期刊文献+
共找到733篇文章
< 1 2 37 >
每页显示 20 50 100
Synergistic inhibition to dissolution corrosion by de-twinning and precipitation in alumina-forming austenitic steel exposed to lead-bismuth eutectic with 10-8 wt.%oxygen at 600℃
1
作者 Decang Zhang Xiaoxin Zhang +4 位作者 Jun Zhang Hao Ren Zhonghui Liao Xian Zeng Qingzhi Yan 《Journal of Materials Science & Technology》 2025年第19期55-67,共13页
This work investigated the original microstructure of cold-worked alumina-forming austenitic steel,along with its precipitation and dissolution corrosion behaviors in lead-bismuth eutectic with 10-8 wt.%oxygen at 600... This work investigated the original microstructure of cold-worked alumina-forming austenitic steel,along with its precipitation and dissolution corrosion behaviors in lead-bismuth eutectic with 10-8 wt.%oxygen at 600℃,using solution-annealed steel for comparison.Anomalously,cold-worked steel presented milder corrosion compared to solution-annealed steel,with average corrosion depths of 314.3 and 401.0μm after 1700 h exposure.Cold working-induced de-twinning transformed the annealing twin boundaries into normal high-angle grain boundaries(NGBs),increasing NGBs proportion from 36%to 89%.The increased NGBs provided more nucleation sites for intergranular barriers composed of alternate NiAl and M23C6 precipitates,thus better obstructing the dissolution attack. 展开更多
关键词 Alumina-forming austenitic steel Lead-bismuth eutectic Dissolution corrosion De-twinning PRECIPITATION
原文传递
Nitrogen enhances microstructural thermal stability of Si-modified Fe-Cr-Ni austenitic stainless steel
2
作者 Yuanfei Su Shuzhan Zhang +3 位作者 Shengxuan Jiao Xianbo Shi Wei Yan Lijian Rong 《Journal of Materials Science & Technology》 2025年第23期270-289,共20页
High-temperature long-term microstructural instability is an urgent problem to be solved for high-silicon Fe-Cr-Ni austenitic stainless steel.In this study,we propose a novel strategy to improve the microstructural th... High-temperature long-term microstructural instability is an urgent problem to be solved for high-silicon Fe-Cr-Ni austenitic stainless steel.In this study,we propose a novel strategy to improve the microstructural thermal stability of Si-modified Fe-Cr-Ni austenitic steels via N doping.The microstructural evolution behaviors of N-free and N-doping steels were systematically investigated during aging at 783-923 K.The findings indicate that N doping results in substantial grain refinement and improves the strength of the steel.Importantly,it is found that N doping inhibits the premature segregation of Ni,Cr,Si,and Mo at grain boundaries by reducing their diffusion coefficients,thereby suppressing the generation of intergranular M_(6) C carbides during aging at 783 K,achieving superior thermal stability.In contrast,N-free steel exhibits microstructural instability due to theγ→M_(6) C+ferrite transformation during aging at 783 K.At 823 and 873 K,it is concluded that the diffusion of alloying elements accelerates,resulting in the formation of M_(6) C and ferrite in N-doping steel and subsequent microstructural instability.It contributes to a decrease in impact toughness,as microcracks tend to form at the ferrite domain and M_(6) C/ferrite interface with high strain concentration.Notably,when aged at 923 K,N-doping steel exhibits a cellular structure composed of M_(23) C_(6) and M_(6) C carbonitrides,with Nb(C,N)serving as the nucleation site within the grains.This differs from the intragranularχ-phase observed in N-free steel,as the nucleation driving force of theχ-phase decreases with an increasing N content.The study offers valuable insights for the development of fastener materials intended for utilization in lead-cooled fast reactors. 展开更多
关键词 Si-modified austenitic steel N-DOPING Thermal stability Strengthening Fracture behavior
原文传递
Unveiling the role of cerium in enhancing the hot ductility of super austenitic stainless steel S32654 at different temperatures
3
作者 Shucai Zhang Jiangtao Yu +6 位作者 Huabing Li Zhouhua Jiang Junyu Ren Hao Feng Hongchun Zhu Binbin Zhang Peide Han 《Journal of Materials Science & Technology》 2025年第18期11-24,共14页
