期刊文献+
共找到2,251篇文章
< 1 2 113 >
每页显示 20 50 100
A Composite Loss-Based Autoencoder for Accurate and Scalable Missing Data Imputation
1
作者 Thierry Mugenzi Cahit Perkgoz 《Computers, Materials & Continua》 2026年第1期1985-2005,共21页
Missing data presents a crucial challenge in data analysis,especially in high-dimensional datasets,where missing data often leads to biased conclusions and degraded model performance.In this study,we present a novel a... Missing data presents a crucial challenge in data analysis,especially in high-dimensional datasets,where missing data often leads to biased conclusions and degraded model performance.In this study,we present a novel autoencoder-based imputation framework that integrates a composite loss function to enhance robustness and precision.The proposed loss combines(i)a guided,masked mean squared error focusing on missing entries;(ii)a noise-aware regularization term to improve resilience against data corruption;and(iii)a variance penalty to encourage expressive yet stable reconstructions.We evaluate the proposed model across four missingness mechanisms,such as Missing Completely at Random,Missing at Random,Missing Not at Random,and Missing Not at Random with quantile censorship,under systematically varied feature counts,sample sizes,and missingness ratios ranging from 5%to 60%.Four publicly available real-world datasets(Stroke Prediction,Pima Indians Diabetes,Cardiovascular Disease,and Framingham Heart Study)were used,and the obtained results show that our proposed model consistently outperforms baseline methods,including traditional and deep learning-based techniques.An ablation study reveals the additive value of each component in the loss function.Additionally,we assessed the downstream utility of imputed data through classification tasks,where datasets imputed by the proposed method yielded the highest receiver operating characteristic area under the curve scores across all scenarios.The model demonstrates strong scalability and robustness,improving performance with larger datasets and higher feature counts.These results underscore the capacity of the proposed method to produce not only numerically accurate but also semantically useful imputations,making it a promising solution for robust data recovery in clinical applications. 展开更多
关键词 Missing data imputation autoencoder deep learning missing mechanisms
在线阅读 下载PDF
Long-range masked autoencoder for pre-extraction of trajectory features in within-visual-range maneuver recognition
2
作者 Feilong Jiang Hutao Cui +2 位作者 Yuqing Li Minqiang Xu Rixin Wang 《Defence Technology(防务技术)》 2026年第1期301-315,共15页
In the field of intelligent air combat,real-time and accurate recognition of within-visual-range(WVR)maneuver actions serves as the foundational cornerstone for constructing autonomous decision-making systems.However,... In the field of intelligent air combat,real-time and accurate recognition of within-visual-range(WVR)maneuver actions serves as the foundational cornerstone for constructing autonomous decision-making systems.However,existing methods face two major challenges:traditional feature engineering suffers from insufficient effective dimensionality in the feature space due to kinematic coupling,making it difficult to distinguish essential differences between maneuvers,while end-to-end deep learning models lack controllability in implicit feature learning and fail to model high-order long-range temporal dependencies.This paper proposes a trajectory feature pre-extraction method based on a Long-range Masked Autoencoder(LMAE),incorporating three key innovations:(1)Random Fragment High-ratio Masking(RFH-Mask),which enforces the model to learn long-range temporal correlations by masking 80%of trajectory data while retaining continuous fragments;(2)Kalman Filter-Guided Objective Function(KFG-OF),integrating trajectory continuity constraints to align the feature space with kinematic principles;and(3)Two-stage Decoupled Architecture,enabling efficient and controllable feature learning through unsupervised pre-training and frozen-feature transfer.Experimental results demonstrate that LMAE significantly improves the average recognition accuracy for 20-class maneuvers compared to traditional end-to-end models,while significantly accelerating convergence speed.The contributions of this work lie in:introducing high-masking-rate autoencoders into low-informationdensity trajectory analysis,proposing a feature engineering framework with enhanced controllability and efficiency,and providing a novel technical pathway for intelligent air combat decision-making systems. 展开更多
