This study presents a comprehensive evaluation of tropical cyclone(TC)forecast performance in the western North Pacific from 2013 to 2022,based on operational forecasts issued by the China Meteorological Administratio...This study presents a comprehensive evaluation of tropical cyclone(TC)forecast performance in the western North Pacific from 2013 to 2022,based on operational forecasts issued by the China Meteorological Administration.The analysis reveals systematic improvements in both track and intensity forecasts over the decade,with distinct error characteristics observed across various forecast parameters.Track forecast errors have steadily decreased,particularly for longer lead times,while error magnitudes have increased with longer forecast lead times.Intensity forecasts show similar progressive enhancements,with maximum sustained wind speed errors decreasing by 0.26 m/s per year for 120 h forecasts.The study also identifies several key patterns in forecast performance:typhoon-grade or stronger TCs exhibit smaller track errors than week or weaker systems;intensity forecasts systematically overestimate weaker TCs while underestimating stronger systems;and spatial error distributions show greater track inaccuracies near landmasses and regional intensity biases.These findings highlight both the significant advances in TC forecasting capability achieved through improved modeling and observational systems,and the remaining challenges in predicting TC changes and landfall behavior,providing valuable benchmarks for future forecast system development.展开更多
AIM:To evaluate the efficacy of the total computer vision syndrome questionnaire(CVS-Q)score as a predictive tool for identifying individuals with symptomatic binocular vision anomalies and refractive errors.METHODS:A...AIM:To evaluate the efficacy of the total computer vision syndrome questionnaire(CVS-Q)score as a predictive tool for identifying individuals with symptomatic binocular vision anomalies and refractive errors.METHODS:A total of 141 healthy computer users underwent comprehensive clinical visual function assessments,including evaluations of refractive errors,accommodation(amplitude of accommodation,positive relative accommodation,negative relative accommodation,accommodative accuracy,and accommodative facility),and vergence(phoria,positive and negative fusional vergence,near point of convergence,and vergence facility).Total CVS-Q scores were recorded to explore potential associations between symptom scores and the aforementioned clinical visual function parameters.RESULTS:The cohort included 54 males(38.3%)with a mean age of 23.9±0.58y and 87 age-matched females(61.7%)with a mean age of 23.9±0.53y.The multiple regression model was statistically significant[R²=0.60,F=13.28,degrees of freedom(DF=17122,P<0.001].This indicates that 60%of the variance in total CVS-Q scores(reflecting reported symptoms)could be explained by four clinical measurements:amplitude of accommodation,positive relative accommodation,exophoria at distance and near,and positive fusional vergence at near.CONCLUSION:The total CVS-Q score is a valid and reliable tool for predicting the presence of various nonstrabismic binocular vision anomalies and refractive errors in symptomatic computer users.展开更多
Conventional error cancellation approaches separate molecules into smaller fragments and sum the errors of all fragments to counteract the overall computational error of the parent molecules.However,these approaches m...Conventional error cancellation approaches separate molecules into smaller fragments and sum the errors of all fragments to counteract the overall computational error of the parent molecules.However,these approaches may be ineffective for systems with strong localized chemical effects,as fragmenting specific substructures into simpler chemical bonds can introduce additional errors instead of mitigating them.To address this issue,we propose the Substructure-Preserved Connection-Based Hierarchy(SCBH),a method that automatically identifies and freezes substructures with significant local chemical effects prior to molecular fragmentation.The SCBH is validated by the gas-phase enthalpy of formation calculation of CHNO molecules.Therein,based on the atomization scheme,the reference and test values are derived at the levels of Gaussian-4(G4)and M062X/6-31+G(2df,p),respectively.Compared to commonly used approaches,SCBH reduces the average computational error by half and requires only15%of the computational cost of G4 to achieve comparable accuracy.Since different types of local effect structures have differentiated influences on gas-phase enthalpy of formation,substituents with strong electronic effects should be retained preferentially.SCBH can be readily extended to diverse classes of organic compounds.Its workflow and source code allow flexible customization of molecular moieties,including azide,carboxyl,trinitromethyl,phenyl,and others.This strategy facilitates accurate,rapid,and automated computations and corrections,making it well-suited for high-throughput molecular screening and dataset construction for gas-phase enthalpy of formation.展开更多