The role of cerium(Ce)in enhancing the hot ductility of super austenitic stainless steel S32654 at 850–1250℃was systematically unveiled through theoretical calculations and microstructure characterization.The result... The role of cerium(Ce)in enhancing the hot ductility of super austenitic stainless steel S32654 at 850–1250℃was systematically unveiled through theoretical calculations and microstructure characterization.The results indicated that Ce microalloying improved the hot ductility of S32654 throughout the entire deformation temperature range.Specifically,the addition of Ce greatly enhanced the hot ductility in the low(850–900℃)and high(1100–1250℃)temperature ranges,but only slightly increased that in the medium temperature range(900–1100℃).At 850–900℃,Ce addition not only reduced the sulfur(S)content and suppressed the S segregation at the grain boundary,but also promoted the formation of slip bands and deformation twins,apparently improving the hot ductility.At 900–1100℃,Ce addition promoted the nucleation of intergranularσphases and dynamic recrystallization(DRX)grains,which have adverse and beneficial effects on the hot ductility,respectively.As the temperature increased,the precipitation tendency presented a first increasing and then decreasing trend around 1000℃,while the DRX gradually increased.Accordingly,the improvement degree of Ce on the hot ductility first weakened and then enhanced.At 1100–1250℃,Ce significantly promoted the DRX to form more fine and uniform deformation structure,thereby remarkably increasing the cracking resistance and then the hot ductility. 展开更多
关键词 Super austenitic stainless steel Hot ductility CERIUM PRECIPITATION Dynamic recrystallization
原文传递
Effect of Nb on high-temperature oxidation of austenitic stainless steel at 850℃
4
作者 Fan Wang Gui-zhi Xiao +6 位作者 De-ning Zou Kai-xin Zhang Xiao-ming Zhang Yang Li Li-bo Tong Yi-cheng Jiang Bo Song 《Journal of Iron and Steel Research International》 2025年第4期1003-1012,共10页
The effects of niobium on the high-temperature oxidation resistance of austenitic stainless steel were systematically investigated.Two austenitic stainless steels with different Nb contents were prepared and exposed t... The effects of niobium on the high-temperature oxidation resistance of austenitic stainless steel were systematically investigated.Two austenitic stainless steels with different Nb contents were prepared and exposed to air at 850℃for 200 h.Results show that Nb positively affects the high-temperature oxidation resistance of austenitic stainless steels.The matrix organization of austenitic stainless steels with added niobium does not change,while the austenitic grain size is significantly refined,and it also promoted the release of internal stresses in the oxide film,which in turn improved the integrity of the oxide film and adhesion to the substrate.In addition,with the addition of Nb element,a large number of Nb(C,N)particles are diffusely distributed in the matrix.Nb(C,N)phase distributed in the matrix and the niobium-rich layer formed by the diffusion of niobium into the interface between the metal matrix and the oxide film during the high-temperature oxidation process effectively prevents the diffusion of iron into the outer layer and enhances the oxidation resistance at high temperatures. 展开更多
关键词 Oxidation resistance Nb element austenitic stainless steel PRECIPITATION Grain size
原文传递
Effect of Mo on precipitation behavior and tensile properties of Fe26Mn8Al1.2C–xMo lightweight austenitic steels
5
作者 Xu-yang-fan Qiu Ying-chun Wang +4 位作者 Kai-lun Zeng Jin He Chong Gao Zhi-ping Xiong Xing-wang Cheng 《Journal of Iron and Steel Research International》 2025年第9期2666-2673,共8页
The effect of Mo on dual-phase precipitation behavior and tensile properties of Fe26Mn8Al1.2C–(2–3.5 wt.%)Mo lightweight austenitic steels after annealing at 700℃was investigated by electron backscatter diffraction... The effect of Mo on dual-phase precipitation behavior and tensile properties of Fe26Mn8Al1.2C–(2–3.5 wt.%)Mo lightweight austenitic steels after annealing at 700℃was investigated by electron backscatter diffraction,transmission electron microscopy,hardness and tensile tests.Alloying with Mo in the steels promotes the precipitation of Mo_(2)C carbides while inhibits the precipitation ofκ-carbides.The addition of Mo exceeding 2.5 wt.%facilitates the precipitation of intragranular Mo_(2)C carbides,whereas with up to 2.5 wt.%Mo,only intergranular Mo_(2)C carbides precipitate.With containing more Mo in the steels,the strength increases due to enhancement of precipitation strengthening and solid solution strengthening,while ductility gradually decreases.3Mo steel exhibits excellent overall mechanical properties,with the synergistic increase in strength,ductility,and work-hardening rate,which can be attributed to the precipitation of fine intragranular Mo_(2)C distributed uniformly in the matrix and the suppression of the formation of coarsenedκ-carbides.However,in 3.5Mo steel,abundant coarsened Mo2C precipitation strongly interacts with dislocations to promote crack propagation along non-coherent interfaces,leading to a high initial work-hardening rate but severe ductility loss. 展开更多
关键词 Lightweight austenitic steel Mo addition Precipitation behavior Tensile property Work-hardening rate
