Osteoporosis is a major cause of bone fracture and can be characterised by both mass loss and microstructure deterioration of the bone.The modern way of osteoporosis assessment is through the measurement of bone miner...Osteoporosis is a major cause of bone fracture and can be characterised by both mass loss and microstructure deterioration of the bone.The modern way of osteoporosis assessment is through the measurement of bone mineral density,which is not able to unveil the pathological condition from the mesoscale aspect.To obtain mesoscale information from computed tomography(CT),the super-resolution(SR)approach for volumetric imaging data is required.A deep learning model AESR3D is proposed to recover high-resolution(HR)Micro-CT from low-resolution Micro-CT and implement an unsupervised segmentation for better trabecular observation and measurement.A new regularisation overcomplete autoencoder framework for the SR task is proposed and theoretically analysed.The best performance is achieved on structural similarity measure of trabecular CT SR task compared with the state-of-the-art models in both natural and medical image SR tasks.The HR and SR images show a high correlation(r=0.996,intraclass correlation coefficients=0.917)on trabecular bone morphological indicators.The results also prove the effectiveness of our regularisation framework when training a large capacity model.展开更多
Electronic nose and thermal images are effective ways to diagnose the presence of gases in real-time realtime.Multimodal fusion of these modalities can result in the development of highly accurate diagnostic systems.T...Electronic nose and thermal images are effective ways to diagnose the presence of gases in real-time realtime.Multimodal fusion of these modalities can result in the development of highly accurate diagnostic systems.The low-cost thermal imaging software produces low-resolution thermal images in grayscale format,hence necessitating methods for improving the resolution and colorizing the images.The objective of this paper is to develop and train a super-resolution generative adversarial network for improving the resolution of the thermal images,followed by a sparse autoencoder for colorization of thermal images and amultimodal convolutional neural network for gas detection using electronic nose and thermal images.The dataset used comprises 6400 thermal images and electronic nose measurements for four classes.A multimodal Convolutional Neural Network(CNN)comprising an EfficientNetB2 pre-trainedmodel was developed using both early and late feature fusion.The Super Resolution Generative Adversarial Network(SRGAN)model was developed and trained on low and high-resolution thermal images.Asparse autoencoder was trained on the grayscale and colorized thermal images.The SRGAN was trained on lowand high-resolution thermal images,achieving a Structural Similarity Index(SSIM)of 90.28,a Peak Signal-to-Noise Ratio(PSNR)of 68.74,and a Mean Absolute Error(MAE)of 0.066.The autoencoder model produced an MAE of 0.035,a Mean Squared Error(MSE)of 0.006,and a Root Mean Squared Error(RMSE)of 0.0705.The multimodal CNN,trained on these images and electronic nose measurements using both early and late fusion techniques,achieved accuracies of 97.89% and 98.55%,respectively.Hence,the proposed framework can be of great aid for the integration with low-cost software to generate high quality thermal camera images and highly accurate detection of gases in real-time.展开更多
It is crucial to predict future mechanical behaviors for the prevention of structural disasters.Especially for underground construction,the structural mechanical behaviors are affected by multiple internal and externa...It is crucial to predict future mechanical behaviors for the prevention of structural disasters.Especially for underground construction,the structural mechanical behaviors are affected by multiple internal and external factors due to the complex conditions.Given that the existing models fail to take into account all the factors and accurate prediction of the multiple time series simultaneously is difficult using these models,this study proposed an improved prediction model through the autoencoder fused long-and short-term time-series network driven by the mass number of monitoring data.Then,the proposed model was formalized on multiple time series of strain monitoring data.Also,the discussion analysis with a classical baseline and an ablation experiment was conducted to verify the effectiveness of the prediction model.As the results indicate,the proposed model shows obvious superiority in predicting the future mechanical behaviors of structures.As a case study,the presented model was applied to the Nanjing Dinghuaimen tunnel to predict the stain variation on a different time scale in the future.展开更多
As cyber threats become increasingly sophisticated,Distributed Denial-of-Service(DDoS)attacks continue to pose a serious threat to network infrastructure,often disrupting critical services through overwhelming traffic...As cyber threats become increasingly sophisticated,Distributed Denial-of-Service(DDoS)attacks continue to pose a serious threat to network infrastructure,often disrupting critical services through overwhelming traffic.Although unsupervised anomaly detection using convolutional autoencoders(CAEs)has gained attention for its ability to model normal network behavior without requiring labeled data,conventional CAEs struggle to effectively distinguish between normal and attack traffic due to over-generalized reconstructions and naive anomaly scoring.To address these limitations,we propose CA-CAE,a novel anomaly detection framework designed to improve DDoS detection through asymmetric joint reconstruction learning and refined anomaly scoring.Our architecture connects two CAEs sequentially with asymmetric filter allocation,which amplifies reconstruction errors for