期刊文献+
共找到62篇文章
< 1 2 4 >
每页显示 20 50 100
Automatic modulation classification using modulation fingerprint extraction 被引量:3
1
作者 NOROLAHI Jafar AZMI Paeiz AHMADI Farzaneh 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第4期799-810,共12页
An automatic method for classifying frequency shift keying(FSK),minimum shift keying(MSK),phase shift keying(PSK),quadrature amplitude modulation(QAM),and orthogonal frequency division multiplexing(OFDM)is proposed by... An automatic method for classifying frequency shift keying(FSK),minimum shift keying(MSK),phase shift keying(PSK),quadrature amplitude modulation(QAM),and orthogonal frequency division multiplexing(OFDM)is proposed by simultaneously using normality test,spectral analysis,and geometrical characteristics of in-phase-quadrature(I-Q)constellation diagram.Since the extracted features are unique for each modulation,they can be considered as a fingerprint of each modulation.We show that the proposed algorithm outperforms the previously published methods in terms of signal-to-noise ratio(SNR)and success rate.For example,the success rate of the proposed method for 64-QAM modulation at SNR=11 dB is 99%.Another advantage of the proposed method is its wide SNR range;such that the probability of classification for 16-QAM at SNR=3 dB is almost 1.The proposed method also provides a database for geometrical features of I-Q constellation diagram.By comparing and correlating the data of the provided database with the estimated I-Q diagram of the received signal,the processing gain of 4 dB is obtained.Whatever can be mentioned about the preference of the proposed algorithm are low complexity,low SNR,wide range of modulation set,and enhanced recognition at higher-order modulations. 展开更多
关键词 automatic modulation classification in-phase-quadrature(I-Q)constellation diagram spectral analysis feature based modulation classification
在线阅读 下载PDF
Tracking performance of large margin classifier in automatic modulation classification with a software radio environment 被引量:1
2
作者 Hamidreza Hosseinzadeh 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第5期735-741,共7页
Automatic modulation classification is the process of identification of the modulation type of a signal in a general environment. This paper proposes a new method to evaluate the tracking performance of large margin c... Automatic modulation classification is the process of identification of the modulation type of a signal in a general environment. This paper proposes a new method to evaluate the tracking performance of large margin classifier against signal-tonoise ratio (SNR), and classifies all forms of primary user's signals in a cognitive radio environment. For achieving this objective, two structures of a large margin are developed in additive white Gaussian noise (AWGN) channels with priori unknown SNR. A combination of higher order statistics and instantaneous characteristics is selected as effective features. Simulation results show that the classification rates of the proposed structures are well robust against environmental SNR changes. 展开更多
关键词 automatic modulation classification amc tracking performance evaluation passive-aggressive (PA) classifier self- training cognitive radio (CR).
在线阅读 下载PDF
A Convolutional and Transformer Based Deep Neural Network for Automatic Modulation Classification 被引量:2
