Complex field modulation(CFM)has found a plethora of applications in physics,biomedicine,and instrumentation.Among existing methods,superpixel-based CFM has been increasingly featured because of its advantages in high...Complex field modulation(CFM)has found a plethora of applications in physics,biomedicine,and instrumentation.Among existing methods,superpixel-based CFM has been increasingly featured because of its advantages in high modulation accuracy and its compatibility with high-speed spatial light modulators(SLMs).Nonetheless,the mainstream approach based on binary-amplitude modulation confronts limitations in optical efficiency and dynamic range.To surmount these challenges,we develop binary phase-engraved(BiPE)superpixel-based CFM and implement it using the phase light modulator(PLM)—a new micro-electromechanical system-based SLM undergoing development by Texas Instruments in recent years.Using BiPE superpixels,we demonstrate highaccuracy spatial amplitude and phase modulation at up to 1.44 kHz.To showcase its broad utility,we apply BiPEsuperpixel-based CFM to beam shaping,high-speed projection,and augmented-reality display.展开更多
基金supported in part by the Natural Sciences and Engineering Research Council of Canada(Grant Nos.RGPIN-2024-05551,ALLRP 592389-23)the Canada Research Chairs Program(Grant No.CRC-2022-00119)the Fonds de Recherche du Québec–Nature et Technologies(Grant Nos.203345–Centre d’Optique,Photonique,et Lasers).
文摘Complex field modulation(CFM)has found a plethora of applications in physics,biomedicine,and instrumentation.Among existing methods,superpixel-based CFM has been increasingly featured because of its advantages in high modulation accuracy and its compatibility with high-speed spatial light modulators(SLMs).Nonetheless,the mainstream approach based on binary-amplitude modulation confronts limitations in optical efficiency and dynamic range.To surmount these challenges,we develop binary phase-engraved(BiPE)superpixel-based CFM and implement it using the phase light modulator(PLM)—a new micro-electromechanical system-based SLM undergoing development by Texas Instruments in recent years.Using BiPE superpixels,we demonstrate highaccuracy spatial amplitude and phase modulation at up to 1.44 kHz.To showcase its broad utility,we apply BiPEsuperpixel-based CFM to beam shaping,high-speed projection,and augmented-reality display.