudo almost automorphic solution for a class of delayed Lasota-Wazewska model with impulsive effects are established by applying an appropriate fixed point theorem and Lyapunov functional method.Finally,a numerical example with simulation is given to illuminate our theoretical results.展开更多
For a set S of real numbers, we introduce the concept of S-almost automorphic functions valued in a Banach space. It generalizes in particular the space of Z-almost automorphic functions. Considering the space of S-al...For a set S of real numbers, we introduce the concept of S-almost automorphic functions valued in a Banach space. It generalizes in particular the space of Z-almost automorphic functions. Considering the space of S-almost automorphic functions, we give sufficient conditions of the existence and uniqueness of almost automorphic solutions of a differential equation with a piecewise constant argument of generalized type. This is done using the Banach fixed point theorem.展开更多
In this paper we discuss the existence and global attractivity of k-almost automorphic sequence solution of a model of cellular neural networks. We consider the corresponding difference equation analogue of the model ...In this paper we discuss the existence and global attractivity of k-almost automorphic sequence solution of a model of cellular neural networks. We consider the corresponding difference equation analogue of the model system using suitable discretization method and obtain certain conditions for the existence of solution. Almost automorphic function is a good generalization of almost periodic function. This is the first paper considering such solutions of the neural networks.展开更多
The Khuri-Jones correction to the partial wave scattering amplitude at threshold is an automorphic function for a dihedron. An expression for the partial wave amplitude is obtained at the pole which the upper half-pla...The Khuri-Jones correction to the partial wave scattering amplitude at threshold is an automorphic function for a dihedron. An expression for the partial wave amplitude is obtained at the pole which the upper half-plane maps on to the interior of semi-infinite strip. The Lehmann ellipse exists below threshold for bound states. As the system goes from below to above threshold, the discrete dihedral (elliptic) group of Type 1 transforms into a Type 3 group, whose loxodromic elements leave the fixed points 0 and ∞ invariant. The transformation of the indifferent fixed points from -1 and +1 to the source-sink fixed points 0 and ∞ is the result of a finite resonance width in the imaginary component of the angular momentum. The change in symmetry of the groups, and consequently their tessellations, can be used to distinguish bound states from resonances.展开更多
Almost automorphic is a particular case of the recurrent motion, which has been studied in differential equations for a long time. We introduce square-mean pseudo almost automorphic and some of its properties, and the...Almost automorphic is a particular case of the recurrent motion, which has been studied in differential equations for a long time. We introduce square-mean pseudo almost automorphic and some of its properties, and then study the pseudo almost automorphic solution in the distribution sense to stochastic differential equation driven by Levy process.展开更多
Let E be a Galois extension of ? of degree l, not necessarily solvable. In this paper we first prove that the L-function L(s, π) attached to an automorphic cuspidal representation π of $ GL_m (E_\mathbb{A} ) $ canno...Let E be a Galois extension of ? of degree l, not necessarily solvable. In this paper we first prove that the L-function L(s, π) attached to an automorphic cuspidal representation π of $ GL_m (E_\mathbb{A} ) $ cannot be factored nontrivially into a product of L-functions over E.Next, we compare the n-level correlation of normalized nontrivial zeros of L(s, π1)…L(s, π k ), where π j , j = 1,…, k, are automorphic cuspidal representations of $ GL_{m_j } (\mathbb{Q}_\mathbb{A} ) $ , with that of L(s,π). We prove a necessary condition for L(s, π) having a factorization into a product of L-functions attached to automorphic cuspidal representations of specific $ GL_{m_j } (\mathbb{Q}_\mathbb{A} ) $ , j = 1,…,k. In particular, if π is not invariant under the action of any nontrivial σ ∈ Gal E/?, then L(s, π) must equal a single L-function attached to a cuspidal representation of $ GL_{m\ell } (\mathbb{Q}_\mathbb{A} ) $ and π has an automorphic induction, provided L(s, π) can factored into a product of L-functions over ?. As E is not assumed to be solvable over ?, our results are beyond the scope of the current theory of base change and automorphic induction.Our results are unconditional when m,m 1,…,m k are small, but are under Hypothesis H and a bound toward the Ramanujan conjecture in other cases.展开更多