关键词 Within-visual-range maneuver recognition Trajectory feature pre-extraction Long-range masked autoencoder Kalman filter constraints Intelligent air combat
在线阅读 下载PDF
基于RGCVAE的测井曲线重构方法
3
作者 韩建 陈着 +2 位作者 王业统 曹志民 邓宇 《工业仪表与自动化装置》 2025年第5期87-91,共5页
在实际测井过程中,测井曲线的质量常常受到仪器故障和环境因素的影响,导致测井数据出现缺失。该文提出了一种基于RGCVAE的测井曲线重构方法,并结合大庆油田古工业区和金工业区的实际测井数据,分别进行了同井间和异井间的缺失数据重构实... 在实际测井过程中,测井曲线的质量常常受到仪器故障和环境因素的影响,导致测井数据出现缺失。该文提出了一种基于RGCVAE的测井曲线重构方法,并结合大庆油田古工业区和金工业区的实际测井数据,分别进行了同井间和异井间的缺失数据重构实验。通过与随机森林、RNN和LSTM网络的实验结果进行对比分析,结果表明,RGCVAE模型在预测精度方面表现较好。在同井实验中,两口井重构后的声波时差曲线原始曲线的相关性分别达到了90.94%和88.60%;在异井实验中,两口井重构后的声波时差曲线与原始曲线的相关性分别为87.85%和85.71%。 展开更多
关键词 循环格兰杰变分编码器 测井曲线 重构方法 声波时差曲线
在线阅读 下载PDF
基于改进CVAE-GAN的电力系统暂态稳定评估样本增强方法
4
作者 马彬喻 杨军 +5 位作者 彭晓涛 李蕊 申锦鹏 江克证 柳丹 曹侃 《电力自动化设备》 北大核心 2025年第9期216-224,共9页
实际电力系统的暂态失稳样本占比少,不平衡数据降低了数据驱动的暂态稳定评估的失稳样本识别率和可靠性。对此,提出了基于改进条件变分生成对抗网络(CVAE-GAN)的电力系统暂态稳定评估样本增强方法。通过改进输入样本组成比例提高模型对... 实际电力系统的暂态失稳样本占比少,不平衡数据降低了数据驱动的暂态稳定评估的失稳样本识别率和可靠性。对此,提出了基于改进条件变分生成对抗网络(CVAE-GAN)的电力系统暂态稳定评估样本增强方法。通过改进输入样本组成比例提高模型对失稳样本分布的学习能力,改进模型网络结构以适应电力系统量测数据特点,采用预训练方式为模型提供良好的初始状态促进训练的收敛。利用训练完成的改进CVAE-GAN模型合成高质量失稳样本,添加到原始样本中实现样本增强。重新训练分类器,实现在线暂态稳定评估。改进的IEEE 39节点系统和改进的南卡罗莱纳州500节点电网测试结果表明,所提方法能够有效学习原始数据分布特性,实现样本增强,从而提升暂态稳定评估精度和失稳样本的识别率。 展开更多
关键词 数据增强 数据不平衡 条件变分生成对抗网络 暂态稳定评估 电力系统
在线阅读 下载PDF
基于CVAE-LSTM的服务器KPI异常检测
5
作者 沈夏闰 李若楠 张昊田 《系统工程与电子技术》 北大核心 2025年第3期1019-1027,共9页
对于关键性能指标(key performance indicator,KPI)的异常检测是互联网智慧运维流程中的基石,对于故障报警和保障服务器安全具有重要意义。深度生成模型已经能很好地解决机器学习模型深度特征表征能力差的问题,但对于KPI数据中时间信息... 对于关键性能指标(key performance indicator,KPI)的异常检测是互联网智慧运维流程中的基石,对于故障报警和保障服务器安全具有重要意义。深度生成模型已经能很好地解决机器学习模型深度特征表征能力差的问题,但对于KPI数据中时间信息的处理和长时信息的捕获存在不足。为此,提出一种基于条件变分自编码器(conditional variational autoencoder,CVAE)和长短时记忆(long-short term memory,LSTM)网络相结合的KPI异常检测模型,利用CVAE网络强大的表征能力,并将时间信息添加到深度自编码器中,利用LSTM的长时记忆能力,提高模型的长时异常学习和处理能力,使用训练好的CVAE网络来进一步训练LSTM。在3个公开的数据集上与其他深度学习模型进行对比实验,实验结果表明,在F 1值方面,所提模型的性能优于单独的LSTM和一些效果较好的深度学习模型。 展开更多
关键词 关键性能指标异常检测 条件变分自编码器 长短时记忆网络 关键性能指标 深度学习
在线阅读 下载PDF
Oversampling for class-imbalanced learning in credit risk assessment based on CVAE-WGAN-gp model
6
作者 Kaiming Wang Qing Yang 《中国科学技术大学学报》 北大核心 2025年第7期37-48,36,I0001,I0002,共15页
Credit risk assessment is a crucial task in bank risk management.By making lending decisions based on credit risk assessment results,banks can reduce the probability of non-performing loans.However,class imbalance in ... Credit risk assessment is a crucial task in bank risk management.By making lending decisions based on credit risk assessment results,banks can reduce the probability of non-performing loans.However,class imbalance in bank credit default datasets limits the predictive performance of traditional machine learning and deep learning models.To address this issue,this study employs the conditional variational autoencoder-Wasserstein generative adversarial network with gradient penalty(CVAE-WGAN-gp)model for oversampling,generating samples similar to the original default customer data to enhance model prediction performance.To evaluate the quality of the data generated by the CVAE-WGAN-gp model,we selected several bank loan datasets for experimentation.The experimental results demonstrate that using the CVAE-WGAN-gp model for oversampling can significantly improve the predictive performance in credit risk assessment problems. 展开更多
关键词 credit risk assessment class imbalance OVERSAMPLING conditional variational autoencoder(cvae) generative adversarial network(GAN)
在线阅读 下载PDF
基于CVAE数据增强的变压器故障诊断 被引量:1
7
作者 韦华新 高雪莲 《河北师范大学学报(自然科学版)》 2025年第4期362-369,共8页