原文传递
Flow softening behavior associated with dynamic recrystallization and preferential growth of a multielement strengthening high-Mn austenitic steel
6
作者 Xiang-yang Qi Chen Chen +4 位作者 Yan-guo Li Zhi-nan Yang Shu-chao Shen Bo Lv Fu-cheng Zhang 《Journal of Iron and Steel Research International》 2025年第9期2879-2892,共14页
Isothermal compression tests were carried out to investigate the hot deformation behavior of a multi-alloyed high-Mn austenitic steel,110Mn12Cr2NY,at temperatures ranging from 800 to 1200℃ and strain rates ranging fr... Isothermal compression tests were carried out to investigate the hot deformation behavior of a multi-alloyed high-Mn austenitic steel,110Mn12Cr2NY,at temperatures ranging from 800 to 1200℃ and strain rates ranging from 0.01 to 1 s^(−1).The results revealed that the critical strain for dynamic recrystallization(DRX)lowered with increasing deformation temperature and decreasing strain rate.The analysis of microstructure pointed to discontinuous dynamic recrystallization(DDRX)as the dominant DRX mechanism,characterized byΣ3 twin boundaries and necklace-like structure during deformation at relatively low temperature and high strain rate.The decrease in strain rate facilitated continuous dynamic recrystallization(CDRX)as an auxiliary nucleation mechanism,leading to a significant decrease in the softening rate in the flow stress curves.When deformed at high temperatures and low strain rates,the preferential growth of<001>oriented grains resulted in the formation of a strong<001>//CD texture,and CDRX associated with<001>grains emerged as the predominant DRX mechanism.Significant DRX occurring at high temperatures and high strain rates yielded fine,defect-free equiaxed grains.Consequently,this region could be employed as the optimal hot working window for 110Mn12Cr2NY steel,with a temperature range of 950–1200℃and a strain rate range of 0.4^(–)1 s^(−1). 展开更多
关键词 Multi-alloyed high-Mn austenitic steel Hot deformation behavior Constitutive model Processing map Microstructure analysis
原文传递
Synergistic regulation of mechanical properties and pitting corrosion resistance of high-nitrogen austenitic stainless steel via vanadium microalloying
7
作者 Cun-shuai Zhang Qian Hu +3 位作者 Shi-qi Zhang Zhi-xian Peng Ming-yang Li Jing Liu 《Journal of Iron and Steel Research International》 2025年第11期4013-4025,共13页
The addition of vanadium substantially enhances the strength of the high-nitrogen austenitic stainless steel(HNASS),while maintaining excellent ductility and pitting corrosion resistance.The effects of vanadium microa... The addition of vanadium substantially enhances the strength of the high-nitrogen austenitic stainless steel(HNASS),while maintaining excellent ductility and pitting corrosion resistance.The effects of vanadium microalloying on the microstructure,mechanical properties,and pitting resistance of HNASS were systematically analyzed with a focus on the role of VN during the pitting process.The results suggest that vanadium promoted the precipitation of VN,contributing to grain boundary pinning and grain refinement.As vanadium content increased,the number of precipitates rose,and the average grain size decreased.At lower vanadium content(0-0.2 wt.%),the strength of the material was significantly reinforced with increasing vanadium content,while maintaining excellent ductility and pitting resistance.However,when the vanadium content reached 0.3-0.4 wt.%,precipitates demonstrated a substantially increased number and coarsened,accompanied by the formation of numerous dislocations around the precipitates.This brought about further strength reinforcement but a marked decline in ductility and pitting resistance.Additionally,pitting corrosion was initiated at the matrix-VN interface.Compared to the matrix,VN exhibited higher reactivity and preferentially reacted with Cl−ions,provoking dissolution.However,NH4+generated during the dissolution of VN facilitated repassivation of the material,suppressing further pitting propagation. 展开更多
关键词 High-nitrogen austenitic stainless steel Vanadium microalloying PRECIPITATE Pitting corrosion Mechanical property
原文传递
Elevated temperature tensile properties of wire arc additively manufactured 308L austenitic stainless steel
8
作者 A.Rajesh Kannan Yasam Palguna +2 位作者 Hafiz Muhammad Rehan Tariq N.Siva Shanmugam Tea-Sung Jun 《International Journal of Minerals,Metallurgy and Materials》 2025年第9期2164-2176,共13页