Let f be a holomorphic cusp form of weight k for SL2(Z) and λf(n) its n-th Fourier coefficient.In this paper,the exponential sum X【n 2X λf(n)e(αnβ) twisted by Fourier coefficients λf(n) is proved toh ave a main ...Let f be a holomorphic cusp form of weight k for SL2(Z) and λf(n) its n-th Fourier coefficient.In this paper,the exponential sum X【n 2X λf(n)e(αnβ) twisted by Fourier coefficients λf(n) is proved toh ave a main term of size |λf(q)|X3/4 when β = 1/2 and α is close to ±2√q,q ∈ Z,and is smaller otherwise for β 【 3/4.This is a manifestation of the resonance spectrum of automorphic forms for SL2(Z).展开更多
We compute the n-level correlation of normalized nontrivial zeros of a product of Lfunctions: L(s, π1) … L(s, π k ), where πj, j = 1, …, k, are automorphic cuspidal representations of GL mj (?A). Here the sizes o...We compute the n-level correlation of normalized nontrivial zeros of a product of Lfunctions: L(s, π1) … L(s, π k ), where πj, j = 1, …, k, are automorphic cuspidal representations of GL mj (?A). Here the sizes of the groups GL mj (?A) are not necessarily the same. When these L(s, π j ) are distinct, we prove that their nontrivial zeros are uncorrelated, as predicted by random matrix theory and verified numerically. When L(s, π j ) are not necessarily distinct, our results will lead to a proof that the n-level correlation of normalized nontrivial zeros of the product L-function follows the superposition of Gaussian Unitary Ensemble (GUE) models of individual L-functions and products of lower rank GUEs. The results are unconditional when m 1, …, m k ? 4, but are under Hypothesis H in other cases.展开更多
In this paper,we survey our work on period,poles or special values of certain automorphic Lfunctions and their relations to certain types of Langlands functorial transfers.We outline proofs for some results and leave ...In this paper,we survey our work on period,poles or special values of certain automorphic Lfunctions and their relations to certain types of Langlands functorial transfers.We outline proofs for some results and leave others as conjectures.展开更多
Letπbe a self-dual irreducible cuspidal automorphic representation of GL_(2)(A_(Q))with trivial central character.Its Hecke eigenvalue λπ(n)is a real multiplicative function in n.We show that λπ(n)<0 for some ...Letπbe a self-dual irreducible cuspidal automorphic representation of GL_(2)(A_(Q))with trivial central character.Its Hecke eigenvalue λπ(n)is a real multiplicative function in n.We show that λπ(n)<0 for some n<<Q^(2/5)_(π),where Qπdenotes(a special value of)the analytic conductor.The value 2/5 is the first explicit exponent for Hecke-Maass newforms.展开更多
Let πr be an irreducible unitary cuspidal representation of GL,^(AQ), m ≥ 2. Assume that π is self-contragredient. The author gets upper and lower bounds of the same order for fractional moments of automorphic L-...Let πr be an irreducible unitary cuspidal representation of GL,^(AQ), m ≥ 2. Assume that π is self-contragredient. The author gets upper and lower bounds of the same order for fractional moments of automorphic L-function L(s, π) on the critical line under Generalized Ramanujan Conjecture; the upper bound being conditionally subject to the truth of Generalized Riemann Hypothesis.展开更多
We present some conditions for the existence and uniqueness of almost automorphic solutions of third order neutral delay-differential equations with piecewise constant of the form(X(t) +px(t - 1))″′, = a0x(...We present some conditions for the existence and uniqueness of almost automorphic solutions of third order neutral delay-differential equations with piecewise constant of the form(X(t) +px(t - 1))″′, = a0x([t]) + a1x([t - 1]) + f(t),where [.] is the greatest integer function, p, a0 and al are nonzero constants, and f(t) is almost automorphic.展开更多