为提升变压器故障诊断的精度,提出了一种基于条件变分自编码器(CVAE)的变压器故障数据增强方法.首先,通过实际样本对CVAE进行有监督的训练,该网络可以充分利用数据的标签信息生成具有多样性的样本,能减少样本扩充导致的过拟合现象.其次... 为提升变压器故障诊断的精度,提出了一种基于条件变分自编码器(CVAE)的变压器故障数据增强方法.首先,通过实际样本对CVAE进行有监督的训练,该网络可以充分利用数据的标签信息生成具有多样性的样本,能减少样本扩充导致的过拟合现象.其次,利用训练好的CVAE生成新的少数类样本,使数据集各类别样本数量达到平衡.最后,将增强后的故障数据作为输入对分类器进行训练,并测试训练好的分类器性能.实验结果表明,CVAE能兼顾数据的整体分布特性和新样本的多样性,增强后的变压器故障数据对不同分类器的性能都有较好的提升效果;并且在保证各类别样本数量平衡的前提下,继续增加新的样本还能使分类器的性能得到更进一步的提升. 展开更多
关键词 数据增强 条件变分自编码器 变压器故障诊断 数据不平衡
在线阅读 下载PDF
融合CVAE与贝叶斯推断的空间灵巧手容错重构方法
8
作者 陈世伟 马尔浚 +2 位作者 赵亚涛 孙晟昕 魏承 《宇航学报》 北大核心 2025年第10期2122-2133,共12页
针对空间灵巧手在轨运行过程中环境恶劣多变引发关节传感故障的问题,传统方法存在依赖精确建模和适应场景单一的局限性。对此,提出一种融合在线条件变分自动编码器(Online-CVAE)与贝叶斯推断的容错重构方法。首先,通过采集地面正常数据... 针对空间灵巧手在轨运行过程中环境恶劣多变引发关节传感故障的问题,传统方法存在依赖精确建模和适应场景单一的局限性。对此,提出一种融合在线条件变分自动编码器(Online-CVAE)与贝叶斯推断的容错重构方法。首先,通过采集地面正常数据预训练CVAE模型,构建关节角度重构与置信度生成机制;然后,设计基于贝叶斯推断的动态阈值更新机制,利用实时重构误差与模型不确定性反馈,自适应优化故障判定边界;最后,基于弹性权重巩固算法构建Online-CVAE在线学习框架,动态优化模型参数以适应灵巧手在轨动力学特性变化。实验结果表明,该方法在存在数据畸变、丢失和通信延迟等情况的复合故障场景下,故障检测的精度均超过91%,F1分数均超过94%,相比传统检测方法具有更高的鲁棒性。Online-CVAE模型通过在线更新机制使关节角度预测误差稳定在0.04 rad以内,较传统CVAE模型预测误差稳定性提升了25.3%。所提方法可为空间灵巧手提供鲁棒容错能力,支撑空间站在轨维护任务可靠性的提升。 展开更多
关键词 空间灵巧手 故障检测 容错控制 条件变分自动编码器 增量学习
在线阅读 下载PDF
基于CVAE-WGAN的音乐情感转换模型
9
作者 胥备 赵丹 《计算机科学》 北大核心 2025年第S2期251-263,共13页
音乐是人表达情感的重要方式。音乐情感转换技术能够将原始音乐转换成具有目标情感的音乐,满足用户对多样化情感音乐的需求,并提升创作效率。现有音乐情感转换技术通过构建深度学习模型来实现端到端的情感转换,但其表征音乐的情感向量... 音乐是人表达情感的重要方式。音乐情感转换技术能够将原始音乐转换成具有目标情感的音乐,满足用户对多样化情感音乐的需求,并提升创作效率。现有音乐情感转换技术通过构建深度学习模型来实现端到端的情感转换,但其表征音乐的情感向量与实际音乐特征之间的对应性不足,导致中间层缺乏可解释性,这在一定程度上限制了音乐情感转换的准确性,并可能引发梯度消失问题。针对上述问题,提出了一种基于CVAE-WGAN(Conditional Variational Autoencoder Wasserstein Generative Adversarial Network)架构的音乐情感转换模型,使用WGAN-GP网络替代传统GAN,引入Wasserstein距离和梯度惩罚机制,有效避免模式崩溃和梯度消失,从而提升训练的稳定性和生成质量。同时,为了解决生成模型中间过程缺乏可解释性的问题,引入涵盖音乐旋律、和声、节奏、动态强弱、音色、表达性和曲式方面的64种具备明确可解释性的中间感知特征作为潜在空间变量融入模型,确保潜在空间的每一个维度都能对应一个具体的音乐特征。此外,该模型还使用高斯混合模型代替变分自编码器中的单高斯模型,用于捕捉和表示不同情感类别下的音乐特征分布。实验结果表明,该模型在快乐、悲伤、温柔、愤怒、恐惧和惊讶6种典型情感间的相互转换任务上表现优异,在情感准确率、重构误差、生成连贯性和生成多样性方面的表现均优于对比模型。 展开更多
关键词 音乐情感转换 cvae-WGAN Swin Transformer 中间感知特征 高斯混合模型
在线阅读 下载PDF
Point-MASNet:Masked Autoencoder-Based Sampling Network for 3D Point Cloud
10
作者 Xu Wang Yi Jin +3 位作者 Hui Yu Yigang Cen Tao Wang Yidong Li 《IEEE/CAA Journal of Automatica Sinica》 2025年第11期2300-2313,共14页
Task-oriented point cloud sampling aims to select a representative subset from the input,tailored to specific application scenarios and task requirements.However,existing approaches rarely tackle the problem of redund... Task-oriented point cloud sampling aims to select a representative subset from the input,tailored to specific application scenarios and task requirements.However,existing approaches rarely tackle the problem of redundancy caused by local structural similarities in 3D objects,which limits the performance of sampling.To address this issue,this paper introduces a novel task-oriented point cloud masked autoencoder-based sampling network(Point-MASNet),inspired by the masked autoencoder mechanism.Point-MASNet employs a voxel-based random non-overlapping masking strategy,which allows the model to selectively learn and capture distinctive local structural features from the input data.This approach effectively mitigates redundancy and enhances the representativeness of the sampled subset.In addition,we propose a lightweight,symmetrically structured keypoint reconstruction network,designed as an autoencoder.This network is optimized to efficiently extract latent features while enabling refined reconstructions.Extensive experiments demonstrate that Point-MASNet achieves competitive sampling performance across classification,registration,and reconstruction tasks. 展开更多
关键词 autoencoder deep learning efficiency-enhanced point cloud task-oriented sampling
在线阅读 下载PDF
AESR3D:3D overcomplete autoencoder for trabecular computed tomography super resolution
11
作者 Shuwei Zhang Yefeng Liang +3 位作者 Xingyu Li Shibo Li Xiaofeng Xiong Lihai Zhang 《CAAI Transactions on Intelligence Technology》 2025年第3期652-665,共14页