anomalous data while preserving low errors for normal traffic.Additionally,we introduce a scoring mechanism that incorporates exponential decay weighting to emphasize recent anomalies and relative traffic volume adjustment to highlight highrisk instances,enabling more accurate and timely detection.We evaluate CA-CAE on a real-world network traffic dataset collected using Cisco NetFlow,containing over 190,000 normal instances and only 78 anomalous instances—an extremely imbalanced scenario(0.0004% anomalies).We validate the proposed framework through extensive experiments,including statistical tests and comparisons with baseline models.Despite this challenge,our method achieves significant improvement,increasing the F1-score from 0.515 obtained by the baseline CAE to 0.934,and outperforming other models.These results demonstrate the effectiveness,scalability,and practicality of CA-CAE for unsupervised DDoS detection in realistic network environments.By combining lightweight model architecture with a domain-aware scoring strategy,our framework provides a robust solution for early detection of DDoS attacks without relying on labeled attack data.展开更多
To predict the lithium-ion(Li-ion)battery degradation trajectory in the early phase,arranging the maintenance of battery energy storage systems is of great importance.However,under different operation conditions,Li-io...To predict the lithium-ion(Li-ion)battery degradation trajectory in the early phase,arranging the maintenance of battery energy storage systems is of great importance.However,under different operation conditions,Li-ion batteries present distinct degradation patterns,and it is challenging to capture negligible capacity fade in early cycles.Despite the data-driven method showing promising performance,insufficient data is still a big issue since the ageing experiments on the batteries are too slow and expensive.In this study,we proposed twin autoencoders integrated into a two-stage method to predict the early cycles'degradation trajectories.The two-stage method can properly predict the degradation from course to fine.The twin autoencoders serve as a feature extractor and a synthetic data generator,respectively.Ultimately,a learning procedure based on the long-short term memory(LSTM)network is designed to hybridize the learning process between the real and synthetic data.The performance of the proposed method is verified on three datasets,and the experimental results show that the proposed method can achieve accurate predictions compared to its competitors.展开更多
The emergence of Generative Adversarial Network(GAN)techniques has garnered significant attention from the research community for the development of Intrusion Detection Systems(IDS).However,conventional GAN-based IDS ...The emergence of Generative Adversarial Network(GAN)techniques has garnered significant attention from the research community for the development of Intrusion Detection Systems(IDS).However,conventional GAN-based IDS models face several challenges,including training instability,high computational costs,and system failures.To address these limitations,we propose a Hybrid Wasserstein GAN and Autoencoder Model(WGAN-AE)for intrusion detection.The proposed framework leverages the stability of WGAN and the feature extraction capabilities of the Autoencoder Model.The model was trained and evaluated using two recent benchmark datasets,5GNIDD and IDSIoT2024.When trained on the 5GNIDD dataset,the model achieved an average area under the precisionrecall curve is 99.8%using five-fold cross-validation and demonstrated a high detection accuracy of 97.35%when tested on independent test data.Additionally,the model is well-suited for deployment on resource-limited Internetof-Things(IoT)devices due to its ability to detect attacks within microseconds and its small memory footprint of 60.24 kB.Similarly,when trained on the IDSIoT2024 dataset,the model achieved an average PR-AUC of 94.09%and an attack detection accuracy of 97.35%on independent test data,with a memory requirement of 61.84 kB.Extensive simulation results demonstrate that the proposed hybrid model effectively addresses the shortcomings of traditional GAN-based IDS approaches in terms of detection accuracy,computational efficiency,and applicability to real-world IoT environments.展开更多
The aerial deployment method enables Unmanned Aerial Vehicles(UAVs)to be directly positioned at the required altitude for their mission.This method typically employs folding technology to improve loading efficiency,wi...The aerial deployment method enables Unmanned Aerial Vehicles(UAVs)to be directly positioned at the required altitude for their mission.This method typically employs folding technology to improve loading efficiency,with applications such as the gravity-only aerial deployment of high-aspect-ratio solar-powered UAVs,and aerial takeoff of fixed-wing drones in Mars research.However,the significant morphological changes during deployment are accompanied by strong nonlinear dynamic aerodynamic forces,which result in multiple degrees of freedom and an unstable character.This hinders the description and analysis of unknown dynamic behaviors,further leading to difficulties in the design of deployment strategies and flight control.To address this issue,this paper proposes an analysis method for dynamic behaviors during aerial deployment based on the Variational Autoencoder(VAE).Focusing on the gravity-only deployment problem of highaspect-ratio foldable-wing UAVs,the method encodes the multi-degree-of-freedom unstable motion signals into a low-dimensional feature space through a data-driven approach.By clustering in the feature space,this paper identifies and studies several dynamic behaviors during aerial deployment.The research presented in this paper offers a new method and perspective for feature extraction and analysis of complex and difficult-to-describe extreme flight dynamics,guiding the research on aerial deployment drones design and control strategies.展开更多