3
作者 Shanchuan Ying Sai Huang +3 位作者 Shuo Chang Zheng Yang Zhiyong Feng Ningyan Guo 《China Communications》 SCIE CSCD 2023年第5期135-147,共13页
Automatic modulation classification(AMC)aims at identifying the modulation of the received signals,which is a significant approach to identifying the target in military and civil applications.In this paper,a novel dat... Automatic modulation classification(AMC)aims at identifying the modulation of the received signals,which is a significant approach to identifying the target in military and civil applications.In this paper,a novel data-driven framework named convolutional and transformer-based deep neural network(CTDNN)is proposed to improve the classification performance.CTDNN can be divided into four modules,i.e.,convolutional neural network(CNN)backbone,transition module,transformer module,and final classifier.In the CNN backbone,a wide and deep convolution structure is designed,which consists of 1×15 convolution kernels and intensive cross-layer connections instead of traditional 1×3 kernels and sequential connections.In the transition module,a 1×1 convolution layer is utilized to compress the channels of the previous multi-scale CNN features.In the transformer module,three self-attention layers are designed for extracting global features and generating the classification vector.In the classifier,the final decision is made based on the maximum a posterior probability.Extensive simulations are conducted,and the result shows that our proposed CTDNN can achieve superior classification performance than traditional deep models. 展开更多
关键词 automatic modulation classification deep neural network convolutional neural network TRANSFORMER
在线阅读 下载PDF
A High Resolution Convolutional Neural Network with Squeeze and Excitation Module for Automatic Modulation Classification 被引量:1
4
作者 Duan Ruifeng Zhao Yuanlin +3 位作者 Zhang Haiyan Li Xinze Cheng Peng Li Yonghui 《China Communications》 SCIE CSCD 2024年第10期132-147,共16页
Automatic modulation classification(AMC) technology is one of the cutting-edge technologies in cognitive radio communications. AMC based on deep learning has recently attracted much attention due to its superior perfo... Automatic modulation classification(AMC) technology is one of the cutting-edge technologies in cognitive radio communications. AMC based on deep learning has recently attracted much attention due to its superior performances in classification accuracy and robustness. In this paper, we propose a novel, high resolution and multi-scale feature fusion convolutional neural network model with a squeeze-excitation block, referred to as HRSENet,to classify different kinds of modulation signals.The proposed model establishes a parallel computing mechanism of multi-resolution feature maps through the multi-layer convolution operation, which effectively reduces the information loss caused by downsampling convolution. Moreover, through dense skipconnecting at the same resolution and up-sampling or down-sampling connection at different resolutions, the low resolution representation of the deep feature maps and the high resolution representation of the shallow feature maps are simultaneously extracted and fully integrated, which is benificial to mine signal multilevel features. Finally, the feature squeeze and excitation module embedded in the decoder