Inborn errors of metabolism(IEM)are rare disorders,most are liver-based with liver transplantation(LT)emerging as an effective cure in the pediatric population.LT has been shown to offer a cure or deter disease progre...Inborn errors of metabolism(IEM)are rare disorders,most are liver-based with liver transplantation(LT)emerging as an effective cure in the pediatric population.LT has been shown to offer a cure or deter disease progression and provide symptomatic improvement in patients with IEM.Each metabolic disorder is unique,with the missing enzyme or transporter protein causing substrate deficiency or toxic byproduct production.Knowledge about the distribution of deficient enzymes,the percentage of enzymes replaced by LT,and the extent of extrahepatic involvement helps anticipate and manage complications in the perioperative period.Most patients have multisystem involvement and can be on complex dietary regimens.Metabolic decompensation can be triggered due to the stress response to surgery,fasting and other unanticipated complications perioperatively.Thus,a multidisciplinary team’s input including those from metabolic specialists is essential to develop disease and patient-specific strategies for the perioperative management of these patients during LT.In this review,we outline the classification of IEM,indications for LT along with potential benefits,basic metabolic defects and their implications,details of extrahepatic involvement and perioperative management strategies for LT in children with some of the commonly presenting IEM,to assist anesthesiologists handling this cohort of patients.展开更多
Outbreaks of hand-foot-mouth disease(HFMD) have occurred many times and caused serious health burden in China since 2008. Application of modern information technology to prediction and early response can be helpful ...Outbreaks of hand-foot-mouth disease(HFMD) have occurred many times and caused serious health burden in China since 2008. Application of modern information technology to prediction and early response can be helpful for efficient HFMD prevention and control. A seasonal auto-regressive integrated moving average(ARIMA) model for time series analysis was designed in this study. Eighty-four-month(from January 2009 to December 2015) retrospective data obtained from the Chinese Information System for Disease Prevention and Control were subjected to ARIMA modeling. The coefficient of determination(R^2), normalized Bayesian Information Criterion(BIC) and Q-test P value were used to evaluate the goodness-of-fit of constructed models. Subsequently, the best-fitted ARIMA model was applied to predict the expected incidence of HFMD from January 2016 to December 2016. The best-fitted seasonal ARIMA model was identified as(1,0,1)(0,1,1)12, with the largest coefficient of determination(R^2=0.743) and lowest normalized BIC(BIC=3.645) value. The residuals of the model also showed non-significant autocorrelations(P_(Box-Ljung(Q))=0.299). The predictions by the optimum ARIMA model adequately captured the pattern in the data and exhibited two peaks of activity over the forecast interval, including a major peak during April to June, and again a light peak for September to November. The ARIMA model proposed in this study can forecast HFMD incidence trend effectively, which could provide useful support for future HFMD prevention and control in the study area. Besides, further observations should be added continually into the modeling data set, and parameters of the models should be adjusted accordingly.展开更多
The polynomial matrix using the block coefficient matrix representation auto-regressive moving average(referred to as the PM-ARMA)model is constructed in this paper for actively controlled multi-degree-of-freedom(MDOF...The polynomial matrix using the block coefficient matrix representation auto-regressive moving average(referred to as the PM-ARMA)model is constructed in this paper for actively controlled multi-degree-of-freedom(MDOF)structures with time-delay through equivalently transforming the preliminary state space realization into the new state space realization.The PM-ARMA model is a more general formulation with respect to the polynomial using the coefficient representation auto-regressive moving average(ARMA)model due to its capability to cope with actively controlled structures with any given structural degrees of freedom and any chosen number of sensors and actuators.(The sensors and actuators are required to maintain the identical number.)under any dimensional stationary stochastic excitation.展开更多
Statistical properties of winds near the Taichung Harbour are investigated. The 26 years'incomplete data of wind speeds, measured on an hourly basis, are used as reference. The possibility of imputation using simu...Statistical properties of winds near the Taichung Harbour are investigated. The 26 years'incomplete data of wind speeds, measured on an hourly basis, are used as reference. The possibility of imputation using simulated results of the Auto-Regressive (AR), Moving-Average (MA), and/ or Auto-Regressive and Moving-Average (ARMA) models is studied. Predictions of the 25-year extreme wind speeds based upon the augmented data are compared with the original series. Based upon the results, predictions of the 50- and 100-year extreme wind speeds are then made.展开更多
Signal-to-noise ratio(SNR)estimation for signal which can be modeled by Auto-regressive(AR)process is studied in this paper.First,the conventional frequency domain method is introduced to estimate the SNR for the ...Signal-to-noise ratio(SNR)estimation for signal which can be modeled by Auto-regressive(AR)process is studied in this paper.First,the conventional frequency domain method is introduced to estimate the SNR for the received signal in additive white Gauss noise(AWGN)channel.Then a parametric SNR estimation algorithm is proposed by taking advantage of the AR model information of the received signal.The simulation results show that the proposed parametric method has better performance than the conventional frequency doma in method in case of AWGN channel.展开更多