Wire arc additive manufacturing(WAAM)presents a promising approach for fabricating medium-to-large austenitic stainless steel components,which are essential in industries like aerospace,pressure vessels,and heat excha... Wire arc additive manufacturing(WAAM)presents a promising approach for fabricating medium-to-large austenitic stainless steel components,which are essential in industries like aerospace,pressure vessels,and heat exchangers.This research examines the mi-crostructural characteristics and tensile behaviour of SS308L manufactured via the gas metal arc welding-based WAAM(WAAM 308L)process.Tensile tests were conducted at room temperature(RT,25℃),300℃,and 600℃in as-built conditions.The microstructure con-sists primarily of austenite grains with retainedδ-ferrite phases distributed within the austenitic matrix.The ferrite fraction,in terms of fer-rite number(FN),ranged between 2.30 and 4.80 along the build direction from top to bottom.The ferrite fraction in the middle region is 3.60 FN.Tensile strength was higher in the horizontal oriented samples(WAAM 308L-H),while ductility was higher in the vertical ones.Tensile results show a gradual reduction in strength with increasing test temperature,in which significant dynamic strain aging(DSA)is observed at 600℃.The variation in serration behavior between the vertical and horizontal specimens may be attributed to microstructural differences arising from the build orientation.The yield strength(YS),ultimate tensile strength(UTS),and elongation(EL)of WAAM 308L at 600℃were(240±10)MPa,(442±16)MPa,and(54±2.00)%,respectively,in the horizontal orientation(WAAM 308L-H),and(248±9)MPa,(412±19)MPa,and(75±2.80)%,respectively,in the vertical orientation(WAAM 308L-V).Fracture surfaces revealed a transition from ductile dimple fracture at RT and 300℃to a mixed ductile-brittle failure with intergranular facets at 600℃.The research explores the applicability and constraints of WAAM-produced 308L stainless steel in high-temperature conditions,offering crucial in-sights for its use in thermally resistant structural and industrial components. 展开更多
关键词 wire arc additive manufacturing austenitic stainless steels microstructure mechanical properties elevated temperatures
在线阅读 下载PDF
Controllable κ-carbide precipitation enables strength-ductility co-enhancement in Fe-Mn-Al-C low-density austenitic steel via grain boundary engineering
9
作者 J.H.Du P.Chen +3 位作者 F.Zhang Z.P.Jia F.Shi X.W.Li 《Journal of Materials Science & Technology》 2025年第24期26-31,共6页
1.Introduction The precipitation of κ-carbides is critical for the deformation behavior of Fe-Mn-Al-C austenitic low-density steels[1-5].Ther-momechanical treatment can significantly influence the distribution,size,a... 1.Introduction The precipitation of κ-carbides is critical for the deformation behavior of Fe-Mn-Al-C austenitic low-density steels[1-5].Ther-momechanical treatment can significantly influence the distribution,size,and morphology of κ-carbides,and thus regulate the mechanical properties[1,4,6-8].Intragranular κ-carbides precipitate through either nucleation and growth mechanisms[9]or spinodal decomposition[3,5],depending on thermodynamic conditions. 展开更多
关键词 deformation behavior Fe Mn Al C strength ductility co enhancement grain boundary engineering precipitation low density austenitic steel spinodal decomposition depending nucleation growth mechanisms
原文传递
Effect of post weld heat treatment on grain boundary character distribution and corrosion resistance of friction stir welded armourgrade nickel and molybdenum-free high-nitrogen austenitic stainless steel
10
作者 Arun Kumar Gurrala Raffi Mohammed G Madhusudhan Reddy 《Defence Technology(防务技术)》 2025年第9期246-261,共16页
This study examines the effects of friction stir welding(FSW)and post-weld heat treatment(PWHT)on the grain boundary character distribution and corrosion resistance of cross sectional(top and bottom)regions of nickel-... This study examines the effects of friction stir welding(FSW)and post-weld heat treatment(PWHT)on the grain boundary character distribution and corrosion resistance of cross sectional(top and bottom)regions of nickel-and molybdenum-free high-nitrogen austenitic stainless steel(HNASS).FSW at 400 rpm and 30 mm/min resulted in finer grains(4.18μm)and higher coincident site lattice(CSL)boundaries(32.3%)at the top of the stir zone(SZ)due to dynamic recrystallization(DRX).PWHT at 900℃for 1 h led to grain coarsening(12.91μm the bottom SZ)but enhanced CSL boundaries from 24.6%to 30.2%,improving grain boundary stability.PWHT reduced the kernel average misorientation(KAM)by 14.9%in the SZ-top layer and 20.4%in the SZ-bottom layer,accompanied by a 25%decrease in hardness in the SZ-top layer and 26.7%in the SZ-bottom layer,indicating strain recovery and reduced dislocation density.Potentiodynamic polarization tests(PDP)showed a 18%increase in pitting potential and a 76%reduction in corrosion rate after PWHT.The improvement in corrosion resistance is attributed to the increase inΣ3 twin boundaries,which enhance grain boundary stability and reduce susceptibility to localized corrosion.These findings highlight the role of PWHT in refining the microstructure and strengthening corrosion resistance,making HNASS a promising material for demanding applications. 展开更多