is used to adjust the response weights between channels, further improving classification accuracy of proposed model.The proposed HRSENet significantly outperforms existing methods in terms of classification accuracy on the public dataset “Over the Air” in signal-to-noise(SNR) ranging from-2dB to 20dB. The classification accuracy in the proposed model achieves 85.36% and97.30% at 4dB and 10dB, respectively, with the improvement by 9.71% and 5.82% compared to LWNet.Furthermore, the model also has a moderate computation complexity compared with several state-of-the-art methods. 展开更多
关键词 automatic modulation classification deep learning feature squeeze-and-excitation HIGH-RESOLUTION MULTI-SCALE
在线阅读 下载PDF
Automatic Classification of Superimposed Modulations for 5G MIMO Two-Way Cognitive Relay Networks 被引量:1
5
作者 Haithem Ben Chikha Ahmad Almadhor 《Computers, Materials & Continua》 SCIE EI 2022年第1期1799-1814,共16页
To promote reliable and secure communications in the cognitive radio network,the automatic modulation classification algorithms have been mainly proposed to estimate a single modulation.In this paper,we address the cl... To promote reliable and secure communications in the cognitive radio network,the automatic modulation classification algorithms have been mainly proposed to estimate a single modulation.In this paper,we address the classification of superimposed modulations dedicated to 5G multipleinput multiple-output(MIMO)two-way cognitive relay network in realistic channels modeled with Nakagami-m distribution.Our purpose consists of classifying pairs of users modulations from superimposed signals.To achieve this goal,we apply the higher-order statistics in conjunction with the Multi-BoostAB classifier.We use several efficiency metrics including the true positive(TP)rate,false positive(FP)rate,precision,recall,F-Measure and receiver operating characteristic(ROC)area in order to evaluate the performance of the proposed algorithm in terms of correct superimposed modulations classification.Computer simulations prove that our proposal allows obtaining a good probability of classification for ten superimposed modulations at a low signal-to-noise ratio,including the worst case(i.e.,m=0.5),where the fading distribution follows a one-sided Gaussian distribution.We also carry out a comparative study between our proposal usingMultiBoostAB classifier with the decision tree(J48)classifier.Simulation results show that the performance of MultiBoostAB on the superimposed modulations classifications outperforms the one of J48 classifier.In addition,we study the impact of the symbols number,path loss exponent and relay position on the performance of the proposed automatic classification superimposed modulations in terms of probability of correct classification. 展开更多
关键词 automatic classification MIMO two-way cognitive relay network Nakagami-m channels superimposed modulations 5G
在线阅读 下载PDF
A Few-Shot Learning-Based Automatic Modulation Classification Method for Internet of Things
6
作者 Aer Sileng Qi Chenhao 《China Communications》 SCIE CSCD 2024年第8期18-29,共12页