Osteoporosis is a major cause of bone fracture and can be characterised by both mass loss and microstructure deterioration of the bone.The modern way of osteoporosis assessment is through the measurement of bone miner... Osteoporosis is a major cause of bone fracture and can be characterised by both mass loss and microstructure deterioration of the bone.The modern way of osteoporosis assessment is through the measurement of bone mineral density,which is not able to unveil the pathological condition from the mesoscale aspect.To obtain mesoscale information from computed tomography(CT),the super-resolution(SR)approach for volumetric imaging data is required.A deep learning model AESR3D is proposed to recover high-resolution(HR)Micro-CT from low-resolution Micro-CT and implement an unsupervised segmentation for better trabecular observation and measurement.A new regularisation overcomplete autoencoder framework for the SR task is proposed and theoretically analysed.The best performance is achieved on structural similarity measure of trabecular CT SR task compared with the state-of-the-art models in both natural and medical image SR tasks.The HR and SR images show a high correlation(r=0.996,intraclass correlation coefficients=0.917)on trabecular bone morphological indicators.The results also prove the effectiveness of our regularisation framework when training a large capacity model. 展开更多
关键词 overcomplete autoencoder SEGMENTATION super resolution trabecular CT
在线阅读 下载PDF
Multimodal Gas Detection Using E-Nose and Thermal Images:An Approach Utilizing SRGAN and Sparse Autoencoder
12
作者 Pratik Jadhav Vuppala Adithya Sairam +5 位作者 Niranjan Bhojane Abhyuday Singh Shilpa Gite Biswajeet Pradhan Mrinal Bachute Abdullah Alamri 《Computers, Materials & Continua》 2025年第5期3493-3517,共25页
Electronic nose and thermal images are effective ways to diagnose the presence of gases in real-time realtime.Multimodal fusion of these modalities can result in the development of highly accurate diagnostic systems.T... Electronic nose and thermal images are effective ways to diagnose the presence of gases in real-time realtime.Multimodal fusion of these modalities can result in the development of highly accurate diagnostic systems.The low-cost thermal imaging software produces low-resolution thermal images in grayscale format,hence necessitating methods for improving the resolution and colorizing the images.The objective of this paper is to develop and train a super-resolution generative adversarial network for improving the resolution of the thermal images,followed by a sparse autoencoder for colorization of thermal images and amultimodal convolutional neural network for gas detection using electronic nose and thermal images.The dataset used comprises 6400 thermal images and electronic nose measurements for four classes.A multimodal Convolutional Neural Network(CNN)comprising an EfficientNetB2 pre-trainedmodel was developed using both early and late feature fusion.The Super Resolution Generative Adversarial Network(SRGAN)model was developed and trained on low and high-resolution thermal images.Asparse autoencoder was trained on the grayscale and colorized thermal images.The SRGAN was trained on lowand high-resolution thermal images,achieving a Structural Similarity Index(SSIM)of 90.28,a Peak Signal-to-Noise Ratio(PSNR)of 68.74,and a Mean Absolute Error(MAE)of 0.066.The autoencoder model produced an MAE of 0.035,a Mean Squared Error(MSE)of 0.006,and a Root Mean Squared Error(RMSE)of 0.0705.The multimodal CNN,trained on these images and electronic nose measurements using both early and late fusion techniques,achieved accuracies of 97.89% and 98.55%,respectively.Hence,the proposed framework can be of great aid for the integration with low-cost software to generate high quality thermal camera images and highly accurate detection of gases in real-time. 展开更多
关键词 Thermal imaging gas detection multimodal learning generative models autoencoders
在线阅读 下载PDF
Drive-by damage detection methodology for high-speed railway bridges using sparse autoencoders
13
作者 Edson Florentino de Souza Cássio Bragança +2 位作者 Diogo Ribeiro Túlio Nogueira Bittencourt Hermes Carvalho 《Railway Engineering Science》 2025年第4期614-641,共28页