关键词 Nickel and molybdenum free high-nitrogen austenitic stainless steel Friction stir welding Post-weld heat treatment Electron backscattered diffraction Microstructural gradients Pitting corrosion resistance Coincident site lattice Grain boundary characteristic distribution
在线阅读 下载PDF
Coarsening Behavior of L1_(2)-Ni_(3)Al Precipitates in Alumina-Forming Austenitic Steel
11
作者 Shaoqiang Ren Qingshuang Ma +4 位作者 Chengxian Zhang Liming Yu Huijun Li Hongtao Zhu Qiuzhi Gao 《Acta Metallurgica Sinica(English Letters)》 2025年第11期2063-2076,共14页
The nano-scale L1_(2)-Ni_(3)Al precipitates significantly contribute to thermal stability of alumina-forming austenitic(AFA)steels.The coarsening behavior of L1_(2)-Ni_(3)Al precipitates in AFA steels during isotherma... The nano-scale L1_(2)-Ni_(3)Al precipitates significantly contribute to thermal stability of alumina-forming austenitic(AFA)steels.The coarsening behavior of L1_(2)-Ni_(3)Al precipitates in AFA steels during isothermal aging with considering the influence of alloying elements was investigated.The results show that the coarsening rate of L1_(2)-Ni_(3)Al precipitates increases with co-additions of Ni and Cu,and especially,the increase of Cu content promotes the nucleation of L1_(2)-Ni_(3)Al precipitates.A dynamic competition exists between Lifshitz-Slyozov-Wagner theory and transient interface diffusion-controlled theory for coarsening behavior of L1_(2)-Ni_(3)Al precipitates with duration of isothermal aging.Additionally,the transition from L1_(2)-Ni_(3)Al precipitates to B2-NiAl precipitates during isothermal aging results in the formation of a depleted zone of L1_(2)-Ni_(3)Al precipitates around B2-NiAl precipitates,which inhibits the growth of L1_(2)-Ni_(3)Al precipitates.The coarsening of L1_(2)-Ni_(3)Al precipitates significantly contributes to the yield strength of AFA steels. 展开更多
关键词 Alumina-forming austenitic steel Isothermal aging Coarsening behavior L1_(2)-Ni_(3)Al precipitates B2-NiAl precipitates
原文传递
Lap-Shear Performance of Weld-Bonded Mg Alloy and Austenitic Stainless Steel in Three-Sheet Stack-Up
12
作者 Sunusi Marwana Manladan Mukhtar Fatihu Hamza +1 位作者 Singh Ramesh Zhen Luo 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第4期342-353,共12页
With the growing interest in utilizing Mg and austenitic stainless steel(ASS)in the automotive sector,joining them together in three-sheet configuration is inevitable.However,achieving this task presents considerable ... With the growing interest in utilizing Mg and austenitic stainless steel(ASS)in the automotive sector,joining them together in three-sheet configuration is inevitable.However,achieving this task presents considerable challenges due to the large differences in their physical,metallurgical and mechanical properties.To overcome these challenges,the feasibility of using weld-bonding to join Mg alloy/ASS/ASS was investigated.The nugget formation,interface characteristics,microstructure and mechanical properties of the joints were investigated.The results show that the connection between the Mg alloy and upper ASS was achieved through the combined effect of the cured adhesive and weld-brazing in the weld zone.On the other hand,a metallurgical bond was formed at the ASS/ASS interface.The Mg nugget microstructure exhibited fine columar grains composed predominantly of primaryα-Mg grains along with a eutectic mixture ofα-Mg andβ-Mg17Al12.The nugget formed at the ASS/ASS interface consisted largely of columnar grains of austenite,with some equiaxed dendritic grains formed at the centerline of the joint.The weld-bonded joints exhibited an average peak load and energy absorption of about 8.5 kN and 17 J,respectively(the conventional RSW joints failed with minimal or no load application).The failure mode of the joints changed with increasing welding current from interfacial failure via the Mg nugget/upper ASS interface to partial interfacial failure(part of the Mg nugget was pulled out of the Mg sheet).Both failure modes were accompanied by cohesive failure in the adhesive zone. 展开更多
关键词 Weld-bonding Resistance spot welding austenitic stainless steel Mg alloy Failure mode
在线阅读 下载PDF
In situ neutron diffraction revealing the achievement of excellent combination of strength and ductility in metastable austenitic steel by grain refinement
13