This paper considers a class of quaternion-valued Hopfield neural networks with mixed time-varying delays and leakage delays.By utilizing the exponential dichotomy of linear differential equations,Banach’s fixed poin...This paper considers a class of quaternion-valued Hopfield neural networks with mixed time-varying delays and leakage delays.By utilizing the exponential dichotomy of linear differential equations,Banach’s fixed point theorem and differential inequality techniques,the authors obtain some sufficient conditions to ensure the existence and global exponential stability of almost automorphic solutions for this class of quaternion-valued neural networks.The results are completely new.Finally,the authors give an example to illustrate the feasibility of the results.展开更多
Let f be a holomorphic Hecke cusp form with even integral weight k≥2 for the full modular group,and letχbe a primitive Dirichlet character modulo q.Let Lf(s,χ)be the automorphic L-function attached to f andχ-We st...Let f be a holomorphic Hecke cusp form with even integral weight k≥2 for the full modular group,and letχbe a primitive Dirichlet character modulo q.Let Lf(s,χ)be the automorphic L-function attached to f andχ-We study the mean-square estimate of Lf(s,χ)and establish an asymptotic formula.展开更多
We introduce a new concept of μ-pseudo almost automorphic processes in p-th mean sense by employing the measure theory, and present some results on the functional space of such processes like completeness and composi...We introduce a new concept of μ-pseudo almost automorphic processes in p-th mean sense by employing the measure theory, and present some results on the functional space of such processes like completeness and composition theorems. Under some conditions, we establish the existence, uniqueness, and the global exponentially stability of μ-pseudo almost automorphic mild solutions for a class of nonlinear stochastic evolution equations driven by Brownian motion in a separable Hilbert space.展开更多
Let π be an irreducible unitary cuspidal representation of GLm(AQ) with m ≥ 2, and L(s, Tr) the L-function attached to π. Under the Generalized Riemann Hypothesis for L(s,π), we estimate the normal density o...Let π be an irreducible unitary cuspidal representation of GLm(AQ) with m ≥ 2, and L(s, Tr) the L-function attached to π. Under the Generalized Riemann Hypothesis for L(s,π), we estimate the normal density of primes in short intervals for the automorphic L-function L(s, π). Our result generalizes the corresponding theorem of Selberg for the Riemann zeta-function.展开更多
In this paper, we discuss the existence of pseudo-almost automorphic solutions to linear differential equation which has an exponential trichotomy~ and the results also hold for some nonlinear equations with the form ...In this paper, we discuss the existence of pseudo-almost automorphic solutions to linear differential equation which has an exponential trichotomy~ and the results also hold for some nonlinear equations with the form x'(t) = f(t,x(t)) + λg(t,x(t)), where f,g are pseudo-almost automorphic functions. We prove our main result by the application of Leray-Schauder fixed point theorem.展开更多
Let π△ be the automorphic representation of GL(2, QA) associated with Ramanujan modular form A and L(s, π△) the global L-function attached to π△. We study Selberg's integral for the automorphic L-function L...Let π△ be the automorphic representation of GL(2, QA) associated with Ramanujan modular form A and L(s, π△) the global L-function attached to π△. We study Selberg's integral for the automorphic L-function L(s, π△) under GRH. Our results give the information for the number of primes in short intervals attached to Ramanujan automorphic representation.展开更多
In this paper, we consider a semilinear difference equation in a Banach space. Under some suitable conditions on f, we prove the existence and uniqueness of a weighted pseudo almost automorphic sequence solution to th...In this paper, we consider a semilinear difference equation in a Banach space. Under some suitable conditions on f, we prove the existence and uniqueness of a weighted pseudo almost automorphic sequence solution to the equation.展开更多
文摘In this paper,the existence,uniqueness,asymptotic and global exponential stability of pseudo almost automorphic solution for a class of delayed Lasota-Wazewska model with impulsive effects are established by applying an appropriate fixed point theorem and Lyapunov functional method.Finally,a numerical example with simulation is given to illuminate our theoretical results.