Due to the limited computational capability and the diversity of the Internet of Things devices working in different environment,we consider fewshot learning-based automatic modulation classification(AMC)to improve it... Due to the limited computational capability and the diversity of the Internet of Things devices working in different environment,we consider fewshot learning-based automatic modulation classification(AMC)to improve its reliability.A data enhancement module(DEM)is designed by a convolutional layer to supplement frequency-domain information as well as providing nonlinear mapping that is beneficial for AMC.Multimodal network is designed to have multiple residual blocks,where each residual block has multiple convolutional kernels of different sizes for diverse feature extraction.Moreover,a deep supervised loss function is designed to supervise all parts of the network including the hidden layers and the DEM.Since different model may output different results,cooperative classifier is designed to avoid the randomness of single model and improve the reliability.Simulation results show that this few-shot learning-based AMC method can significantly improve the AMC accuracy compared to the existing methods. 展开更多
关键词 automatic modulation classification(amc) deep learning(DL) few-shot learning Internet of Things(IoT)
在线阅读 下载PDF
基于AMC和HARQ的大气激光通信跨层系统性能研究 被引量:2
7
作者 王磊 郝士琦 +1 位作者 赵青松 张岱 《激光与红外》 CAS CSCD 北大核心 2017年第11期1405-1410,共6页
针对大气激光通信中由大气湍流引起的系统性能下降问题,研究了基于物理层自适应调制编码(AMC)和数据链路层混合自动请求重传(HARQ)的大气激光通信跨层系统性能。在建立了大气湍流信道瞬时信噪比模型的基础上,建立了大气激光通信AMC-HAR... 针对大气激光通信中由大气湍流引起的系统性能下降问题,研究了基于物理层自适应调制编码(AMC)和数据链路层混合自动请求重传(HARQ)的大气激光通信跨层系统性能。在建立了大气湍流信道瞬时信噪比模型的基础上,建立了大气激光通信AMC-HARQ系统模型,并推导了系统误包率和频带利用率公式,最后在双伽马信道模型下进行了仿真分析。仿真结果表明,大气激光通信AMC-HARQ系统能够在保证一定误包性能的条件下,大大提高系统频带利用率,提高单一应用AMC时的系统误包性能。随着重传次数增加,误包率和频带利用率均提高,但频带利用率增幅随重传次数增加而减小。 展开更多
关键词 大气激光通信 自适应调制编码 混合自动请求重传 频带利用率 误包率
在线阅读 下载PDF
联合AMC,ARQ与包分割的通信系统队列分析与跨层优化 被引量:1
8
作者 左勇 潘科 +1 位作者 刘学勇 陈杰 《系统工程与电子技术》 EI CSCD 北大核心 2011年第11期2522-2530,共9页
针对联合自适应调制编码(adaptive modulation and coding,AMC),自动重传请求(automatic repeatrequest,ARQ)与包分割传输3种机制的通信系统,提出了一种ARQ多帧动态周期反馈机制,并建立了分析此系统的马尔可夫链模型,得到了包平均时延... 针对联合自适应调制编码(adaptive modulation and coding,AMC),自动重传请求(automatic repeatrequest,ARQ)与包分割传输3种机制的通信系统,提出了一种ARQ多帧动态周期反馈机制,并建立了分析此系统的马尔可夫链模型,得到了包平均时延、平均反馈次数、平均掉包率和系统吞吐量等多种性能指标。在此基础上提出了在服务质量(quality of service,QoS)条件约束下,以最大化系统有效吞吐量为目标的双向链路跨层最优化算法。仿真结果表明,提出的马尔可夫链模型能精确预测系统的性能,与现有的单帧反馈和多帧固定周期反馈相比,提出反馈机制可达到更大的系统有效吞吐量。 展开更多
关键词 通信技术 马尔可夫链 自适应调制编码 自动重传请求 包分割
在线阅读 下载PDF
适用于TEDS系统的AMC与HARQ结合算法
9
作者 侯舒娟 王云云 宋灵燕 《北京理工大学学报》 EI CAS CSCD 北大核心 2014年第2期197-200,共4页
研究陆地集群无线电增强数据业务(TEDS)中的自适应调制编码(AMC)与HARQ结合算法.该算法采用基于SNR的切换门限判别法进行调制编码方式的选择,采用大数逻辑译码算法进行重传数据帧的合并.仿真结果验证了所提出的算法可有效地提高TEDS系... 研究陆地集群无线电增强数据业务(TEDS)中的自适应调制编码(AMC)与HARQ结合算法.该算法采用基于SNR的切换门限判别法进行调制编码方式的选择,采用大数逻辑译码算法进行重传数据帧的合并.仿真结果验证了所提出的算法可有效地提高TEDS系统数据传输的可靠性,当最大重传次数为2时,所提出的算法能够使系统的误帧率由36.49%下降到6.93%. 展开更多
关键词 自适应调制编码 混合自动重传请求 陆地集群无线电(TETRA) TETRA增强数据业务(TEDS)
在线阅读 下载PDF
AMC与HARQ相结合的跨层设计在D2D中继通信中的研究
10
作者 赵夙 陈正文 邵世祥 《南京邮电大学学报(自然科学版)》 北大核心 2014年第5期55-60,共6页
在蜂窝网络中引入终端直通(D2D)技术,能有效提升系统频谱效率。文中在研究了物理层自适应调制编码(AMC)策略与数据链路层自动请求重传(ARQ)技术相结合的跨层设计理论基础上,提出了D2D中继通信场景下AMC与HARQ相结合的跨层设计方案。仿... 在蜂窝网络中引入终端直通(D2D)技术,能有效提升系统频谱效率。文中在研究了物理层自适应调制编码(AMC)策略与数据链路层自动请求重传(ARQ)技术相结合的跨层设计理论基础上,提出了D2D中继通信场景下AMC与HARQ相结合的跨层设计方案。仿真结果表明,采用AMC与HARQ相结合的跨层设计策略能显著提升D2D通信的频谱效率,增加D2D中继通信的吞吐量。 展开更多
关键词 终端直通技术 跨层设计 自适应调制编码 自动请求重传
在线阅读 下载PDF
LTE系统下行链路的一种AMC方案 被引量:6
11
作者 蒋佳俊 胡波 《信息与电子工程》 2009年第5期377-381,394,共6页
