The equilibrium geometries and electronic properties of AunAl, up to n=13, have been systematically investigated using the density functional theory. The results show that, for the AunAl clusters, two patterns are ide...The equilibrium geometries and electronic properties of AunAl, up to n=13, have been systematically investigated using the density functional theory. The results show that, for the AunAl clusters, two patterns are identified. Pattern one (n=2, 3, 8), the lowest-energy geometries prefer two-dimensional structures. Pattern two (n=4-7, 9-13), the lowest-energy geometries prefer three-dimensional structures. According to the analysis of the binding energy and the fragmentation energy, AunAl clusters with odd n are found to be more stable than those with even n. The same trend of alternation can be illuminated according to the computational results in the HOMO-LUMO gap, the ionization potential, and the electron affinities. The Al atom not only changes the structures of pure gold clusters, but also enhances their stabilities. NBO analysis indicates 6s orbital of Au atom hybridizes with 3p orbital of Al atom.展开更多
基金Supported by Education Department of Heilongjiang Province(11533046)the Academic Scientific and Technological Innovative Projects of Heilongjiang University University Students
基金Project supported in part by the National Natural Science Foundation of China (Grant No 10174086)the Foundation for the research starting of East China University of Science and Technology (Grant No YK0142109)
文摘The equilibrium geometries and electronic properties of AunAl, up to n=13, have been systematically investigated using the density functional theory. The results show that, for the AunAl clusters, two patterns are identified. Pattern one (n=2, 3, 8), the lowest-energy geometries prefer two-dimensional structures. Pattern two (n=4-7, 9-13), the lowest-energy geometries prefer three-dimensional structures. According to the analysis of the binding energy and the fragmentation energy, AunAl clusters with odd n are found to be more stable than those with even n. The same trend of alternation can be illuminated according to the computational results in the HOMO-LUMO gap, the ionization potential, and the electron affinities. The Al atom not only changes the structures of pure gold clusters, but also enhances their stabilities. NBO analysis indicates 6s orbital of Au atom hybridizes with 3p orbital of Al atom.