An absolute gravimeter is a precision instrument for measuring gravitational acceleration, which plays an important role in earthquake monitoring, crustal deformation, national defense construction, etc. The frequency...An absolute gravimeter is a precision instrument for measuring gravitational acceleration, which plays an important role in earthquake monitoring, crustal deformation, national defense construction, etc. The frequency of laser interference fringes of an absolute gravimeter gradually increases with the fall time. Data are sparse in the early stage and dense in the late stage. The fitting accuracy of gravitational acceleration will be affected by least-squares fitting according to the fixed number of zero-crossing groups. In response to this problem, a method based on Fourier series fitting is proposed in this paper to calculate the zero-crossing point. The whole falling process is divided into five frequency bands using the Hilbert transformation. The multiplicative auto-regressive moving average model is then trained according to the number of optimal zero-crossing groups obtained by the honey badger algorithm. Through this model, the number of optimal zero-crossing groups determined in each segment is predicted by the least-squares fitting. The mean value of gravitational acceleration in each segment is then obtained. The method can improve the accuracy of gravitational measurement by more than 25% compared to the fixed zero-crossing groups method. It provides a new way to improve the measuring accuracy of an absolute gravimeter.展开更多
Land surface temperature(LST)is the key variable in land-atmosphere interaction,having an important impact on weather and climate forecasting.However,achieving consistent analysis of LST and the atmosphere in assimila...Land surface temperature(LST)is the key variable in land-atmosphere interaction,having an important impact on weather and climate forecasting.However,achieving consistent analysis of LST and the atmosphere in assimilation is quite challenging.This is because there is limited knowledge about the cross-component background error covariance(BEC)between LST and atmospheric state variables.This study aims to clarify whether there is a relationship between the error of LST and atmospheric variables,and whether this relationship varies spatially and temporally.To this end,the BEC coupled with atmospheric variables and LST was constructed(LST-BEC),and its characteristics were analyzed based on the 2023 mei-yu season.The general characteristics of LST-BEC show that the LST is mainly correlated with the atmospheric temperature and the correlation decreases gradually with a rise in atmospheric height,and the error standard deviation of the LST is noticeably larger than that of the low-level atmospheric temperature.The spatiotemporal characteristics of LST-BEC on the heavy-rain day and light-rain day show that the error correlation and error standard deviation of LST and low-level atmospheric temperature and humidity are closely related to the weather background,and also have obvious diurnal variations.These results provide valuable information for strongly coupled land-atmosphere assimilation.展开更多
Accuracy allocation is crucial in the accuracy design of machining tools.Current accuracy allocation methods primarily focus on positional deviation,with little consideration for tool direction deviation.To address th...Accuracy allocation is crucial in the accuracy design of machining tools.Current accuracy allocation methods primarily focus on positional deviation,with little consideration for tool direction deviation.To address this issue,we propose a geometric error cost sensitivity-based accuracy allocation method for five-axis machine tools.A geometric error model consisting of 4l error components is constructed based on homogeneous transformation matrices.Volumetric points with positional and tool direction deviations are randomly sampled to evaluate the accuracy of the machine tool.The sensitivity of each error component at these sampling points is analyzed using the Sobol method.To balance the needs of geometric precision and manufacturing cost,a geometric error cost sensitivity function is developed to estimate the required cost.By allocating error components affecting tool direction deviation first and the remaining components second,this allocation scheme ensures that both deviations meet the requirements.We also perform numerical simulation of a BC-type(B-axis and C-axis type)five-axis machine tool to validate the method.The results show that the new allocation scheme reduces the total geometric error cost by 27.8%compared to a uniform allocation scheme,and yields the same positional and tool direction machining accuracies.展开更多
A rock-drilling jumbo is the main piece of tunneling equipment used in the energy and infrastructure industries in various countries.The positioning accuracy of its drilling boom greatly affects tunneling efficiency a...A rock-drilling jumbo is the main piece of tunneling equipment used in the energy and infrastructure industries in various countries.The positioning accuracy of its drilling boom greatly affects tunneling efficiency and section-forming quality of mine roadways and engineering tunnels.In order to improve the drilling-positioning accuracy of a three-boom drilling jumbo,we established a kinematics model of the multi-degree-of-freedom(multi-DOF)multi-boom system,using the improved Denavit-Hartenberg(D-H)method,and obtained the mapping relationship between the end position and the amount of motion of each joint.The error of the inverse kinematics calculation for the drilling boom is estimated by an analytical method and a global search algorithm based on particle swarm optimization(PSO)for a straight blasting hole and an inclined blasting hole.On this basis,we propose a back-propagation(BP)neural network optimized by an improved sparrow search algorithm(ISSA)to predict the positioning error of the drilling booms of a three-boom drilling jumbo.In order to verify the accuracy of the proposed error compensation model,we built an automatic-control test platform for the boom,and carried out a positioning error compensation test on the boom.The results show that the average drilling-positioning error was reduced from 9.79 to 5.92 cm,and the error was reduced by 39.5%.Therefore,the proposed method effectively reduces the positioning error of the drilling boom,and improves the accuracy and efficiency of rock drilling.展开更多