文摘For a set S of real numbers, we introduce the concept of S-almost automorphic functions valued in a Banach space. It generalizes in particular the space of Z-almost automorphic functions. Considering the space of S-almost automorphic functions, we give sufficient conditions of the existence and uniqueness of almost automorphic solutions of a differential equation with a piecewise constant argument of generalized type. This is done using the Banach fixed point theorem.
基金supported by the National Natural Science Foundation of China (10901140, 11171090)ZJNSFC (Y6100029, Y6100696, Y6110195)
文摘In this paper we discuss the existence and global attractivity of k-almost automorphic sequence solution of a model of cellular neural networks. We consider the corresponding difference equation analogue of the model system using suitable discretization method and obtain certain conditions for the existence of solution. Almost automorphic function is a good generalization of almost periodic function. This is the first paper considering such solutions of the neural networks.
文摘The Khuri-Jones correction to the partial wave scattering amplitude at threshold is an automorphic function for a dihedron. An expression for the partial wave amplitude is obtained at the pole which the upper half-plane maps on to the interior of semi-infinite strip. The Lehmann ellipse exists below threshold for bound states. As the system goes from below to above threshold, the discrete dihedral (elliptic) group of Type 1 transforms into a Type 3 group, whose loxodromic elements leave the fixed points 0 and ∞ invariant. The transformation of the indifferent fixed points from -1 and +1 to the source-sink fixed points 0 and ∞ is the result of a finite resonance width in the imaginary component of the angular momentum. The change in symmetry of the groups, and consequently their tessellations, can be used to distinguish bound states from resonances.
基金The authors are grateful to the anonymous referees for very helpful comments on the original version of this paper. The work of Xinwei FENG was partially supported by the National Natural Science Foundation of China (Grant No. 11601280). The work of Gaofeng ZONG was supported in part by the National Natural Science Foundation of China (Grant Nos. 11501325, 11231005) and the China Postdoctoral Science Foundation (Grant No. 2018T110706).
文摘Almost automorphic is a particular case of the recurrent motion, which has been studied in differential equations for a long time. We introduce square-mean pseudo almost automorphic and some of its properties, and then study the pseudo almost automorphic solution in the distribution sense to stochastic differential equation driven by Levy process.
基金supported by the National Basic Research Program of China, the National Natural Science Foundation of China (Grant No. 10531060)Ministry of Education of China (Grant No. 305009)+1 种基金The second author was supported by the National Security Agency (Grant No. H98230-06-1-0075)The United States Government is authorized to reproduce and distribute reprints notwithstanding any copyright notation herein
文摘Let E be a Galois extension of ? of degree l, not necessarily solvable. In this paper we first prove that the L-function L(s, π) attached to an automorphic cuspidal representation π of $ GL_m (E_\mathbb{A} ) $ cannot be factored nontrivially into a product of L-functions over E.Next, we compare the n-level correlation of normalized nontrivial zeros of L(s, π1)…L(s, π k ), where π j , j = 1,…, k, are automorphic cuspidal representations of $ GL_{m_j } (\mathbb{Q}_\mathbb{A} ) $ , with that of L(s,π). We prove a necessary condition for L(s, π) having a factorization into a product of L-functions attached to automorphic cuspidal representations of specific $ GL_{m_j } (\mathbb{Q}_\mathbb{A} ) $ , j = 1,…,k. In particular, if π is not invariant under the action of any nontrivial σ ∈ Gal E/?, then L(s, π) must equal a single L-function attached to a cuspidal representation of $ GL_{m\ell } (\mathbb{Q}_\mathbb{A} ) $ and π has an automorphic induction, provided L(s, π) can factored into a product of L-functions over ?. As E is not assumed to be solvable over ?, our results are beyond the scope of the current theory of base change and automorphic induction.Our results are unconditional when m,m 1,…,m k are small, but are under Hypothesis H and a bound toward the Ramanujan conjecture in other cases.