Deep Learning has been widely used to model soft sensors in modern industrial processes with nonlinear variables and uncertainty.Due to the outstanding ability for high-level feature extraction,stacked autoencoder(SAE...Deep Learning has been widely used to model soft sensors in modern industrial processes with nonlinear variables and uncertainty.Due to the outstanding ability for high-level feature extraction,stacked autoencoder(SAE)has been widely used to improve the model accuracy of soft sensors.However,with the increase of network layers,SAE may encounter serious information loss issues,which affect the modeling performance of soft sensors.Besides,there are typically very few labeled samples in the data set,which brings challenges to traditional neural networks to solve.In this paper,a multi-scale feature fused stacked autoencoder(MFF-SAE)is suggested for feature representation related to hierarchical output,where stacked autoencoder,mutual information(MI)and multi-scale feature fusion(MFF)strategies are integrated.Based on correlation analysis between output and input variables,critical hidden variables are extracted from the original variables in each autoencoder's input layer,which are correspondingly given varying weights.Besides,an integration strategy based on multi-scale feature fusion is adopted to mitigate the impact of information loss with the deepening of the network layers.Then,the MFF-SAE method is designed and stacked to form deep networks.Two practical industrial processes are utilized to evaluate the performance of MFF-SAE.Results from simulations indicate that in comparison to other cutting-edge techniques,the proposed method may considerably enhance the accuracy of soft sensor modeling,where the suggested method reduces the root mean square error(RMSE)by 71.8%,17.1%and 64.7%,15.1%,respectively.展开更多
Geochemical survey data are essential across Earth Science disciplines but are often affected by noise,which can obscure important geological signals and compromise subsequent prediction and interpretation.Quantifying...Geochemical survey data are essential across Earth Science disciplines but are often affected by noise,which can obscure important geological signals and compromise subsequent prediction and interpretation.Quantifying prediction uncertainty is hence crucial for robust geoscientific decision-making.This study proposes a novel deep learning framework,the Spatially Constrained Variational Autoencoder(SC-VAE),for denoising geochemical survey data with integrated uncertainty quantification.The SC-VAE incorporates spatial regularization,which enforces spatial coherence by modeling inter-sample relationships directly within the latent space.The performance of the SC-VAE was systematically evaluated against a standard Variational Autoencoder(VAE)using geochemical data from the gold polymetallic district in the northwestern part of Sichuan Province,China.Both models were optimized using Bayesian optimization,with objective functions specifically designed to maintain essential geostatistical characteristics.Evaluation metrics include variogram analysis,quantitative measures of spatial interpolation accuracy,visual assessment of denoised maps,and statistical analysis of data distributions,as well as decomposition of uncertainties.Results show that the SC-VAE achieves superior noise suppression and better preservation of spatial structure compared to the standard VAE,as demonstrated by a significant reduction in the variogram nugget effect and an increased partial sill.The SC-VAE produces denoised maps with clearer anomaly delineation and more regularized data distributions,effectively mitigating outliers and reducing kurtosis.Additionally,it delivers improved interpolation accuracy and spatially explicit uncertainty estimates,facilitating more reliable and interpretable assessments of prediction confidence.The SC-VAE framework thus provides a robust,geostatistically informed solution for enhancing the quality and interpretability of geochemical data,with broad applicability in mineral exploration,environmental geochemistry,and other Earth Science domains.展开更多
Virtual Power Plants(VPPs)are integral to modern energy systems,providing stability and reliability in the face of the inherent complexities and fluctuations of solar power data.Traditional anomaly detection methodolo...Virtual Power Plants(VPPs)are integral to modern energy systems,providing stability and reliability in the face of the inherent complexities and fluctuations of solar power data.Traditional anomaly detection methodologies often need to adequately handle these fluctuations from solar radiation and ambient temperature variations.We introduce the Memory-Enhanced Autoencoder with Adversarial Training(MemAAE)model to overcome these limitations,designed explicitly for robust anomaly detection in VPP environments.The MemAAE model integrates three principal components:an LSTM-based autoencoder that effectively captures temporal dynamics to distinguish between normal and anomalous behaviors,an adversarial training module that enhances system resilience across diverse operational scenarios,and a prediction module that aids the autoencoder during the reconstruction process,thereby facilitating precise anomaly identification.Furthermore,MemAAE features a memory mechanism that stores critical pattern information,mitigating overfitting,alongside a dynamic threshold adjustment mechanism that adapts detection thresholds in response to evolving operational conditions.Our empirical evaluation of the MemAAE model using real-world solar power data shows that the model outperforms other comparative models on both datasets.On the Sopan-Finder dataset,MemAAE has an accuracy of 99.17%and an F1-score of 95.79%,while on the Sunalab Faro PV 2017 dataset,it has an accuracy of 97.67%and an F1-score of 93.27%.Significant performance advantages have been achieved on both datasets.These results show that MemAAE model is an effective method for real-time anomaly detection in virtual power plants(VPPs),which can enhance robustness and adaptability to inherent variables in solar power generation.展开更多