The proposed hybrid optimization algorithm integrates particle swarm optimizatio(PSO)with Ant Colony Optimization(ACO)to improve a number of pitfalls within PSO methods traditionally considered and/or applied to indus...The proposed hybrid optimization algorithm integrates particle swarm optimizatio(PSO)with Ant Colony Optimization(ACO)to improve a number of pitfalls within PSO methods traditionally considered and/or applied to industrial robots.Particle Swarm Optimization may frequently suffer from local optima and inaccuracies in identifying the geometric parameters,which are necessary for applications requiring high-accuracy performances.The proposed approach integrates pheromone-based learning of ACO with the D-H method of developing an error model;hence,the global search effectiveness together with the convergence accuracy is further improved.Comparison studies of the hybrid PSO-ACO algorithm show higher precision and effectiveness in the optimization of geometric error parameters compared to the traditional methods.This is a remarkable reduction of localization errors,thus yielding accuracy and reliability in industrial robotic systems,as the results show.This approach improves performance in those applications that demand high geometric calibration by reducing the geometric error.The paper provides an overview of input for developing robotics and automation,giving importance to precision in industrial engineering.The proposed hybrid methodology is a good way to enhance the working accuracy and effectiveness of industrial robots and shall enable their wide application to complex tasks that require a high degree of accuracy.展开更多
In this paper,a wideband true time delay line for X-band is designed to overcome the beam dispersion problem in a high-resolution spaceborne synthetic aperture radar phased array antenna system.The delay line loads th...In this paper,a wideband true time delay line for X-band is designed to overcome the beam dispersion problem in a high-resolution spaceborne synthetic aperture radar phased array antenna system.The delay line loads the electromagnetic bandgap structure on the upper surface of the substrate integrated waveguide.This is equivalent to including an additional inductance-capacitance for energy storage,which realizes the slow-wave effect.A microstrip line-SIW tapered transition structure is introduced to achieve a low loss and a large bandwidth.In the frequency band between 8-12 GHz,the measured results show that the delay multiplier of the delay line reaches 4 times,i.e.,delay line’s delay time is 4 times larger than 50Ωmicrostrip line with same length.Furthermore,the delay fluctuation,i.e.,the difference between the maximum and minimum delay as a percentage of the standard delay is only 2.5%,the insertion loss is less than-2.5 dB,and the return loss is less than-15 dB.Compared with the existing delay lines,the proposed delay line has the advantages of high delay efficiency,low delay error,wide bandwidth and low loss,which has good practical value and application prospects.展开更多
In this paper,we develop a multi-scalar auxiliary variables(MSAV)scheme for the Cahn-Hilliard Magnetohydrodynamics system by introducing two scalar auxiliary variables(SAV).This scheme is linear,fully decoupled and un...In this paper,we develop a multi-scalar auxiliary variables(MSAV)scheme for the Cahn-Hilliard Magnetohydrodynamics system by introducing two scalar auxiliary variables(SAV).This scheme is linear,fully decoupled and unconditionally stable in energy.Subsequently,we provide a detailed implementation procedure for full decoupling.Thus,at each time step,only a series of linear differential equations with constant coefficients need to be solved.To validate the effectiveness of our approach,we conduct an error analysis for this first-order scheme.Finally,some numerical experiments are provided to verify the energy dissipation of the system and the convergence of the proposed approach.展开更多
Capacitive voltage transformers (CVTs) are essential in high-voltage systems. An accurate error assessment is crucial for precise energy metering. However, tracking real-time quantitative changes in capacitive voltage...Capacitive voltage transformers (CVTs) are essential in high-voltage systems. An accurate error assessment is crucial for precise energy metering. However, tracking real-time quantitative changes in capacitive voltage transformer errors, particularly minor variations in multi-channel setups, remains challenging. This paper proposes a method for online error tracking of multi-channel capacitive voltage transformers using a Co-Prediction Matrix. The approach leverages the strong correlation between in-phase channels, particularly the invariance of the signal proportions among them. By establishing a co-prediction matrix based on these proportional relationships, The influence of voltage changes on the primary measurements is mitigated. Analyzing the relationships between the co-prediction matrices over time allows for inferring true measurement errors. Experimental validation with real-world data confirms the effectiveness of the method, demonstrating its capability to continuously track capacitive voltage transformer measurement errors online with precision over extended durations.展开更多