作者 Wenqi Mao Wu Gong +4 位作者 Stefanus Harjo Satoshi Morooka Si Gao Takuro Kawasaki Nobuhiro Tsuji 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第9期69-82,共14页
The yield stress of Fe-24Ni-0.3C(wt%)metastable austenitic steel increased 3.5 times(158→551 MPa)when the average grain size decreased from 35μm(coarse-grained[CG])to 0.5μm(ultrafine-grained[UFG]),whereas the tensi... The yield stress of Fe-24Ni-0.3C(wt%)metastable austenitic steel increased 3.5 times(158→551 MPa)when the average grain size decreased from 35μm(coarse-grained[CG])to 0.5μm(ultrafine-grained[UFG]),whereas the tensile elongation was kept large(0.87→0.82).In situ neutron diffraction measurements of the CG and UFG Fe-24Ni-0.3C steels were performed during tensile deformation at room temperature to quantitatively elucidate the influence of grain size on the mechanical properties and deformation mechanisms.The initial stages of plastic deformation in the CG and UFG specimens were dominated by dislocation slip,with deformation-induced martensitic transformation(DIMT)also occurring in the later stage of deformation.Results show that grain refinement increases the initiation stress of DIMT largely and suppresses the rate of DIMT concerning the strain,which is attributed to the following effects.(i)Grain refinement increased the stabilization of austenite and considerably delayed the initiation of DIMT in the<111>//LD(LD:loading direction)austenite grains,which were the most stable grains for DIMT.As a result,most of the<111>//LD austenite grains in the UFG specimen failed to transform into martensite.(ii)Grain refinement also suppressed the autocatalytic effect of the martensitic transformation.Nevertheless,the DIMT with the low transformation rate in the UFG specimen was more efficient in increasing the flow stress and more appropriate to maintain uniform deformation than that in the CG specimen during deformation.The above phenomena mutually contributed to the excellent combination of strength and ductility of the UFG metastable austenitic steel. 展开更多
关键词 Ultrafine grain Deformation-induced martensitic transformation Metastable austenitic steel In situ neutron diffraction
原文传递
Bulging Distortion of Austenitic Stainless Steel Sheet on the Partially Penetrated Side of Non-Penetration Lap Laser Welding Joint
14
作者 Chengwu Yao Enze Liu +1 位作者 Jiaming Ni Binying Nie 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期286-295,共10页
Non-penetration laser welding of lap joints in austenitic stainless steel sheets is commonly preferred in fields where the surface quality is of utmost importance.However,the application of non-penetration welded aust... Non-penetration laser welding of lap joints in austenitic stainless steel sheets is commonly preferred in fields where the surface quality is of utmost importance.However,the application of non-penetration welded austenitic stainless steel parts is limited owing to the micro bulging distortion that occurs on the back surface of the partial penetration side.In this paper,non-penetration lap laser welding experiments,were conducted on galvanized and SUS304 austenitic stainless steel plates using a fiber laser,to investigate the mechanism of bulging distortion.A comparative experiment of DC01 galvanized steel-Q235 carbon steel lap laser welding was carried out,and the deflection and distortion profile of partially penetrated side of the sheets were measured using a noncontact laser interferometer.In addition,the cold-rolled SUS304 was subjected to heat holding at different temperatures and water quenching after bending to characterize its microstructure under tensile and compressive stress.The results show that,during the heating stage of the thermal cycle of laser lap welding,the partial penetration side of the SUS304 steel sheet generates compressive stress,which extrudes the material in the heat-affected zone to the outside of the back of the SUS304 steel sheet,thereby forming a bulge.The findings of these experiments can be of great value for controlling the distortion of the partial penetrated side of austenitic stainless steel sheet during laser non-penetration lap welding. 展开更多
关键词 Non-penetration lap laser welding Bulging distortion austenitic stainless steel Compressive stress Tension stress
在线阅读 下载PDF
Nanoindentation behavior and creep-induced cracking of long-term crept austenitic steel at 650℃
15
作者 Zhen Zhang Yu-hang Duan +7 位作者 Shuai Wang Jin-shan Chen An-zhe Wang Xiang-yang Mao Yuan-ji Shi Jie Zhang Ming Liu Zheng-fei Hu 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第2期464-474,共11页