High-speed railway bridges are essential components of any railway transportation system that should keep adequate levels of serviceability and safety.In this context,drive-by methodologies have emerged as a feasible ... High-speed railway bridges are essential components of any railway transportation system that should keep adequate levels of serviceability and safety.In this context,drive-by methodologies have emerged as a feasible and cost-effective monitor-ing solution for detecting damage on railway bridges while minimizing train operation interruptions.Moreover,integrating advanced sensor technologies and machine learning algorithms has significantly enhanced structural health monitoring(SHM)for bridges.Despite being increasingly used in traditional SHM applications,studies using autoencoders within drive-by methodologies are rare,especially in the railway field.This study presents a novel approach for drive-by damage detection in HSR bridges.The methodology relies on acceleration records collected from multiple bridge crossings by an operational train equipped with onboard sensors.Log-Mel spectrogram features derived from the acceleration records are used together with sparse autoencoders for computing statistical distribution-based damage indexes.Numerical simulations were performed on a 3D vehicle-track-bridge interaction system model implemented in Matlab to evaluate the robustness and effectiveness of the proposed approach,considering several damage scenarios,vehicle speeds,and environmental and operational variations,such as multiple track irregularities and varying measurement noise.The results show that the pro-posed approach can successfully detect damages,as well as characterize their severity,especially for very early-stage dam-ages.This demonstrates the high potential of applying Mel-frequency damage-sensitive features associated with machine learning algorithms in the drive-by condition assessment of high-speed railway bridges. 展开更多
关键词 Drive-by Indirect monitoring Damage detection High-speed railway bridges autoencoders
在线阅读 下载PDF
ALSTNet:Autoencoder fused long-and short-term time-series network for the prediction of tunnel structure
14
作者 Bowen Du Haohan Liang +3 位作者 Yuhang Wang Junchen Ye Xuyan Tan Weizhong Chen 《Deep Underground Science and Engineering》 2025年第1期72-82,共11页
It is crucial to predict future mechanical behaviors for the prevention of structural disasters.Especially for underground construction,the structural mechanical behaviors are affected by multiple internal and externa... It is crucial to predict future mechanical behaviors for the prevention of structural disasters.Especially for underground construction,the structural mechanical behaviors are affected by multiple internal and external factors due to the complex conditions.Given that the existing models fail to take into account all the factors and accurate prediction of the multiple time series simultaneously is difficult using these models,this study proposed an improved prediction model through the autoencoder fused long-and short-term time-series network driven by the mass number of monitoring data.Then,the proposed model was formalized on multiple time series of strain monitoring data.Also,the discussion analysis with a classical baseline and an ablation experiment was conducted to verify the effectiveness of the prediction model.As the results indicate,the proposed model shows obvious superiority in predicting the future mechanical behaviors of structures.As a case study,the presented model was applied to the Nanjing Dinghuaimen tunnel to predict the stain variation on a different time scale in the future. 展开更多
关键词 autoencoder deep learning structural health monitoring time-series prediction
原文传递
Adapting Convolutional Autoencoder for DDoS Attack Detection via Joint Reconstruction Learning and Refined Anomaly Scoring
15
作者 Seulki Han Sangho Son +1 位作者 Won Sakong Haemin Jung 《Computers, Materials & Continua》 2025年第11期2893-2912,共20页