Industrial robots are integral to modern manufacturing systems,enabling high precision,high throughput,and flexibility.However,errors in accuracy and repeatability,which arise from a variety of sources such as mechani...Industrial robots are integral to modern manufacturing systems,enabling high precision,high throughput,and flexibility.However,errors in accuracy and repeatability,which arise from a variety of sources such as mechanical wear,calibration issues,and environmental factors,can significantly impact the performance of industrial robots.This paper aims to explore the theoretical modeling of errors in industrial robot systems and propose compensation strategies to enhance their accuracy and repeatability.Key factors contributing to errors,such as kinematic,dynamic,and environmental influences,are discussed in detail.Additionally,the paper explores various compensation techniques,including geometric error compensation,dynamic compensation,and adaptive control approaches.Through the integration of error modeling and compensation methods,industrial robots can achieve improved performance,ensuring higher operational efficiency and product quality.The paper concludes by highlighting the challenges and future research directions for improving the accuracy and repeatability of industrial robots in practical applications.展开更多
基金supported by the National Key R&D Program of China [grant number 2023YFC3008004]。
文摘This study presents a comprehensive evaluation of tropical cyclone(TC)forecast performance in the western North Pacific from 2013 to 2022,based on operational forecasts issued by the China Meteorological Administration.The analysis reveals systematic improvements in both track and intensity forecasts over the decade,with distinct error characteristics observed across various forecast parameters.Track forecast errors have steadily decreased,particularly for longer lead times,while error magnitudes have increased with longer forecast lead times.Intensity forecasts show similar progressive enhancements,with maximum sustained wind speed errors decreasing by 0.26 m/s per year for 120 h forecasts.The study also identifies several key patterns in forecast performance:typhoon-grade or stronger TCs exhibit smaller track errors than week or weaker systems;intensity forecasts systematically overestimate weaker TCs while underestimating stronger systems;and spatial error distributions show greater track inaccuracies near landmasses and regional intensity biases.These findings highlight both the significant advances in TC forecasting capability achieved through improved modeling and observational systems,and the remaining challenges in predicting TC changes and landfall behavior,providing valuable benchmarks for future forecast system development.
基金Supported by Ongoing Research Funding Program(ORFFT-2025-054-1),King Saud University,Riyadh,Saudi Arabia.
文摘AIM:To evaluate the efficacy of the total computer vision syndrome questionnaire(CVS-Q)score as a predictive tool for identifying individuals with symptomatic binocular vision anomalies and refractive errors.METHODS:A total of 141 healthy computer users underwent comprehensive clinical visual function assessments,including evaluations of refractive errors,accommodation(amplitude of accommodation,positive relative accommodation,negative relative accommodation,accommodative accuracy,and accommodative facility),and vergence(phoria,positive and negative fusional vergence,near point of convergence,and vergence facility).Total CVS-Q scores were recorded to explore potential associations between symptom scores and the aforementioned clinical visual function parameters.RESULTS:The cohort included 54 males(38.3%)with a mean age of 23.9±0.58y and 87 age-matched females(61.7%)with a mean age of 23.9±0.53y.The multiple regression model was statistically significant[R²=0.60,F=13.28,degrees of freedom(DF=17122,P<0.001].This indicates that 60%of the variance in total CVS-Q scores(reflecting reported symptoms)could be explained by four clinical measurements:amplitude of accommodation,positive relative accommodation,exophoria at distance and near,and positive fusional vergence at near.CONCLUSION:The total CVS-Q score is a valid and reliable tool for predicting the presence of various nonstrabismic binocular vision anomalies and refractive errors in symptomatic computer users.
基金the support of the National Natural Science Foundation of China(22575230)。
文摘Conventional error cancellation approaches separate molecules into smaller fragments and sum the errors of all fragments to counteract the overall computational error of the parent molecules.However,these approaches may be ineffective for systems with strong localized chemical effects,as fragmenting specific substructures into simpler chemical bonds can introduce additional errors instead of mitigating them.To address this issue,we propose the Substructure-Preserved Connection-Based Hierarchy(SCBH),a method that automatically identifies and freezes substructures with significant local chemical effects prior to molecular fragmentation.The SCBH is validated by the gas-phase enthalpy of formation calculation of CHNO molecules.Therein,based on the atomization scheme,the reference and test values are derived at the levels of Gaussian-4(G4)and M062X/6-31+G(2df,p),respectively.Compared to commonly used approaches,SCBH reduces the average computational error by half and requires only15%of the computational cost of G4 to achieve comparable accuracy.Since different types of local effect structures have differentiated influences on gas-phase enthalpy of formation,substituents with strong electronic effects should be retained preferentially.SCBH can be readily extended to diverse classes of organic compounds.Its workflow and source code allow flexible customization of molecular moieties,including azide,carboxyl,trinitromethyl,phenyl,and others.This strategy facilitates accurate,rapid,and automated computations and corrections,making it well-suited for high-throughput molecular screening and dataset construction for gas-phase enthalpy of formation.