A novel gappy technology, gappy autoencoder with proper orthogonal decomposition(Gappy POD-AE), is proposed for reconstructing physical fields from sparse data. High-dimensional data are reduced via proper orthogonal ...A novel gappy technology, gappy autoencoder with proper orthogonal decomposition(Gappy POD-AE), is proposed for reconstructing physical fields from sparse data. High-dimensional data are reduced via proper orthogonal decomposition(POD),and low-dimensional data are used to train an autoencoder(AE). By integrating the POD operator with the decoder, a nonlinear solution form is established and incorporated into a new maximum-a-posteriori(MAP)-based objective for online reconstruction.The numerical results on the two-dimensional(2D) Bhatnagar-Gross-Krook-Boltzmann(BGK-Boltzmann) equation, wave equation, shallow-water equation, and satellite data show that Gappy POD-AE achieves higher accuracy than gappy proper orthogonal decomposition(Gappy POD), especially for the data with slowly decaying singular values,and is more efficient in training than gappy autoencoder(Gappy AE). The MAP-based formulation and new gappy procedure further enhance the reconstruction accuracy.展开更多
Pulse pile-up is a problem in nuclear spectroscopy and nuclear reaction studies that occurs when two pulses overlap and distort each other,degrading the quality of energy and timing information.Different methods have ...Pulse pile-up is a problem in nuclear spectroscopy and nuclear reaction studies that occurs when two pulses overlap and distort each other,degrading the quality of energy and timing information.Different methods have been used for pile-up rejection,both digital and analogue,but some pile-up events may contain pulses of interest and need to be reconstructed.The paper proposes a new method for reconstructing pile-up events acquired with a neutron detector array(NEDA)using an one-dimensional convolutional autoencoder(1D-CAE).The datasets for training and testing the 1D-CAE are created from data acquired from the NEDA.The new pile-up signal reconstruction method is evaluated from the point of view of how similar the reconstructed signals are to the original ones.Furthermore,it is analysed considering the result of the neutron-gamma discrimination based on charge comparison,comparing the result obtained from original and reconstructed signals.展开更多
To enhance the accuracy and efficiency of bridge damage identification,a novel data-driven damage identification method was proposed.First,convolutional autoencoder(CAE)was used to extract key features from the accele...To enhance the accuracy and efficiency of bridge damage identification,a novel data-driven damage identification method was proposed.First,convolutional autoencoder(CAE)was used to extract key features from the acceleration signal of the bridge structure through data reconstruction.The extreme gradient boosting tree(XGBoost)was then used to perform analysis on the feature data to achieve damage detection with high accuracy and high performance.The proposed method was applied in a numerical simulation study on a three-span continuous girder and further validated experimentally on a scaled model of a cable-stayed bridge.The numerical simulation results show that the identification errors remain within 2.9%for six single-damage cases and within 3.1%for four double-damage cases.The experimental validation results demonstrate that when the tension in a single cable of the cable-stayed bridge decreases by 20%,the method accurately identifies damage at different cable locations using only sensors installed on the main girder,achieving identification accuracies above 95.8%in all cases.The proposed method shows high identification accuracy and generalization ability across various damage scenarios.展开更多
基金Beijing Natural Science Foundation-Haidian original Innovation Joint Foundation,Grant/Award Number:L192016Joint Funds of the National Natural Science Foundation of China,Grant/Award Number:U21A20489+3 种基金National Natural Science Foundation of China,Grant/Award Number:62003330Shenzhen Fundamental Research Funds,Grant/Award Numbers:JCYJ20220818101608019,JCYJ20190807170407391,JCYJ20180507182415428Natural Science Foundation of Guangdong Province,Grant/Award Number:2019A1515011699Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems,Shenzhen Institute of Advanced Technology。
文摘Osteoporosis is a major cause of bone fracture and can be characterised by both mass loss and microstructure deterioration of the bone.The modern way of osteoporosis assessment is through the measurement of bone mineral density,which is not able to unveil the pathological condition from the mesoscale aspect.To obtain mesoscale information from computed tomography(CT),the super-resolution(SR)approach for volumetric imaging data is required.A deep learning model AESR3D is proposed to recover high-resolution(HR)Micro-CT from low-resolution Micro-CT and implement an unsupervised segmentation for better trabecular observation and measurement.A new regularisation overcomplete autoencoder framework for the SR task is proposed and theoretically analysed.The best performance is achieved on structural similarity measure of trabecular CT SR task compared with the state-of-the-art models in both natural and medical image SR tasks.The HR and SR images show a high correlation(r=0.996,intraclass correlation coefficients=0.917)on trabecular bone morphological indicators.The results also prove the effectiveness of our regularisation framework when training a large capacity model.