基金supported in part by National Basic Research Program of China (973-Program) (Grant No.)National Natural Science Foundation of China (Grant No.10971119)
文摘Let f be a holomorphic cusp form of weight k for SL2(Z) and λf(n) its n-th Fourier coefficient.In this paper,the exponential sum X【n 2X λf(n)e(αnβ) twisted by Fourier coefficients λf(n) is proved toh ave a main term of size |λf(q)|X3/4 when β = 1/2 and α is close to ±2√q,q ∈ Z,and is smaller otherwise for β 【 3/4.This is a manifestation of the resonance spectrum of automorphic forms for SL2(Z).
基金supported by the 973 Programthe National Natural Science Foundation of China (GrantNo. 10531060)+2 种基金Ministry of Education of China (Grant No. 305009)The second author was supportedby the National Security Agency of USA (Grant No. H98230-06-1-0075)The United States government isauthorized to reproduce and distribute reprints notwithstanding any copyright notation herein.
文摘We compute the n-level correlation of normalized nontrivial zeros of a product of Lfunctions: L(s, π1) … L(s, π k ), where πj, j = 1, …, k, are automorphic cuspidal representations of GL mj (?A). Here the sizes of the groups GL mj (?A) are not necessarily the same. When these L(s, π j ) are distinct, we prove that their nontrivial zeros are uncorrelated, as predicted by random matrix theory and verified numerically. When L(s, π j ) are not necessarily distinct, our results will lead to a proof that the n-level correlation of normalized nontrivial zeros of the product L-function follows the superposition of Gaussian Unitary Ensemble (GUE) models of individual L-functions and products of lower rank GUEs. The results are unconditional when m 1, …, m k ? 4, but are under Hypothesis H in other cases.
基金supported in part by the Natural Science Foundation of USA (Grant Nos.DMS-0653742,DMS-1001672) and by the Chinese Academy of Sciences
文摘In this paper,we survey our work on period,poles or special values of certain automorphic Lfunctions and their relations to certain types of Langlands functorial transfers.We outline proofs for some results and leave others as conjectures.
基金supported by General Research Fund of the Research Grants Council of Hong Kong(Grant Nos.17313616 and 17305617)supported by National Natural Science Foundation of China(Grant No.11871193)+1 种基金the Program for Young Scholar of Henan Province(Grant No.2019GGJS026)supported by National Natural Science Foundation of China(Grant No.11871344)。
文摘Letπbe a self-dual irreducible cuspidal automorphic representation of GL_(2)(A_(Q))with trivial central character.Its Hecke eigenvalue λπ(n)is a real multiplicative function in n.We show that λπ(n)<0 for some n<<Q^(2/5)_(π),where Qπdenotes(a special value of)the analytic conductor.The value 2/5 is the first explicit exponent for Hecke-Maass newforms.
基金Project supported by the National Natural Science Foundation of China (No. 10971119)
文摘Let πr be an irreducible unitary cuspidal representation of GL,^(AQ), m ≥ 2. Assume that π is self-contragredient. The author gets upper and lower bounds of the same order for fractional moments of automorphic L-function L(s, π) on the critical line under Generalized Ramanujan Conjecture; the upper bound being conditionally subject to the truth of Generalized Riemann Hypothesis.
基金supported by National Natural Science Foundation of China(Grant Nos.11271380,11501238)Natural Science Foundation of Guangdong Province(Grant Nos.2014A030313641,2016A030313119,S2013010013212)the Major Project Foundation of Guangdong Province Education Department(No.2014KZDXM070)
文摘We present some conditions for the existence and uniqueness of almost automorphic solutions of third order neutral delay-differential equations with piecewise constant of the form(X(t) +px(t - 1))″′, = a0x([t]) + a1x([t - 1]) + f(t),where [.] is the greatest integer function, p, a0 and al are nonzero constants, and f(t) is almost automorphic.