高速数据和多媒体业务对新一代移动通信系统提出了更高的要求,自适应调制与编码(AMC)因其在提高频谱效率方面的显著特点,成为3GPP长期演进(LTE)系统的一项关键技术。本文基于LTE系统物理层下行链路模型,分析了在LTE系统中AMC与混合自动... 高速数据和多媒体业务对新一代移动通信系统提出了更高的要求,自适应调制与编码(AMC)因其在提高频谱效率方面的显著特点,成为3GPP长期演进(LTE)系统的一项关键技术。本文基于LTE系统物理层下行链路模型,分析了在LTE系统中AMC与混合自动重传(HARQ)技术的主要特点,提出一种针对LTE下行链路的AMC方案,并对该方案在模型下的性能进行了讨论。仿真结果表明,采用AMC技术对提升LTE系统容量作用显著。 展开更多
关键词 长期演进技术(LTE) 自适应调制与编码 混合自动重传
在线阅读 下载PDF
Cross-layer design of combining AMC with HARQ in cooperative relay system with perfect and imperfect CSI
12
作者 唐伦 张荣荣 陈前斌 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2012年第4期118-128,共11页
A cross-layer design which combines adaptive modulation and coding (AMC) at the physical layer with a hybrid automatic repeat request (HARQ) protocol at the data link layer (LL) is presented, in cooperative relay syst... A cross-layer design which combines adaptive modulation and coding (AMC) at the physical layer with a hybrid automatic repeat request (HARQ) protocol at the data link layer (LL) is presented, in cooperative relay system over Nakagami-m fading channels with perfect and imperfect channel state information (CSI). In order to maximize spectral efficiency (SE) under delay and packet error rate (PER) performance constraints, a state transition model and an optimization framework with perfect CSI are presented. Then the framework is extended to cooperative relay system with imperfect CSI. The numerical results show that the scheme can achieve maximum SE while satisfying transmitting delay requirements. Compared with the imperfect CSI, the average PER with perfect CSI is much lower and the spectral efficiency is much higher. 展开更多
关键词 COOPERATIVE relay system cross-layer design and optimization adaptive modulation and coding (amc) hybrid automatic REPEAT request (HARQ) PERFECT channel state information(CSI) imperfect CSI
在线阅读 下载PDF
深度学习使能的自动调制分类技术研究进展
13
作者 郑庆河 李秉霖 +5 位作者 于治国 姜蔚蔚 朱政宇 许驰 黄崇文 桂冠 《电子与信息学报》 北大核心 2025年第11期4096-4111,共16页
随着第六代无线通信系统向太赫兹频段以及空天地海一体化网络发展,通信环境呈现出高度异构化和超密集化的趋势,对自动调制识别技术提出了亚符号周期级别的精度要求。在复杂信道条件下,自动调制识别技术面临着时变多径信道引起的特征混... 随着第六代无线通信系统向太赫兹频段以及空天地海一体化网络发展,通信环境呈现出高度异构化和超密集化的趋势,对自动调制识别技术提出了亚符号周期级别的精度要求。在复杂信道条件下,自动调制识别技术面临着时变多径信道引起的特征混叠、低信噪比环境下传统方法识别性能衰减以及稀疏码多址技术引发的混合调制信号检测复杂性提升等多重挑战。基于上述技术难题,该文从通信系统的信号传输特性出发,探讨自动调制分类方法设计的关键约束,系统回顾了深度学习使能的自动调制分类技术,综述了不同应用场景下自动调制分类方法面临的挑战,对经典深度学习模型进行了性能评估,最后概述了自动调制分类存在的问题及未来关键研究方向。 展开更多
关键词 无线通信 深度学习 自动调制分类 时变多径信道
在线阅读 下载PDF
基于注意力机制与残差结构的联合调制识别
14
作者 郑向阳 王忠勇 +3 位作者 杨晨旭 陈家伟 巩克现 王玮 《计算机应用与软件》 北大核心 2025年第10期163-170,共8页
针对多种信号调制类型识别,提出一种信号调制类型联合结构识别分类器,对接收信号二值化分类并分别输入两种网络进行自动识别。在高信噪比区间,利用深度可分离卷积引入跳跃连接方法叠加残差结构,同时添加多头自注意力机制代替部分卷积,... 针对多种信号调制类型识别,提出一种信号调制类型联合结构识别分类器,对接收信号二值化分类并分别输入两种网络进行自动识别。在高信噪比区间,利用深度可分离卷积引入跳跃连接方法叠加残差结构,同时添加多头自注意力机制代替部分卷积,获得优于以上两种机制的性能;在低信噪比区间,利用Transformer的自注意力机制判断输入序列不同区域的重要性,提取更加有效的特征信息。通过公开数据集的数据实验,验证了联合结构的识别有效性,低信噪比区间的识别准确率得到显著提高,高信噪比区间识别率得到进一步提升的同时,验证得到所提算法具有相对较低的复杂度。 展开更多
关键词 自动调制分类 卷积神经网络 多头自注意力机制 深度可分离卷积 全局深度卷积
在线阅读 下载PDF
Automatic modulation classification based on Alex Net with data augmentation 被引量:2
15
作者 Zhang Chengchang Xu Yu +1 位作者 Yang Jianpeng Li Xiaomeng 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2022年第5期51-61,共11页