基金funded by the Centre for Advanced Modelling and Geospatial Information Systems(CAMGIS),Faculty of Engineering and IT,University of Technology Sydneysupported by the Researchers Supporting Project,King Saud University,Riyadh,Saudi Arabia,under Project RSP2025 R14.
文摘Electronic nose and thermal images are effective ways to diagnose the presence of gases in real-time realtime.Multimodal fusion of these modalities can result in the development of highly accurate diagnostic systems.The low-cost thermal imaging software produces low-resolution thermal images in grayscale format,hence necessitating methods for improving the resolution and colorizing the images.The objective of this paper is to develop and train a super-resolution generative adversarial network for improving the resolution of the thermal images,followed by a sparse autoencoder for colorization of thermal images and amultimodal convolutional neural network for gas detection using electronic nose and thermal images.The dataset used comprises 6400 thermal images and electronic nose measurements for four classes.A multimodal Convolutional Neural Network(CNN)comprising an EfficientNetB2 pre-trainedmodel was developed using both early and late feature fusion.The Super Resolution Generative Adversarial Network(SRGAN)model was developed and trained on low and high-resolution thermal images.Asparse autoencoder was trained on the grayscale and colorized thermal images.The SRGAN was trained on lowand high-resolution thermal images,achieving a Structural Similarity Index(SSIM)of 90.28,a Peak Signal-to-Noise Ratio(PSNR)of 68.74,and a Mean Absolute Error(MAE)of 0.066.The autoencoder model produced an MAE of 0.035,a Mean Squared Error(MSE)of 0.006,and a Root Mean Squared Error(RMSE)of 0.0705.The multimodal CNN,trained on these images and electronic nose measurements using both early and late fusion techniques,achieved accuracies of 97.89% and 98.55%,respectively.Hence,the proposed framework can be of great aid for the integration with low-cost software to generate high quality thermal camera images and highly accurate detection of gases in real-time.
基金National Key Research and Development Program of China,Grant/Award Number:2018YFB2101003National Natural Science Foundation of China,Grant/Award Numbers:51991395,U1806226,51778033,51822802,71901011,U1811463,51991391Science and Technology Major Project of Beijing,Grant/Award Number:Z191100002519012。
文摘It is crucial to predict future mechanical behaviors for the prevention of structural disasters.Especially for underground construction,the structural mechanical behaviors are affected by multiple internal and external factors due to the complex conditions.Given that the existing models fail to take into account all the factors and accurate prediction of the multiple time series simultaneously is difficult using these models,this study proposed an improved prediction model through the autoencoder fused long-and short-term time-series network driven by the mass number of monitoring data.Then,the proposed model was formalized on multiple time series of strain monitoring data.Also,the discussion analysis with a classical baseline and an ablation experiment was conducted to verify the effectiveness of the prediction model.As the results indicate,the proposed model shows obvious superiority in predicting the future mechanical behaviors of structures.As a case study,the presented model was applied to the Nanjing Dinghuaimen tunnel to predict the stain variation on a different time scale in the future.
基金supported by Korea National University of Transportation Industry-Academy Cooperation Foundation in 2024.