文摘Inborn errors of metabolism(IEM)are rare disorders,most are liver-based with liver transplantation(LT)emerging as an effective cure in the pediatric population.LT has been shown to offer a cure or deter disease progression and provide symptomatic improvement in patients with IEM.Each metabolic disorder is unique,with the missing enzyme or transporter protein causing substrate deficiency or toxic byproduct production.Knowledge about the distribution of deficient enzymes,the percentage of enzymes replaced by LT,and the extent of extrahepatic involvement helps anticipate and manage complications in the perioperative period.Most patients have multisystem involvement and can be on complex dietary regimens.Metabolic decompensation can be triggered due to the stress response to surgery,fasting and other unanticipated complications perioperatively.Thus,a multidisciplinary team’s input including those from metabolic specialists is essential to develop disease and patient-specific strategies for the perioperative management of these patients during LT.In this review,we outline the classification of IEM,indications for LT along with potential benefits,basic metabolic defects and their implications,details of extrahepatic involvement and perioperative management strategies for LT in children with some of the commonly presenting IEM,to assist anesthesiologists handling this cohort of patients.
基金financially supported by the Health and Family Planning Commission of Hubei Province(No.WJ2017F047)the Health and Family Planning Commission of Wuhan(No.WG17D05)
文摘Outbreaks of hand-foot-mouth disease(HFMD) have occurred many times and caused serious health burden in China since 2008. Application of modern information technology to prediction and early response can be helpful for efficient HFMD prevention and control. A seasonal auto-regressive integrated moving average(ARIMA) model for time series analysis was designed in this study. Eighty-four-month(from January 2009 to December 2015) retrospective data obtained from the Chinese Information System for Disease Prevention and Control were subjected to ARIMA modeling. The coefficient of determination(R^2), normalized Bayesian Information Criterion(BIC) and Q-test P value were used to evaluate the goodness-of-fit of constructed models. Subsequently, the best-fitted ARIMA model was applied to predict the expected incidence of HFMD from January 2016 to December 2016. The best-fitted seasonal ARIMA model was identified as(1,0,1)(0,1,1)12, with the largest coefficient of determination(R^2=0.743) and lowest normalized BIC(BIC=3.645) value. The residuals of the model also showed non-significant autocorrelations(P_(Box-Ljung(Q))=0.299). The predictions by the optimum ARIMA model adequately captured the pattern in the data and exhibited two peaks of activity over the forecast interval, including a major peak during April to June, and again a light peak for September to November. The ARIMA model proposed in this study can forecast HFMD incidence trend effectively, which could provide useful support for future HFMD prevention and control in the study area. Besides, further observations should be added continually into the modeling data set, and parameters of the models should be adjusted accordingly.
基金The project supported by the National Natural Science Foundation of China(50278054)
文摘The polynomial matrix using the block coefficient matrix representation auto-regressive moving average(referred to as the PM-ARMA)model is constructed in this paper for actively controlled multi-degree-of-freedom(MDOF)structures with time-delay through equivalently transforming the preliminary state space realization into the new state space realization.The PM-ARMA model is a more general formulation with respect to the polynomial using the coefficient representation auto-regressive moving average(ARMA)model due to its capability to cope with actively controlled structures with any given structural degrees of freedom and any chosen number of sensors and actuators.(The sensors and actuators are required to maintain the identical number.)under any dimensional stationary stochastic excitation.
基金The project is partly supported by the National Science Council, Contract Nos. NSC-89-261 l-E-019-024 (JZY), and NSC-89-2611-E-019-027 (CRC).
文摘Statistical properties of winds near the Taichung Harbour are investigated. The 26 years'incomplete data of wind speeds, measured on an hourly basis, are used as reference. The possibility of imputation using simulated results of the Auto-Regressive (AR), Moving-Average (MA), and/ or Auto-Regressive and Moving-Average (ARMA) models is studied. Predictions of the 25-year extreme wind speeds based upon the augmented data are compared with the original series. Based upon the results, predictions of the 50- and 100-year extreme wind speeds are then made.
基金supported by the National Natural Science Foundation of China under Grant No. 60372022Program for New Century Excellent Talentsin University under Grant No. NCET-05-0806
文摘Signal-to-noise ratio(SNR)estimation for signal which can be modeled by Auto-regressive(AR)process is studied in this paper.First,the conventional frequency domain method is introduced to estimate the SNR for the received signal in additive white Gauss noise(AWGN)channel.Then a parametric SNR estimation algorithm is proposed by taking advantage of the AR model information of the received signal.The simulation results show that the proposed parametric method has better performance than the conventional frequency doma in method in case of AWGN channel.