基金supported by the National Natural Sciences Foundation of People’s Republic of China under Grants Nos.11861072 and 11361072.
文摘This paper considers a class of quaternion-valued Hopfield neural networks with mixed time-varying delays and leakage delays.By utilizing the exponential dichotomy of linear differential equations,Banach’s fixed point theorem and differential inequality techniques,the authors obtain some sufficient conditions to ensure the existence and global exponential stability of almost automorphic solutions for this class of quaternion-valued neural networks.The results are completely new.Finally,the authors give an example to illustrate the feasibility of the results.
基金the National Natural Science Foundation of China(Grant No.11601309).
文摘Let f be a holomorphic Hecke cusp form with even integral weight k≥2 for the full modular group,and letχbe a primitive Dirichlet character modulo q.Let Lf(s,χ)be the automorphic L-function attached to f andχ-We study the mean-square estimate of Lf(s,χ)and establish an asymptotic formula.
基金the Natural Science Foundation of Anhui Province (1708085MA03)the National Natural Science Foundation of China (Grant Nos. 11401010, 11571071).
文摘We introduce a new concept of μ-pseudo almost automorphic processes in p-th mean sense by employing the measure theory, and present some results on the functional space of such processes like completeness and composition theorems. Under some conditions, we establish the existence, uniqueness, and the global exponentially stability of μ-pseudo almost automorphic mild solutions for a class of nonlinear stochastic evolution equations driven by Brownian motion in a separable Hilbert space.
基金Supported by NSFC Grant #10531060by a Ministry of Education Major Grant Program in Sciences and Technology
文摘Let π be an irreducible unitary cuspidal representation of GLm(AQ) with m ≥ 2, and L(s, Tr) the L-function attached to π. Under the Generalized Riemann Hypothesis for L(s,π), we estimate the normal density of primes in short intervals for the automorphic L-function L(s, π). Our result generalizes the corresponding theorem of Selberg for the Riemann zeta-function.
基金supported by the National Natural Science Foundation of China under Grant No.11126070 and 11201309the Natural Science Foundation of SZU(201111)+1 种基金supported the National Natural Science Foundation of China under Grant No.11026168 and 11201046the Fundamental Research Funds for the Central Universities in China(DUT12LK32,DUT13JS02)
文摘In this paper, we discuss the existence of pseudo-almost automorphic solutions to linear differential equation which has an exponential trichotomy~ and the results also hold for some nonlinear equations with the form x'(t) = f(t,x(t)) + λg(t,x(t)), where f,g are pseudo-almost automorphic functions. We prove our main result by the application of Leray-Schauder fixed point theorem.
基金Supported by National Natural Science Foundation of China (Grant No. 10571107)Acknowledgements The author expresses her thanks to Professor Jianya Liu and Professor Yangbo Ye for encouragernent, and to Professor Xiumin Ren for valuable suggestions. This work was completed when the author visited The University of Iowa supported by CSC. The author would like to thank Department of Mathematics, The University of Iowa for hospitality and support.
文摘Let π△ be the automorphic representation of GL(2, QA) associated with Ramanujan modular form A and L(s, π△) the global L-function attached to π△. We study Selberg's integral for the automorphic L-function L(s, π△) under GRH. Our results give the information for the number of primes in short intervals attached to Ramanujan automorphic representation.
基金supported by Tianyuan Youth Foundations for Mathematics of NSFC (Grant No.11026150, 11026098)the Doctor Scientific Research Foundation of Shandong Institute of Business and Technology (Grant No.521-014-306131)
文摘In this paper, we consider a semilinear difference equation in a Banach space. Under some suitable conditions on f, we prove the existence and uniqueness of a weighted pseudo almost automorphic sequence solution to the equation.