文摘As cyber threats become increasingly sophisticated,Distributed Denial-of-Service(DDoS)attacks continue to pose a serious threat to network infrastructure,often disrupting critical services through overwhelming traffic.Although unsupervised anomaly detection using convolutional autoencoders(CAEs)has gained attention for its ability to model normal network behavior without requiring labeled data,conventional CAEs struggle to effectively distinguish between normal and attack traffic due to over-generalized reconstructions and naive anomaly scoring.To address these limitations,we propose CA-CAE,a novel anomaly detection framework designed to improve DDoS detection through asymmetric joint reconstruction learning and refined anomaly scoring.Our architecture connects two CAEs sequentially with asymmetric filter allocation,which amplifies reconstruction errors for anomalous data while preserving low errors for normal traffic.Additionally,we introduce a scoring mechanism that incorporates exponential decay weighting to emphasize recent anomalies and relative traffic volume adjustment to highlight highrisk instances,enabling more accurate and timely detection.We evaluate CA-CAE on a real-world network traffic dataset collected using Cisco NetFlow,containing over 190,000 normal instances and only 78 anomalous instances—an extremely imbalanced scenario(0.0004% anomalies).We validate the proposed framework through extensive experiments,including statistical tests and comparisons with baseline models.Despite this challenge,our method achieves significant improvement,increasing the F1-score from 0.515 obtained by the baseline CAE to 0.934,and outperforming other models.These results demonstrate the effectiveness,scalability,and practicality of CA-CAE for unsupervised DDoS detection in realistic network environments.By combining lightweight model architecture with a domain-aware scoring strategy,our framework provides a robust solution for early detection of DDoS attacks without relying on labeled attack data.
基金financially supported by the National Natural Science Foundation of China under Grant 62372369,52107229,62272383the Key Research and Development Program of Shaanxi Province(2024GX-YBXM-442)Natural Science Basic Research Program of Shaanxi Province(2024JC-YBMS-477)。
文摘To predict the lithium-ion(Li-ion)battery degradation trajectory in the early phase,arranging the maintenance of battery energy storage systems is of great importance.However,under different operation conditions,Li-ion batteries present distinct degradation patterns,and it is challenging to capture negligible capacity fade in early cycles.Despite the data-driven method showing promising performance,insufficient data is still a big issue since the ageing experiments on the batteries are too slow and expensive.In this study,we proposed twin autoencoders integrated into a two-stage method to predict the early cycles'degradation trajectories.The two-stage method can properly predict the degradation from course to fine.The twin autoencoders serve as a feature extractor and a synthetic data generator,respectively.Ultimately,a learning procedure based on the long-short term memory(LSTM)network is designed to hybridize the learning process between the real and synthetic data.The performance of the proposed method is verified on three datasets,and the experimental results show that the proposed method can achieve accurate predictions compared to its competitors.
基金the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Group Project under grant number(RGP.2/245/46)funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2025R760)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The research team thanks the Deanship of Graduate Studies and Scientific Research at Najran University for supporting the research project through the Nama’a program,with the project code NU/GP/SERC/13/352-1。
文摘The emergence of Generative Adversarial Network(GAN)techniques has garnered significant attention from the research community for the development of Intrusion Detection Systems(IDS).However,conventional GAN-based IDS models face several challenges,including training instability,high computational costs,and system failures.To address these limitations,we propose a Hybrid Wasserstein GAN and Autoencoder Model(WGAN-AE)for intrusion detection.The proposed framework leverages the stability of WGAN and the feature extraction capabilities of the Autoencoder Model.The model was trained and evaluated using two recent benchmark datasets,5GNIDD and IDSIoT2024.When trained on the 5GNIDD dataset,the model achieved an average area under the precisionrecall curve is 99.8%using five-fold cross-validation and demonstrated a high detection accuracy of 97.35%when tested on independent test data.Additionally,the model is well-suited for deployment on resource-limited Internetof-Things(IoT)devices due to its ability to detect attacks within microseconds and its small memory footprint of 60.24 kB.Similarly,when trained on the IDSIoT2024 dataset,the model achieved an average PR-AUC of 94.09%and an attack detection accuracy of 97.35%on independent test data,with a memory requirement of 61.84 kB.Extensive simulation results demonstrate that the proposed hybrid model effectively addresses the shortcomings of traditional GAN-based IDS approaches in terms of detection accuracy,computational efficiency,and applicability to real-world IoT environments.
基金co-supported by the Natural Science Basic Research Program of Shaanxi,China(No.2023-JC-QN-0043)the ND Basic Research Funds,China(No.G2022WD).