基金Project supported by the National Key R&D Program of China (Grant No. 2022YFF0607504)。
文摘An absolute gravimeter is a precision instrument for measuring gravitational acceleration, which plays an important role in earthquake monitoring, crustal deformation, national defense construction, etc. The frequency of laser interference fringes of an absolute gravimeter gradually increases with the fall time. Data are sparse in the early stage and dense in the late stage. The fitting accuracy of gravitational acceleration will be affected by least-squares fitting according to the fixed number of zero-crossing groups. In response to this problem, a method based on Fourier series fitting is proposed in this paper to calculate the zero-crossing point. The whole falling process is divided into five frequency bands using the Hilbert transformation. The multiplicative auto-regressive moving average model is then trained according to the number of optimal zero-crossing groups obtained by the honey badger algorithm. Through this model, the number of optimal zero-crossing groups determined in each segment is predicted by the least-squares fitting. The mean value of gravitational acceleration in each segment is then obtained. The method can improve the accuracy of gravitational measurement by more than 25% compared to the fixed zero-crossing groups method. It provides a new way to improve the measuring accuracy of an absolute gravimeter.
基金sponsored by the National Natural Science Foundation of China[grant number U2442218]。
文摘Land surface temperature(LST)is the key variable in land-atmosphere interaction,having an important impact on weather and climate forecasting.However,achieving consistent analysis of LST and the atmosphere in assimilation is quite challenging.This is because there is limited knowledge about the cross-component background error covariance(BEC)between LST and atmospheric state variables.This study aims to clarify whether there is a relationship between the error of LST and atmospheric variables,and whether this relationship varies spatially and temporally.To this end,the BEC coupled with atmospheric variables and LST was constructed(LST-BEC),and its characteristics were analyzed based on the 2023 mei-yu season.The general characteristics of LST-BEC show that the LST is mainly correlated with the atmospheric temperature and the correlation decreases gradually with a rise in atmospheric height,and the error standard deviation of the LST is noticeably larger than that of the low-level atmospheric temperature.The spatiotemporal characteristics of LST-BEC on the heavy-rain day and light-rain day show that the error correlation and error standard deviation of LST and low-level atmospheric temperature and humidity are closely related to the weather background,and also have obvious diurnal variations.These results provide valuable information for strongly coupled land-atmosphere assimilation.
基金supported by the Key R&D Program of Zhejiang Province(Nos.2023C01166 and 2024SJCZX0046)the Zhejiang Provincial Natural Science Foundation of China(Nos.LDT23E05013E05 and LD24E050009)the Natural Science Foundation of Ningbo(No.2021J150),China.
文摘Accuracy allocation is crucial in the accuracy design of machining tools.Current accuracy allocation methods primarily focus on positional deviation,with little consideration for tool direction deviation.To address this issue,we propose a geometric error cost sensitivity-based accuracy allocation method for five-axis machine tools.A geometric error model consisting of 4l error components is constructed based on homogeneous transformation matrices.Volumetric points with positional and tool direction deviations are randomly sampled to evaluate the accuracy of the machine tool.The sensitivity of each error component at these sampling points is analyzed using the Sobol method.To balance the needs of geometric precision and manufacturing cost,a geometric error cost sensitivity function is developed to estimate the required cost.By allocating error components affecting tool direction deviation first and the remaining components second,this allocation scheme ensures that both deviations meet the requirements.We also perform numerical simulation of a BC-type(B-axis and C-axis type)five-axis machine tool to validate the method.The results show that the new allocation scheme reduces the total geometric error cost by 27.8%compared to a uniform allocation scheme,and yields the same positional and tool direction machining accuracies.
基金National Natural Science Foundation of China(No.12472038)Natural Science Foundation of Jiangsu Province(No.BK20230688)+2 种基金Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.22KJB440004)Key Research and Development Program of Xuzhou(No.KC22404)Research Fund for Doctoral Degree Teachers of Jiangsu Normal University of China(No.22XFRS011).
文摘A rock-drilling jumbo is the main piece of tunneling equipment used in the energy and infrastructure industries in various countries.The positioning accuracy of its drilling boom greatly affects tunneling efficiency and section-forming quality of mine roadways and engineering tunnels.In order to improve the drilling-positioning accuracy of a three-boom drilling jumbo,we established a kinematics model of the multi-degree-of-freedom(multi-DOF)multi-boom system,using the improved Denavit-Hartenberg(D-H)method,and obtained the mapping relationship between the end position and the amount of motion of each joint.The error of the inverse kinematics calculation for the drilling boom is estimated by an analytical method and a global search algorithm based on particle swarm optimization(PSO)for a straight blasting hole and an inclined blasting hole.On this basis,we propose a back-propagation(BP)neural network optimized by an improved sparrow search algorithm(ISSA)to predict the positioning error of the drilling booms of a three-boom drilling jumbo.In order to verify the accuracy of the proposed error compensation model,we built an automatic-control test platform for the boom,and carried out a positioning error compensation test on the boom.The results show that the average drilling-positioning error was reduced from 9.79 to 5.92 cm,and the error was reduced by 39.5%.Therefore,the proposed method effectively reduces the positioning error of the drilling boom,and improves the accuracy and efficiency of rock drilling.