As cyber threats become increasingly sophisticated,Distributed Denial-of-Service(DDoS)attacks continue to pose a serious threat to network infrastructure,often disrupting critical services through overwhelming traffic... As cyber threats become increasingly sophisticated,Distributed Denial-of-Service(DDoS)attacks continue to pose a serious threat to network infrastructure,often disrupting critical services through overwhelming traffic.Although unsupervised anomaly detection using convolutional autoencoders(CAEs)has gained attention for its ability to model normal network behavior without requiring labeled data,conventional CAEs struggle to effectively distinguish between normal and attack traffic due to over-generalized reconstructions and naive anomaly scoring.To address these limitations,we propose CA-CAE,a novel anomaly detection framework designed to improve DDoS detection through asymmetric joint reconstruction learning and refined anomaly scoring.Our architecture connects two CAEs sequentially with asymmetric filter allocation,which amplifies reconstruction errors for anomalous data while preserving low errors for normal traffic.Additionally,we introduce a scoring mechanism that incorporates exponential decay weighting to emphasize recent anomalies and relative traffic volume adjustment to highlight highrisk instances,enabling more accurate and timely detection.We evaluate CA-CAE on a real-world network traffic dataset collected using Cisco NetFlow,containing over 190,000 normal instances and only 78 anomalous instances—an extremely imbalanced scenario(0.0004% anomalies).We validate the proposed framework through extensive experiments,including statistical tests and comparisons with baseline models.Despite this challenge,our method achieves significant improvement,increasing the F1-score from 0.515 obtained by the baseline CAE to 0.934,and outperforming other models.These results demonstrate the effectiveness,scalability,and practicality of CA-CAE for unsupervised DDoS detection in realistic network environments.By combining lightweight model architecture with a domain-aware scoring strategy,our framework provides a robust solution for early detection of DDoS attacks without relying on labeled attack data. 展开更多
关键词 Anomaly detection DDoS attack detection convolutional autoencoder
在线阅读 下载PDF
A two-stage method with twin autoencoders for the degradation trajectories prediction of lithium-ion batteries
16
作者 Lei Cai Jing Yan +5 位作者 Haiyan Jin Jinhao Meng Jichang Peng Bin Wang Wei Liang Remus Teodorescu 《Journal of Energy Chemistry》 2025年第4期759-772,共14页
To predict the lithium-ion(Li-ion)battery degradation trajectory in the early phase,arranging the maintenance of battery energy storage systems is of great importance.However,under different operation conditions,Li-io... To predict the lithium-ion(Li-ion)battery degradation trajectory in the early phase,arranging the maintenance of battery energy storage systems is of great importance.However,under different operation conditions,Li-ion batteries present distinct degradation patterns,and it is challenging to capture negligible capacity fade in early cycles.Despite the data-driven method showing promising performance,insufficient data is still a big issue since the ageing experiments on the batteries are too slow and expensive.In this study,we proposed twin autoencoders integrated into a two-stage method to predict the early cycles'degradation trajectories.The two-stage method can properly predict the degradation from course to fine.The twin autoencoders serve as a feature extractor and a synthetic data generator,respectively.Ultimately,a learning procedure based on the long-short term memory(LSTM)network is designed to hybridize the learning process between the real and synthetic data.The performance of the proposed method is verified on three datasets,and the experimental results show that the proposed method can achieve accurate predictions compared to its competitors. 展开更多
关键词 Battery degradation trajectory Early prediction autoencoder Synthetic data generation
在线阅读 下载PDF
A Hybrid Wasserstein GAN and Autoencoder Model for Robust Intrusion Detection in IoT
17
作者 Mohammed S.Alshehri Oumaima Saidani +4 位作者 Wajdan Al Malwi Fatima Asiri Shahid Latif Aizaz Ahmad Khattak Jawad Ahmad 《Computer Modeling in Engineering & Sciences》 2025年第6期3899-3920,共22页