Deep learning(DL) requires massive volume of data to train the network. Insufficient training data will cause serious overfitting problem and degrade the classification accuracy. In order to solve this problem, a meth... Deep learning(DL) requires massive volume of data to train the network. Insufficient training data will cause serious overfitting problem and degrade the classification accuracy. In order to solve this problem, a method for automatic modulation classification(AMC) using AlexNet with data augmentation was proposed. Three data augmentation methods is considered, i.e., random erasing, CutMix, and rotation. Firstly, modulated signals are converted into constellation representations. And all constellation representations are divided into training dataset and test dataset. Then, training dataset are augmented by three methods. Secondly, the optimal value of execution probability for random erasing and CutMix are determined. Simulation results show that both of them perform optimally when execution probability is 0.5. Thirdly, the performance of three data augmentation methods are evaluated. Simulation results demonstrate that all augmentation methods can improve the classification accuracy. Rotation improves the classification accuracy by 13.04% when signal noise ratio(SNR) is 2 dB. Among three methods, rotation outperforms random erasing and CutMix when SNR is greater than-6 dB. Finally, compared with other classification algorithms, random erasing, CutMix, and rotation used in this paper achieved the performance significantly improved. It is worth mentioning that the classification accuracy can reach 90.5% with SNR at 10 dB. 展开更多
关键词 automatic modulation classification(amc) data augmentation random erasing CutMix ROTATION deep learning(DL)
原文传递
An effective approach for low-complexity maximum likelihood based automatic modulation classification of STBC-MIMO systems 被引量:4
16
作者 Maqsood H.SHAH Xiao-yu DANG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2020年第3期465-476,共12页
A low-complexity likelihood methodology is proposed for automatic modulation classification of orthogonal space-time block code(STBC)based multiple-input multiple-output(MIMO)systems.We exploit the zero-forcing equali... A low-complexity likelihood methodology is proposed for automatic modulation classification of orthogonal space-time block code(STBC)based multiple-input multiple-output(MIMO)systems.We exploit the zero-forcing equalization technique to modify the typical average likelihood ratio test(ALRT)function.The proposed ALRT function has a low computational complexity compared to existing ALRT functions for MIMO systems classification.The proposed approach is analyzed for blind channel scenarios when the receiver has imperfect channel state information(CSI).Performance analysis is carried out for scenarios with different numbers of antennas.Alamouti-STBC systems with 2×2 and 2×1 and space-time transmit diversity with a 4×4 transmit and receive antenna configuration are considered to verify the proposed approach.Some popular modulation schemes are used as the modulation test pool.Monte-Carlo simulations are performed to evaluate the proposed methodology,using the probability of correct classification as the criterion.Simulation results show that the proposed approach has high classification accuracy at low signal-to-noise ratios and exhibits robust behavior against high CSI estimation error variance. 展开更多
关键词 Multiple-input multiple-output Space-time block code Maximum likelihood automatic modulation classification ZERO-FORCING
原文传递
Frequency-learning adversarial networks based on transfer learning for cross-scenario signal modulation classification