文摘The aerial deployment method enables Unmanned Aerial Vehicles(UAVs)to be directly positioned at the required altitude for their mission.This method typically employs folding technology to improve loading efficiency,with applications such as the gravity-only aerial deployment of high-aspect-ratio solar-powered UAVs,and aerial takeoff of fixed-wing drones in Mars research.However,the significant morphological changes during deployment are accompanied by strong nonlinear dynamic aerodynamic forces,which result in multiple degrees of freedom and an unstable character.This hinders the description and analysis of unknown dynamic behaviors,further leading to difficulties in the design of deployment strategies and flight control.To address this issue,this paper proposes an analysis method for dynamic behaviors during aerial deployment based on the Variational Autoencoder(VAE).Focusing on the gravity-only deployment problem of highaspect-ratio foldable-wing UAVs,the method encodes the multi-degree-of-freedom unstable motion signals into a low-dimensional feature space through a data-driven approach.By clustering in the feature space,this paper identifies and studies several dynamic behaviors during aerial deployment.The research presented in this paper offers a new method and perspective for feature extraction and analysis of complex and difficult-to-describe extreme flight dynamics,guiding the research on aerial deployment drones design and control strategies.
基金supported by the National Key Research and Development Program of China(2023YFB3307800)National Natural Science Foundation of China(62394343,62373155)+2 种基金Major Science and Technology Project of Xinjiang(No.2022A01006-4)State Key Laboratory of Industrial Control Technology,China(Grant No.ICT2024A26)Fundamental Research Funds for the Central Universities.
文摘Deep Learning has been widely used to model soft sensors in modern industrial processes with nonlinear variables and uncertainty.Due to the outstanding ability for high-level feature extraction,stacked autoencoder(SAE)has been widely used to improve the model accuracy of soft sensors.However,with the increase of network layers,SAE may encounter serious information loss issues,which affect the modeling performance of soft sensors.Besides,there are typically very few labeled samples in the data set,which brings challenges to traditional neural networks to solve.In this paper,a multi-scale feature fused stacked autoencoder(MFF-SAE)is suggested for feature representation related to hierarchical output,where stacked autoencoder,mutual information(MI)and multi-scale feature fusion(MFF)strategies are integrated.Based on correlation analysis between output and input variables,critical hidden variables are extracted from the original variables in each autoencoder's input layer,which are correspondingly given varying weights.Besides,an integration strategy based on multi-scale feature fusion is adopted to mitigate the impact of information loss with the deepening of the network layers.Then,the MFF-SAE method is designed and stacked to form deep networks.Two practical industrial processes are utilized to evaluate the performance of MFF-SAE.Results from simulations indicate that in comparison to other cutting-edge techniques,the proposed method may considerably enhance the accuracy of soft sensor modeling,where the suggested method reduces the root mean square error(RMSE)by 71.8%,17.1%and 64.7%,15.1%,respectively.
基金supported by the National Natural Science Foundation of China(Nos.42530801,42425208)the Natural Science Foundation of Hubei Province(China)(No.2023AFA001)+1 种基金the MOST Special Fund from State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences(No.MSFGPMR2025-401)the China Scholarship Council(No.202306410181)。
文摘Geochemical survey data are essential across Earth Science disciplines but are often affected by noise,which can obscure important geological signals and compromise subsequent prediction and interpretation.Quantifying prediction uncertainty is hence crucial for robust geoscientific decision-making.This study proposes a novel deep learning framework,the Spatially Constrained Variational Autoencoder(SC-VAE),for denoising geochemical survey data with integrated uncertainty quantification.The SC-VAE incorporates spatial regularization,which enforces spatial coherence by modeling inter-sample relationships directly within the latent space.The performance of the SC-VAE was systematically evaluated against a standard Variational Autoencoder(VAE)using geochemical data from the gold polymetallic district in the northwestern part of Sichuan Province,China.Both models were optimized using Bayesian optimization,with objective functions specifically designed to maintain essential geostatistical characteristics.Evaluation metrics include variogram analysis,quantitative measures of spatial interpolation accuracy,visual assessment of denoised maps,and statistical analysis of data distributions,as well as decomposition of uncertainties.Results show that the SC-VAE achieves superior noise suppression and better preservation of spatial structure compared to the standard VAE,as demonstrated by a significant reduction in the variogram nugget effect and an increased partial sill.The SC-VAE produces denoised maps with clearer anomaly delineation and more regularized data distributions,effectively mitigating outliers and reducing kurtosis.Additionally,it delivers improved interpolation accuracy and spatially explicit uncertainty estimates,facilitating more reliable and interpretable assessments of prediction confidence.The SC-VAE framework thus provides a robust,geostatistically informed solution for enhancing the quality and interpretability of geochemical data,with broad applicability in mineral exploration,environmental geochemistry,and other Earth Science domains.
基金supported by“Regional Innovation Strategy(RIS)”through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(MOE)(2021RIS-002)the Technology Development Program(RS-2023-00266141)funded by the Ministry of SMEs and Startups(MSS,Republic of Korea).