The emergence of Generative Adversarial Network(GAN)techniques has garnered significant attention from the research community for the development of Intrusion Detection Systems(IDS).However,conventional GAN-based IDS ... The emergence of Generative Adversarial Network(GAN)techniques has garnered significant attention from the research community for the development of Intrusion Detection Systems(IDS).However,conventional GAN-based IDS models face several challenges,including training instability,high computational costs,and system failures.To address these limitations,we propose a Hybrid Wasserstein GAN and Autoencoder Model(WGAN-AE)for intrusion detection.The proposed framework leverages the stability of WGAN and the feature extraction capabilities of the Autoencoder Model.The model was trained and evaluated using two recent benchmark datasets,5GNIDD and IDSIoT2024.When trained on the 5GNIDD dataset,the model achieved an average area under the precisionrecall curve is 99.8%using five-fold cross-validation and demonstrated a high detection accuracy of 97.35%when tested on independent test data.Additionally,the model is well-suited for deployment on resource-limited Internetof-Things(IoT)devices due to its ability to detect attacks within microseconds and its small memory footprint of 60.24 kB.Similarly,when trained on the IDSIoT2024 dataset,the model achieved an average PR-AUC of 94.09%and an attack detection accuracy of 97.35%on independent test data,with a memory requirement of 61.84 kB.Extensive simulation results demonstrate that the proposed hybrid model effectively addresses the shortcomings of traditional GAN-based IDS approaches in terms of detection accuracy,computational efficiency,and applicability to real-world IoT environments. 展开更多
关键词 autoencoder CYBERSECURITY generative adversarial network Internet of Things intrusion detection system
在线阅读 下载PDF
Dynamic behavior recognition in aerial deployment of multi-segmented foldable-wing drones using variational autoencoders
18
作者 Yilin DOU Zhou ZHOU Rui WANG 《Chinese Journal of Aeronautics》 2025年第6期143-165,共23页
The aerial deployment method enables Unmanned Aerial Vehicles(UAVs)to be directly positioned at the required altitude for their mission.This method typically employs folding technology to improve loading efficiency,wi... The aerial deployment method enables Unmanned Aerial Vehicles(UAVs)to be directly positioned at the required altitude for their mission.This method typically employs folding technology to improve loading efficiency,with applications such as the gravity-only aerial deployment of high-aspect-ratio solar-powered UAVs,and aerial takeoff of fixed-wing drones in Mars research.However,the significant morphological changes during deployment are accompanied by strong nonlinear dynamic aerodynamic forces,which result in multiple degrees of freedom and an unstable character.This hinders the description and analysis of unknown dynamic behaviors,further leading to difficulties in the design of deployment strategies and flight control.To address this issue,this paper proposes an analysis method for dynamic behaviors during aerial deployment based on the Variational Autoencoder(VAE).Focusing on the gravity-only deployment problem of highaspect-ratio foldable-wing UAVs,the method encodes the multi-degree-of-freedom unstable motion signals into a low-dimensional feature space through a data-driven approach.By clustering in the feature space,this paper identifies and studies several dynamic behaviors during aerial deployment.The research presented in this paper offers a new method and perspective for feature extraction and analysis of complex and difficult-to-describe extreme flight dynamics,guiding the research on aerial deployment drones design and control strategies. 展开更多
关键词 Dynamic behavior recognition Aerial deployment technology Variational autoencoder Pattern recognition Multi-rigid-bodydynamics
原文传递
A comprehensive performance evaluation method based on muti-task learning-assisted stacked performance-related autoencoder for hot strip mill process
19
作者 Jian-hong Ma Xin Qin +2 位作者 Kai-xiang Peng Jie Dong Liang Ma 《Journal of Iron and Steel Research International》 2025年第12期4264-4280,共17页