17
作者 Qinyan MA Jing XIAO +3 位作者 Zeqi SHAO Duona ZHANG Yufeng WANG Wenrui DING 《Frontiers of Information Technology & Electronic Engineering》 2025年第5期816-832,共17页
Automatic modulation classification(AMC)serves a challenging yet crucial role in wireless communications.Despite deep learning-based approaches being widely used in signal processing,they are challenged by signal dist... Automatic modulation classification(AMC)serves a challenging yet crucial role in wireless communications.Despite deep learning-based approaches being widely used in signal processing,they are challenged by signal distribution variations,especially in various channel conditions.In this paper,we introduce an adversarial transfer framework named frequency-learning adversarial networks(FLANs)based on transfer learning for cross-scenario signal classification.This method uses the stability in the frequency spectrum by introducing a frequency adaptation(FA)technique to incorporate target channel information into source-domain signals.To address the unpredictable interference in the channel,a fitting channel adaptation(FCA)module is used to reduce the difference between the source and target domains caused by variations in the channel environment.Experimental results illustrate that FLANs outperforms state-of-the-art transfer approaches,demonstrating an improved top-1 classification accuracy by about 5.2 percentage points in high signal-to-noise ratio(SNR)scenes on a cross-scenario real collected dataset CSRC2023. 展开更多
关键词 Frequency spectrum Generative adversarial network Transfer learning automatic modulation classification Wireless communication
原文传递
RFID技术在中小型专业图书馆的应用
18
作者 刘宇卓 《办公自动化》 2025年第5期117-119,共3页
文章旨在探讨RFID技术在中小型专业图书馆文献自动分类中的应用。首先,详细分析当前中小型专业图书馆存在的问题,包括馆藏资源不足、智能设备应用不足和RFID技术构建不足。然后,结合图书馆文献分类的实际需求和现状,提出基于RFID技术的... 文章旨在探讨RFID技术在中小型专业图书馆文献自动分类中的应用。首先,详细分析当前中小型专业图书馆存在的问题,包括馆藏资源不足、智能设备应用不足和RFID技术构建不足。然后,结合图书馆文献分类的实际需求和现状,提出基于RFID技术的中小型专业图书馆管理系统,总结图书馆需求,设计系统体系结构。最后,设计图书馆管理系统模块。结果表明,基于借助RFID技术的图书馆管理系统,可快速实现对图书馆文献的快速、准确分类和定位,大幅度提高图书馆工作效率和文献检索体验。 展开更多
关键词 RFID技术 中小型专业图书馆 文献自动分类 系统总体设计 模块实现
在线阅读 下载PDF
软件通信适配器的调制模式识别算法 被引量:30
19
作者 冯径 熊鑫立 蒋磊 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第3期456-460,共5页
在异构卫星网络动态组网时,为了解决星上软件通信适配器对物理层调制模式识别率低的问题,提出了一种适合低信噪比和贫先验知识的自动调制模式识别算法.该算法以高斯白噪声信道作为信道模型,选取信号高阶累积量和经典统计量作为特征参数... 在异构卫星网络动态组网时,为了解决星上软件通信适配器对物理层调制模式识别率低的问题,提出了一种适合低信噪比和贫先验知识的自动调制模式识别算法.该算法以高斯白噪声信道作为信道模型,选取信号高阶累积量和经典统计量作为特征参数,采用引力搜索算法对径向基神经网络基函数中心进行优化,并在引力搜索算法中引入粒子群的信息熵来调节算法执行过程中探索与开采的关系,进一步提高了算法的分类和泛化能力.然后,利用仿真试验测评了该算法对6种卫星常用调相调制信号的识别效果.仿真试验结果表明,没有先验知识的情况下,该算法在调制信号信噪比大于4 d B时就可以达到100%的识别率,从而证明了该算法在低信噪比和贫先验知识条件下的有效性,说明算法满足星上软件通信适配器对物理层调制模式的识别要求. 展开更多
关键词 异构卫星网络 软件通信适配器 自动调制模式识别 高阶累积量 信息熵
在线阅读 下载PDF
中继系统基于QoS保障的跨层优化设计 被引量:3
20
作者 唐伦 张荣荣 陈前斌 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2013年第2期72-81,共10页
针对中继系统如何满足QoS要求并提高系统吞吐量的问题,提出了在Nakagami-m衰落信道下,联合物理层自适应调制编码(AMC)和链路层协作混合自动请求重传(CHARQ)技术的跨层优化设计方案.该方案利用状态转移图研究了中继系统丢包率性能,采用... 针对中继系统如何满足QoS要求并提高系统吞吐量的问题,提出了在Nakagami-m衰落信道下,联合物理层自适应调制编码(AMC)和链路层协作混合自动请求重传(CHARQ)技术的跨层优化设计方案.该方案利用状态转移图研究了中继系统丢包率性能,采用排队论模型分析了数据包排队时延性能.在满足丢包率、排队时延和传输时延等约束条件下,建立了最大化系统吞吐量的跨层优化模型.仿真结果表明,联合CHARQ与AMC的跨层设计方案,可以在满足QoS要求的情况下,实现最优的吞吐量、最小的丢包率及最短的排队时延和传输时延. 展开更多
关键词 混合自动请求重传 自适应调制编码 状态转移图 MARKOV模型 NAKAGAMI-M信道
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部