The grain boundary(GB)damage of long-term crept HR3C(25Cr–20Ni–Nb–N)austenitic steel with solid solution state was investigated by nanoindentation test accompanied with in-situ electron back-scattered diffraction.T... The grain boundary(GB)damage of long-term crept HR3C(25Cr–20Ni–Nb–N)austenitic steel with solid solution state was investigated by nanoindentation test accompanied with in-situ electron back-scattered diffraction.The corresponding microstructure was characterized by scanning electron microscopy and transmission electron microscopy.Results show that the increase in nanoindentation hardness at the GBs and triple grain junctions may be related to the dislocation accumulation and carbide growth during the creep.Coarsened M23C6 and dislocations piling-up at the GB accelerate the nucleation and coalescence of creep cavity along the GB.The nanoindentation hardness in grains varies with orientation of the stress axis.The orientation difference of neighbor grains may induce local high geometrically necessary dislocation densities and strain gradients near the GB,consequently causing stress concentration and subsequent crack growth at specific GBs. 展开更多
关键词 austenitic steel CREEP NANOINDENTATION Grain orientation Creep-induced cracking
原文传递
Interplay between temperature-dependent strengthening mechanisms and mechanical stability in high-performance austenitic stainless steels
16
作者 Mohammad Javad Sohrabi Hamed Mirzadeh +3 位作者 Saeed Sadeghpour Milad Zolfipour Aghdam Abdol Reza Geranmayeh Reza Mahmudi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第10期2182-2188,共7页
The effects of deformation temperature on the transformation-induced plasticity(TRIP)-aided 304L,twinning-induced plasti-city(TWIP)-assisted 316L,and highly alloyed stable 904L austenitic stainless steels were compare... The effects of deformation temperature on the transformation-induced plasticity(TRIP)-aided 304L,twinning-induced plasti-city(TWIP)-assisted 316L,and highly alloyed stable 904L austenitic stainless steels were compared for the first time to tune the mechan-ical properties,strengthening mechanisms,and strength-ductility synergy.For this purpose,the scanning electron microscopy(SEM),electron backscattered diffraction(EBSD),X-ray diffraction(XRD),tensile testing,work-hardening analysis,and thermodynamics calcu-lations were used.The induced plasticity effects led to a high temperature-dependency of work-hardening behavior in the 304L and 316L stainless steels.As the deformation temperature increased,the metastable 304L stainless steel showed the sequence of TRIP,TWIP,and weakening of the induced plasticity mechanism;while the disappearance of the TWIP effect in the 316L stainless steel was also observed.However,the solid-solution strengthening in the 904L superaustenitic stainless steel maintained the tensile properties over a wide temper-ature range,surpassing the performance of 304L and 316L stainless steels.In this regard,the dependency of the total elongation on the de-formation temperature was less pronounced for the 904L alloy due to the absence of additional plasticity mechanisms.These results re-vealed the importance of solid-solution strengthening and the associated high friction stress for superior mechanical behavior over a wide temperature range. 展开更多
关键词 austenitic stainless steels mechanical behavior stacking fault energy METASTABILITY mechanical twinning
在线阅读 下载PDF
Effects of interstitial cluster mobility on dislocation loops evolution under irradiation of austenitic steel
17
作者 Xin‑Hua Yan Lu Sun +5 位作者 Du Zhou Teng Xie Chang Peng Ye‑Xin Yang Li Chen Zhen‑Feng Tong 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第8期69-78,共10页
The evolution of dislocation loops in austenitic steels irradiated with Fe^(+)is investigated using cluster dynamics(CD)simulations by developing a CD model.The CD predictions are compared with experimental results in... The evolution of dislocation loops in austenitic steels irradiated with Fe^(+)is investigated using cluster dynamics(CD)simulations by developing a CD model.The CD predictions are compared with experimental results in the literature.The number density and average diameter of the dislocation loops obtained from the CD simulations are in good agreement with the experimental data obtained from transmission electron microscopy(TEM)observations of Fe~+-irradiated Solution Annealed 304,Cold Worked 316,and HR3 austenitic steels in the literature.The CD simulation results demonstrate that the diffusion of in-cascade interstitial clusters plays a major role in the dislocation loop density and dislocation loop growth;in particular,for the HR3 austenitic steel,the CD model has verified the effect of temperature on the density and size of the dislocation loops. 展开更多
关键词 Cluster dynamics Dislocation loops In-cascade interstitial clusters austenitic steels