In the context of intelligent manufacturing,the modern hot strip mill process(HSMP)shows characteristics such as diversification of products,multi-specification batch production,and demand-oriented customization.These... In the context of intelligent manufacturing,the modern hot strip mill process(HSMP)shows characteristics such as diversification of products,multi-specification batch production,and demand-oriented customization.These characteristics pose significant challenges to ensuring process stability and consistency of product performance.Therefore,exploring the potential relationship between product performance and the production process,and developing a comprehensive performance evaluation method adapted to modern HSMP have become an urgent issue.A comprehensive performance evaluation method for HSMP by integrating multi-task learning and stacked performance-related autoencoder is proposed to solve the problems such as incomplete performance indicators(PIs)data,insufficient real-time acquisition requirements,and coupling of multiple PIs.First,according to the existing Chinese standards,a comprehensive performance evaluation grade strategy for strip steel is designed.The random forest model is established to predict and complete the parts of PIs data that could not be obtained in real-time.Second,a stacked performance-related autoencoder(SPAE)model is proposed to extract the deep features closely related to the product performance.Then,considering the correlation between PIs,the multi-task learning framework is introduced to output the subitem ratings and comprehensive product performance rating results of the strip steel online in real-time,where each task represents a subitem of comprehensive performance.Finally,the effectiveness of the method is verified on a real HSMP dataset,and the results show that the accuracy of the proposed method is as high as 94.8%,which is superior to the other comparative methods. 展开更多
关键词 Hot strip mill process Multi-task learning Stacked performance-related autoencoder Incomplete data Performance evaluation
原文传递
Multi-scale feature fused stacked autoencoder and its application for soft sensor modeling
20
作者 Zhi Li Yuchong Xia +2 位作者 Jian Long Chensheng Liu Longfei Zhang 《Chinese Journal of Chemical Engineering》 2025年第5期241-254,共14页
Deep Learning has been widely used to model soft sensors in modern industrial processes with nonlinear variables and uncertainty.Due to the outstanding ability for high-level feature extraction,stacked autoencoder(SAE... Deep Learning has been widely used to model soft sensors in modern industrial processes with nonlinear variables and uncertainty.Due to the outstanding ability for high-level feature extraction,stacked autoencoder(SAE)has been widely used to improve the model accuracy of soft sensors.However,with the increase of network layers,SAE may encounter serious information loss issues,which affect the modeling performance of soft sensors.Besides,there are typically very few labeled samples in the data set,which brings challenges to traditional neural networks to solve.In this paper,a multi-scale feature fused stacked autoencoder(MFF-SAE)is suggested for feature representation related to hierarchical output,where stacked autoencoder,mutual information(MI)and multi-scale feature fusion(MFF)strategies are integrated.Based on correlation analysis between output and input variables,critical hidden variables are extracted from the original variables in each autoencoder's input layer,which are correspondingly given varying weights.Besides,an integration strategy based on multi-scale feature fusion is adopted to mitigate the impact of information loss with the deepening of the network layers.Then,the MFF-SAE method is designed and stacked to form deep networks.Two practical industrial processes are utilized to evaluate the performance of MFF-SAE.Results from simulations indicate that in comparison to other cutting-edge techniques,the proposed method may considerably enhance the accuracy of soft sensor modeling,where the suggested method reduces the root mean square error(RMSE)by 71.8%,17.1%and 64.7%,15.1%,respectively. 展开更多
关键词 Multi-scale feature fusion Soft sensors Stacked autoencoders Computational chemistry Chemical processes Parameter estimation
在线阅读 下载PDF
上一页 1 2 113 下一页 到第
使用帮助 返回顶部