文摘The proposed hybrid optimization algorithm integrates particle swarm optimizatio(PSO)with Ant Colony Optimization(ACO)to improve a number of pitfalls within PSO methods traditionally considered and/or applied to industrial robots.Particle Swarm Optimization may frequently suffer from local optima and inaccuracies in identifying the geometric parameters,which are necessary for applications requiring high-accuracy performances.The proposed approach integrates pheromone-based learning of ACO with the D-H method of developing an error model;hence,the global search effectiveness together with the convergence accuracy is further improved.Comparison studies of the hybrid PSO-ACO algorithm show higher precision and effectiveness in the optimization of geometric error parameters compared to the traditional methods.This is a remarkable reduction of localization errors,thus yielding accuracy and reliability in industrial robotic systems,as the results show.This approach improves performance in those applications that demand high geometric calibration by reducing the geometric error.The paper provides an overview of input for developing robotics and automation,giving importance to precision in industrial engineering.The proposed hybrid methodology is a good way to enhance the working accuracy and effectiveness of industrial robots and shall enable their wide application to complex tasks that require a high degree of accuracy.
基金Supported by the National Natural Science Foundation of China(61971401)。
文摘In this paper,a wideband true time delay line for X-band is designed to overcome the beam dispersion problem in a high-resolution spaceborne synthetic aperture radar phased array antenna system.The delay line loads the electromagnetic bandgap structure on the upper surface of the substrate integrated waveguide.This is equivalent to including an additional inductance-capacitance for energy storage,which realizes the slow-wave effect.A microstrip line-SIW tapered transition structure is introduced to achieve a low loss and a large bandwidth.In the frequency band between 8-12 GHz,the measured results show that the delay multiplier of the delay line reaches 4 times,i.e.,delay line’s delay time is 4 times larger than 50Ωmicrostrip line with same length.Furthermore,the delay fluctuation,i.e.,the difference between the maximum and minimum delay as a percentage of the standard delay is only 2.5%,the insertion loss is less than-2.5 dB,and the return loss is less than-15 dB.Compared with the existing delay lines,the proposed delay line has the advantages of high delay efficiency,low delay error,wide bandwidth and low loss,which has good practical value and application prospects.
基金Research Project Supported by Shanxi Scholarship Council of China(2021-029)International Cooperation Base and Platform Project of Shanxi Province(202104041101019)Basic Research Plan of Shanxi Province(202203021211129)。
文摘In this paper,we develop a multi-scalar auxiliary variables(MSAV)scheme for the Cahn-Hilliard Magnetohydrodynamics system by introducing two scalar auxiliary variables(SAV).This scheme is linear,fully decoupled and unconditionally stable in energy.Subsequently,we provide a detailed implementation procedure for full decoupling.Thus,at each time step,only a series of linear differential equations with constant coefficients need to be solved.To validate the effectiveness of our approach,we conduct an error analysis for this first-order scheme.Finally,some numerical experiments are provided to verify the energy dissipation of the system and the convergence of the proposed approach.
文摘Capacitive voltage transformers (CVTs) are essential in high-voltage systems. An accurate error assessment is crucial for precise energy metering. However, tracking real-time quantitative changes in capacitive voltage transformer errors, particularly minor variations in multi-channel setups, remains challenging. This paper proposes a method for online error tracking of multi-channel capacitive voltage transformers using a Co-Prediction Matrix. The approach leverages the strong correlation between in-phase channels, particularly the invariance of the signal proportions among them. By establishing a co-prediction matrix based on these proportional relationships, The influence of voltage changes on the primary measurements is mitigated. Analyzing the relationships between the co-prediction matrices over time allows for inferring true measurement errors. Experimental validation with real-world data confirms the effectiveness of the method, demonstrating its capability to continuously track capacitive voltage transformer measurement errors online with precision over extended durations.
文摘Industrial robots are integral to modern manufacturing systems,enabling high precision,high throughput,and flexibility.However,errors in accuracy and repeatability,which arise from a variety of sources such as mechanical wear,calibration issues,and environmental factors,can significantly impact the performance of industrial robots.This paper aims to explore the theoretical modeling of errors in industrial robot systems and propose compensation strategies to enhance their accuracy and repeatability.Key factors contributing to errors,such as kinematic,dynamic,and environmental influences,are discussed in detail.Additionally,the paper explores various compensation techniques,including geometric error compensation,dynamic compensation,and adaptive control approaches.Through the integration of error modeling and compensation methods,industrial robots can achieve improved performance,ensuring higher operational efficiency and product quality.The paper concludes by highlighting the challenges and future research directions for improving the accuracy and repeatability of industrial robots in practical applications.