在线阅读 下载PDF
Prediction of Hot Deformation Behavior of 7Mo Super Austenitic Stainless Steel Based on Back Propagation Neural Network
18
作者 WANG Fan WANG Xitao +1 位作者 XU Shiguang HE Jinshan 《材料导报》 EI CAS CSCD 北大核心 2024年第17期165-171,共7页
The hot compression tests of 7Mo super austenitic stainless(SASS)were conducted to obtain flow curves at the temperature of 1000-1200℃and strain rate of 0.001 s^(-1)to 1 s^(-1).To predict the non-linear hot deformati... The hot compression tests of 7Mo super austenitic stainless(SASS)were conducted to obtain flow curves at the temperature of 1000-1200℃and strain rate of 0.001 s^(-1)to 1 s^(-1).To predict the non-linear hot deformation behaviors of the steel,back propagation-artificial neural network(BP-ANN)with 16×8×8 hidden layer neurons was proposed.The predictability of the ANN model is evaluated according to the distribution of mean absolute error(MAE)and relative error.The relative error of 85%data for the BP-ANN model is among±5%while only 42.5%data predicted by the Arrhenius constitutive equation is in this range.Especially,at high strain rate and low temperature,the MAE of the ANN model is 2.49%,which has decreases for 18.78%,compared with conventional Arrhenius constitutive equation. 展开更多
关键词 7Mo super austenitic stainless steel hot deformation behavior flow stress BP-ANN Arrhenius constitutive equation
在线阅读 下载PDF
Effects of Thermal Aging on the Oxidation Behavior of 316L Austenitic Steel in 600℃Supercritical Fired Boiler:Mechanism Based on Interface Features
19
作者 Tianyi Zhang Chenjun Yu +3 位作者 Bo Xiao Ju Liu Zhongliang Zhu Naiqiang Zhang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第12期2150-2162,共13页
The oxidation behavior of 316L austenitic steel after thermal aging process at 600℃for 6 h was investigated in the supercritical water(600℃/25 MPa)with 1000 h.Results showed that the grain size and the proportion of... The oxidation behavior of 316L austenitic steel after thermal aging process at 600℃for 6 h was investigated in the supercritical water(600℃/25 MPa)with 1000 h.Results showed that the grain size and the proportion of high angle grain boundaries(HAGB)increased in the steel after thermal aging process,with the observation of micro-textures.The weight gain rate of the steel after aging process increased,presenting the decreased Cr_(2)O_(3)contain in the oxide layer,which resulted in the increasing diffusion rate of Fe and O ions in oxide layer.The molecular dynamics simulation results confirmed the high oxidation rate in HAGB and micro-textures for the 316L steel after aging process. 展开更多
关键词 316L austenitic steel Thermal aging process Supercritical water High-temperature oxidation mechanism Molecular dynamics simulation
原文传递
Effect of Mn addition on microstructure and mechanical properties of GX40CrNiSi25-12 austenitic heat resistant steel
20
作者 Guan-yu Jiang Meng-wu Wu +2 位作者 Xiao-guang Yang Hui Wang Yu-yuan Zhu 《China Foundry》 SCIE EI CAS CSCD 2024年第3期205-212,共8页
Three types of steels were designed on the basis of GX40CrNiSi25-12 austenitic heat resistant steel by adding different Mn contents(2wt.%,6wt.%,and 12wt.%).Thermodynamic calculation,microstructure characterization and... Three types of steels were designed on the basis of GX40CrNiSi25-12 austenitic heat resistant steel by adding different Mn contents(2wt.%,6wt.%,and 12wt.%).Thermodynamic calculation,microstructure characterization and mechanical property tests were conducted to investigate the effect of Mn addition on the microstructure and mechanical properties of the austenitic heat resistant steel.Results show that the matrix structure in all the three types of steels at room temperature is completely austenite.Carbides NbC and M_(23)C_(6)precipitate at grain boundaries of austenite matrix.With the increase of Mn content,the number of carbides increases and their distribution becomes more uniform.With the Mn content increases from 1.99%to 12.06%,the ultimate tensile strength,yield strength and elongation increase by 14.6%,8.0%and 46.3%,respectively.The improvement of the mechanical properties of austenitic steels can be explained by utilizing classic theories of alloy strengthening,including solid solution strengthening,precipitation strengthening,and grain refinement.The increase in alloy strength can be attributed to solid solution strengthening and precipitation strengthening caused by the addition of Mn.The improvement of the plasticity of austenitic steels can be explained from two aspects:grain refinement and homogenization of precipitated phases. 展开更多
关键词 austenitic heat resistant steel MANGANESE MICROSTRUCTURE mechanical properties
在线阅读 下载PDF
上一页 1 2 37 下一页 到第
使用帮助 返回顶部