文摘Virtual Power Plants(VPPs)are integral to modern energy systems,providing stability and reliability in the face of the inherent complexities and fluctuations of solar power data.Traditional anomaly detection methodologies often need to adequately handle these fluctuations from solar radiation and ambient temperature variations.We introduce the Memory-Enhanced Autoencoder with Adversarial Training(MemAAE)model to overcome these limitations,designed explicitly for robust anomaly detection in VPP environments.The MemAAE model integrates three principal components:an LSTM-based autoencoder that effectively captures temporal dynamics to distinguish between normal and anomalous behaviors,an adversarial training module that enhances system resilience across diverse operational scenarios,and a prediction module that aids the autoencoder during the reconstruction process,thereby facilitating precise anomaly identification.Furthermore,MemAAE features a memory mechanism that stores critical pattern information,mitigating overfitting,alongside a dynamic threshold adjustment mechanism that adapts detection thresholds in response to evolving operational conditions.Our empirical evaluation of the MemAAE model using real-world solar power data shows that the model outperforms other comparative models on both datasets.On the Sopan-Finder dataset,MemAAE has an accuracy of 99.17%and an F1-score of 95.79%,while on the Sunalab Faro PV 2017 dataset,it has an accuracy of 97.67%and an F1-score of 93.27%.Significant performance advantages have been achieved on both datasets.These results show that MemAAE model is an effective method for real-time anomaly detection in virtual power plants(VPPs),which can enhance robustness and adaptability to inherent variables in solar power generation.
基金supported by the National Natural Science Foundation of China(No.12472197)。
文摘A novel gappy technology, gappy autoencoder with proper orthogonal decomposition(Gappy POD-AE), is proposed for reconstructing physical fields from sparse data. High-dimensional data are reduced via proper orthogonal decomposition(POD),and low-dimensional data are used to train an autoencoder(AE). By integrating the POD operator with the decoder, a nonlinear solution form is established and incorporated into a new maximum-a-posteriori(MAP)-based objective for online reconstruction.The numerical results on the two-dimensional(2D) Bhatnagar-Gross-Krook-Boltzmann(BGK-Boltzmann) equation, wave equation, shallow-water equation, and satellite data show that Gappy POD-AE achieves higher accuracy than gappy proper orthogonal decomposition(Gappy POD), especially for the data with slowly decaying singular values,and is more efficient in training than gappy autoencoder(Gappy AE). The MAP-based formulation and new gappy procedure further enhance the reconstruction accuracy.
基金partially supported by MICIU MCIN/AEI/10.13039/501100011033Spain with grant PID2020-118265GB-C42,-C44,PRTR-C17.I01+1 种基金Generalitat Valenciana,Spain with grant CIPROM/2022/54,ASFAE/2022/031,CIAPOS/2021/114the EU NextGenerationEU,ESF funds,and the National Science Centre (NCN),Poland (grant No.2020/39/D/ST2/00466)
文摘Pulse pile-up is a problem in nuclear spectroscopy and nuclear reaction studies that occurs when two pulses overlap and distort each other,degrading the quality of energy and timing information.Different methods have been used for pile-up rejection,both digital and analogue,but some pile-up events may contain pulses of interest and need to be reconstructed.The paper proposes a new method for reconstructing pile-up events acquired with a neutron detector array(NEDA)using an one-dimensional convolutional autoencoder(1D-CAE).The datasets for training and testing the 1D-CAE are created from data acquired from the NEDA.The new pile-up signal reconstruction method is evaluated from the point of view of how similar the reconstructed signals are to the original ones.Furthermore,it is analysed considering the result of the neutron-gamma discrimination based on charge comparison,comparing the result obtained from original and reconstructed signals.
基金The National Natural Science Foundation of China(No.52361165658,52378318,52078459).
文摘To enhance the accuracy and efficiency of bridge damage identification,a novel data-driven damage identification method was proposed.First,convolutional autoencoder(CAE)was used to extract key features from the acceleration signal of the bridge structure through data reconstruction.The extreme gradient boosting tree(XGBoost)was then used to perform analysis on the feature data to achieve damage detection with high accuracy and high performance.The proposed method was applied in a numerical simulation study on a three-span continuous girder and further validated experimentally on a scaled model of a cable-stayed bridge.The numerical simulation results show that the identification errors remain within 2.9%for six single-damage cases and within 3.1%for four double-damage cases.The experimental validation results demonstrate that when the tension in a single cable of the cable-stayed bridge decreases by 20%,the method accurately identifies damage at different cable locations using only sensors installed on the main girder,achieving identification accuracies above 95.8%in all cases.The proposed method shows high identification accuracy and generalization ability across various damage scenarios.